Determine whether the points $(1,1,1),(3,2,3)$, and $(-3,-1,3)$ are collinear. (Problem 5 from Wed)

Def The cross product $u \times v$ with. magnitude given by $\|u \times v\|=\|u\| v \| \sin \theta=$ area of the parallelogram

- is perpindiculos to both u and v
- sat isfies the right hand rule.

Solution The three points are collinear if and only if the parallelogram spannod by the redoes

$$
\begin{aligned}
u & =(1,1,1)-(3,2,3), & v & =(1,1,1)-(-3,-1,3) \\
& =(-2,-1,-2) & & =(4,2,-2)
\end{aligned}
$$

has zero area i.e. $\|u x v\|=0$
we have

$$
\begin{aligned}
u \times v & =\left|\begin{array}{ccc}
i & j & k \\
-2 & -1 & -2 \\
4 & 2 & -2
\end{array}\right| \\
& =i\left|\begin{array}{rr}
-1 & -2 \\
2 & -2
\end{array}\right|-j\left|\begin{array}{cc}
-2 & -2 \\
4 & -2
\end{array}\right|+k\left|\begin{array}{cc}
-2 & -1 \\
4 & 2
\end{array}\right| \\
& =i(2-(-4))-j(4-(-8))+k(-4-(-4)) \\
& =(6,-12,0)
\end{aligned}
$$

Thus $\|u x v\|=0$ so the points are not collinear. *During section. I thought I made a mistake, but the three points are actually not collinear!

Problem 2
Let $u, v, w \in \mathbb{R}^{3}$. Suppose that there are scalars $\alpha, \beta \in \mathbb{R}$ such that $u=\alpha v+\beta w$. Compute the value of the scalar triple product $u \cdot(v \times w)$

Solution $u \cdot(v \times \omega)=(\alpha v+\beta \omega) \cdot(v \times \omega)$

$$
\begin{aligned}
& =(\alpha v) \cdot(v \times w)+(\beta w) \cdot(v \times w) \\
& =\alpha(\underbrace{v \cdot(v \times w)})+\beta(w \cdot(v \times w))
\end{aligned}
$$

Recall. $v \times w$ is orthogonal to v

- $a \cdot b=0$ if andonly if $a \perp b$

$$
\begin{aligned}
& =\alpha \cdot 0+\beta \cdot 0 \\
& =0
\end{aligned}
$$

Geometrically

u, v, w are linearly dependent

a u, v, w are linearly independent
U, N, w determines a parallelepiped:

signed Also,

Fact: Volume of parallelepiped is given by $u \cdot(v \times w)$

$$
u \cdot(v \times w)=\operatorname{det}\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]
$$

Determine whether the vectors $(\underbrace{1,4,-7}_{u}),(\underbrace{(2,-1,4)}_{v}$, and $(\underbrace{0,-9,18}_{w})$ are coplanar.

Solution By Problem 2, we just need to compute $u \cdot(v \times w)$. We have

$$
\begin{aligned}
u \cdot(v \times w) & =\operatorname{det}\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right] \\
& =\left|\begin{array}{ll}
1 \\
2 & -7 \\
-1 & 4 \\
0 & -9 \\
-18
\end{array}\right| \\
& =\left|\begin{array}{ll}
-1 & 4 \\
-9 & 18
\end{array}\right|-2\left|\begin{array}{cc}
4 & -7 \\
-9 & 18
\end{array}\right|+0\left|\begin{array}{cc}
4 & -7 \\
-1 & 4
\end{array}\right| \\
& =-18-(-36)-2(72-(63)) \\
& =18-18=0
\end{aligned}
$$

Since $u \cdot(v \times w)=0$, the vectors lie in the same plane!
Ex computing a determinant:

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 \\
0 & 2 \\
0 & 1 & 1
\end{array}\right] } & =-0\left|\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right|+0\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|-1\left|\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right| \\
& =0+0-1(0) \\
& =0
\end{aligned}
$$

Fact $\operatorname{det}(A)=0$ if there is a row or column containing only zeros.
Fact $\operatorname{det}(A)=0$ if are row/column is a multiple of anottor row/column.

Problem 4
Consider the lines $r_{1}(t)=(1,1,0)+t(1,-1,2)$ and $r_{2}(S)=(2,0,2)+S(-1,1,0)$
a) Show that r_{1}, r_{2} intersect.
b) Find an equation of the plane containing r_{1} and r_{2}.

How do we describe a plane?

Given a point \vec{r}_{0} in the plane p and avector \vec{n} orth donal to P, a point \vec{r} is in P if and only if $\vec{n} \cdot \vec{r}-\vec{r}_{0}=0$
So the collection of point in P are the points \vec{r} that salisty the equation

$$
\begin{equation*}
\stackrel{\rightharpoonup}{n} \cdot\left(\stackrel{\rightharpoonup}{r}-\vec{r}_{b}\right)=0 \tag{x}
\end{equation*}
$$

If $n=(a, b, c), \vec{r}=\left(x, y_{1}, z\right), r_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, the n ((x) becomes

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

Sdution (a) $r_{1}(t)=(1,1,0)+t(1,-1,2)$ and $r_{2}(S)=(2,0,2)+s(-1,1,0)$
Set $r_{1}(t)=r_{2}(s):(1+t, 1-t, 2 t)=(2-s, s, 2)$

$$
\Rightarrow\left\{\begin{array}{l}
1+t=2-5 \\
1-t=s \\
2 t=2
\end{array} \longrightarrow \begin{array}{l}
\text { so } t=1 \text { by }(3) \\
\text { Then (1) implies } s=0 \\
(2) \text { implies } s=0
\end{array}\right.
$$

$$
\text { (2) implies } s=0 \text {. }
$$

so the system has a solution, $t=1, s=0$. So the lines intersect at the point $(2,0,2)$.
(b) A point in the plane is $(2,0,2)$. We need to find a normal vector. since the vectors $(1,-1,2)$ and $(-1,1,0)$ are parallel to the plane, we can $(1,-1,2) \times(-1,1,0)$ as the normal vector.
we have

$$
\left.\begin{aligned}
& \text { we have } \\
& n=(1,-1,2) \times(-1,1,0)=\left|\begin{array}{lc}
i & i+k \\
1 & -1
\end{array}\right|-2
\end{aligned} \right\rvert\,
$$

$$
\begin{aligned}
n=(1,-1,2) \times(-1,1,0) & \left.=\left\lvert\, \begin{array}{cc}
c & 1 \\
1 & -1 \\
-1 \\
-1 & 1 \\
- \\
0
\end{array}\right.\right) \mid \\
& =k\left|\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right|-2\left|\begin{array}{cc}
i & i \\
-1 & 1
\end{array}\right| \\
& =0 . k-2(i+j)=(-2,-2,0) .
\end{aligned}
$$

So the equation of the plane is

$$
\begin{aligned}
& (-2,-2,0) \cdot((x, y, z)-(2,0,2))=0 \\
\Rightarrow & -2(x-2)-2 y=0
\end{aligned}
$$

