Problem 1

 $\frac{|1700|\text{cm}|}{\text{Determine whether the points (1,1,1), (3,2,3), and (-3, -1,3) are}$ collinear. (Problem 5 from Wed)

Problem 2 Let $u,v,w \in \mathbb{R}^3$. Suppose that there are scalars $\propto, \beta \in \mathbb{R}$ such that $u = dv + \beta w$. Compute the value of the scalar triple product $u \cdot (v \times w)$

Solution
$$u \cdot (v \times w) = (dv + \beta w) \cdot (v \times w)$$

 $= (dv) \cdot (v \times w) + (\beta w) \cdot (v \times w)$
 $= d(v \cdot (v \times w)) + \beta (w \cdot (v \times w))$
Recall $\cdot v \times w$ is orthogonal $t \cdot v$
 $\cdot a \cdot b = 0$ if and only if $a \perp b$
 $= d \cdot 0 + \beta \cdot 0$
 $= 0$
Geometrically
 w
 $u \cdot v \cdot w$
 $determines a parallelepiped:
Fact: Volume of parallelepiped is given
by $u \cdot (v \times w)$
Signed Also, $u \cdot (v \times w) = det \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

Problem 3 Determine whether the vectors $(1,4,-7)$, $(2,-1,4)$, and $(0,-9,18)$ are coplanar.
Solution By Problem 2, we just need to compute u. (vxw).
We have $u \cdot (v \times w) = det \begin{bmatrix} u \\ v \\ w \end{bmatrix}$
$= \begin{bmatrix} 1 & 4 & -7 \\ -1 & 2 & -1 & 4 \\ 0 & -9 & 18 \end{bmatrix}$
$= \left \left \frac{-1}{9} \frac{4}{19} \right - 2 \left \frac{4}{-9} \frac{-7}{19} \right + 0 \left \frac{4-7}{-14} \right $
= -18 - (-36) - 2(72 - (63))
= $18 - 18 = 0$ Since $u \cdot (v \times w) = 0$, the vectors lie in the same
plane! Ex Computing a determinanti
$\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = -0 \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} + 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 1 \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ $= 0 + 0 - 1 (0)$ $= 0$
= 0 + 0 - 1(0) = 0
Fact det(A) = 0 if there is a row or column containing only zeros.
Fact det (A) = 0 if one row/column is a multiple of another row/column.

Problem 41
Consider the lines
$$Y_1(k) = (1,1,0) + t(1,-1,2)$$
 and $Y_2(S) = (2,0,2) + S(-1,1,0)$
a) Show that $Y_{11}Y_{12}$ intersect.
b) Find an equation of the plane containing Y_1 and Y_2 .
How do we describe $-$ plane?
find a point T_0 in the plane P and avector \vec{n} orthogonal
to P_1 , a point \vec{r} is in P if and only if $\vec{n} \cdot F_{-\vec{r},0} = 0$
So the collection of point in P are the points \vec{r} that
satisfy the equation
 $\vec{n} \cdot (\vec{r} \cdot \vec{r}_0) = 0$ (X)
If $n = (\alpha_1b_1c)$, $\vec{r} = (x_1y_1z_1) \cdot V_0 = (X_0, y_{0,1}z_0)$, then (X)
becomes
 $(x_1(x_1z_0) + b(y_1-y_0) + c(z_1-z_0) = 0$
So the $Y_1(k) = Y_2(s)$: $(1+k_1 - k_1, 2k) = (2-s_1, s_1, 2)$
 $= \sum_{i=1}^{n} \frac{1}{1+k_1} \cdot \frac{1}{2} \cdot \frac{1}{2$

$$N = (1_{1}-1_{1}2) \times (-1_{1}1_{1}0) = \begin{vmatrix} c & i & k \\ 1 & -1 & 2 \\ -1 & 1 & 0 \end{vmatrix}$$

$$= K \begin{vmatrix} 1-1 \\ -1 & 1 \\ -1 & 1 \end{vmatrix} - 2 \begin{vmatrix} i & j \\ -1 & 1 \end{vmatrix}$$

$$= 0.K - 2(i+j) = (-2_{1}-2_{1}0).$$
So the equation of the plane is
$$(-2_{1}-2_{1}0) \cdot ((x_{1}y_{1}z) - (2_{1}0_{2}z)) = 0$$

$$= 7 \quad [-2(x-2) - 2y = 0]$$