(1) Let $u=u(x, y)$ and let (v, θ) be polar coordinates. Show that

$$
\|\nabla u\|^{2}=u_{r}^{2}+\frac{1}{r^{2}} u_{\theta}^{2} .
$$

Th (Chain Rule) Let $\quad g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be function fog is defined and such that f and y are differentiable. Then fog is differentiable and Dog is given by

$$
\underbrace{D(f \circ g)\left(x_{0}\right)}_{p \times n}=\underbrace{D f\left(g\left(x_{0}\right)\right)}_{p \times m} \cdot \underbrace{D g\left(x_{0}\right)}_{m \times n}
$$

Sdution Express u_{r} and u_{θ} in term of u_{x} and u_{y} using chain rule. When set $x=r \cos \theta$ and $y=r \sin \theta$, we can of this as a map $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(r, \theta) \longmapsto(r \cos \theta, r \sin \theta)$. -

Apply chain rule: asa fructim of as a function of x, y

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ll}
u_{\theta} & u_{\theta}
\end{array}\right]=D\left(u_{0 h}\right)} & =D u_{0} \cdot D h \\
& =\left[u_{x} u_{y}\right.
\end{array}\right]\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right] \quad\left[\begin{array}{lll}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right] \quad\left[\begin{array}{lll}
u_{x} & u_{y}
\end{array}\right]
$$

Comparing entries: $u_{r}=u_{x} \cos \theta+u_{y} \sin \theta$

$$
u_{\theta}=-u_{x} r \sin \theta+u_{y} r \cos \theta
$$

Then,

$$
u_{r}^{2}+\frac{1}{r^{2}} u_{\theta}^{2}=u_{x}^{2} \cos ^{2} \theta+2 u_{x} u_{y} \sin \theta \cos \theta+u_{y}^{2} \sin ^{2} \theta+
$$

$$
\begin{aligned}
& \frac{1}{r^{2}}\left(u_{x}^{2} r^{2} \sin \theta-r^{2} u_{x} u_{y} \sin \theta \cos \theta+r^{2} u_{y}^{2} \cos ^{2} \theta\right) \\
= & u_{x}^{2} \cos ^{2} \theta+u_{y}^{2} \sin ^{2} \theta+u_{x}^{2} \sin ^{2} \theta+u_{y}^{2} \cos ^{2} \theta \\
= & u_{x}^{2}+u_{y}^{2} \\
= & \|\nabla u\|^{2}
\end{aligned}
$$

(2) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be differentiable. Find formulas for $\frac{\partial f}{\partial \rho}, \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi}$ in terms of $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ where (ρ, θ, ϕ) are spherical coordinates.
Solution Apply chain rule as in Problem $1 \quad 10$

$$
\left[\frac{\partial f}{\partial \rho} \frac{\partial f}{\partial \theta} \frac{\partial f}{\partial \phi}\right]=\left[\begin{array}{lll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}
\end{array}\right]\left[\begin{array}{lll}
\frac{\partial x}{\partial p} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\
\frac{\partial z}{\partial p} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}
\end{array}\right]
$$

By comparing entries, $\quad(x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \sin \theta \quad z=\rho \cos \phi)$

$$
\begin{aligned}
\frac{\partial f}{\partial p} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial p}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial p}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial p} \\
& =\sin \phi \cos \theta \frac{\partial f}{\partial x}+\sin \phi \sin \theta \frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} \cos \phi \\
\frac{\partial f}{\partial \theta} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial \theta}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial \theta} \\
& =-\rho \sin \phi \sin \theta \frac{\partial f}{\partial x}+p \sin \phi \cos \theta \frac{\partial f}{\partial y}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial f}{\partial \phi} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial \phi}+\frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial \phi}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial \phi} \\
& =\rho \cos \phi \cos \theta \frac{\partial f}{\partial x}+\rho \cos \phi \sin \theta \frac{\partial f}{\partial y}-\rho \sin \phi \frac{\partial f}{\partial z}
\end{aligned}
$$

$$
k^{\text {egg. }} \cdot x^{2}+y^{2}=4
$$

(3) Define $y(x)$ implicitly via $G(x, y(x))=K$ where $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Prove the implicit differentiation formula: if $y(x)$ and G are differentiable and $\frac{\partial G}{\partial y} \neq 0$, then

$$
\frac{d y}{d x}=-\frac{\partial G / \partial x}{\partial G / \partial y} .
$$

Proof Define $H: \mathbb{R} \rightarrow \mathbb{R}$ by $H(x)=(G \circ F)(x)$ where $F: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by $F(x)=(x, y(x))$. Note $H(x)=K$ so $H^{\prime}(x)=0$.
Using Chain Rule we obtain $\rightarrow B y \operatorname{def} H(x)=(G \circ F)(x)$

$$
\begin{aligned}
0=H^{\prime}(x)=D H & =D G \cdot D F \quad \\
& =G(F(x)) \\
& =G(x, y(x))=K \\
& \left.=G G \frac{\partial G}{\partial y}\right]\left[\begin{array}{c}
1 \\
\frac{d y}{d x}
\end{array}\right] \quad\binom{Y: \mathbb{R} \rightarrow \mathbb{R} \text { so }}{\frac{\partial y}{\partial x}=\frac{d y}{d x}} \\
& =\frac{\partial G}{\partial x}+\frac{\partial G}{\partial y} \cdot \frac{d y}{d x}
\end{aligned}
$$

Since $\frac{\partial G}{\partial y} \neq 0$ we obtain

$$
\frac{\partial g}{\partial x}=-\frac{\partial G / \partial x}{\partial G / \partial y} .
$$

Ex Find $\frac{d y}{d x}$ if $x^{2}+y^{2}=4$.
Solution (calcIII) $\frac{d y}{d x}=-\frac{2 x}{2 y}=-\frac{x}{y}$
(calct) $2 x+2 y \frac{d y}{d x}=0$

$$
\Rightarrow \frac{d y}{d x}=\frac{-2 x}{2 y}=-\frac{x}{y}
$$

Ex Find $\frac{d y}{d x}$ if $x \cos y+y \sin x=0$
(calc近)

$$
\frac{d y}{d x}=-\frac{\cos y+y \cos x}{-x \sin y+\sin x}
$$

(4) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a C^{1} map and suppose $\left(x_{0}, y_{0}, z_{0}\right)$
lies on the level surface S defined by $f(x, y, z)=K$. Show that $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is normal to S.

Proof Idea T_{0} show ∇f is normal to S, I will show that $\nabla f \cdot c^{\prime}=0$ for any curve c that lias in S and contains $\left(x_{0}, y_{0}, z_{0}\right)$.
S

Let C be a curve that $l i e e$ in S parameterized by

$$
c(t)=(x(t), y(t), z(t))
$$

and such that $c(0)=\left(x_{0}, y_{0}, z_{0}\right)$. We have

$$
\begin{aligned}
\nabla f(x, y, z) \cdot c^{\prime}(t) & =\left(f_{x}, f y, f z\right) \cdot\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right) \\
& =f_{x} x^{\prime}(t)+f_{y} y^{\prime}(t)+f_{z} z^{\prime}(t) \\
& =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \\
& =\frac{\partial}{\partial t}(f \circ c)(t)=\frac{d}{d t}(f \circ c)(t)
\end{aligned}
$$

Evaluate at $t=0$,

$$
\begin{aligned}
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot c^{\prime}(0) & =\frac{d}{d t}(f \circ c)(0) \\
& =\frac{d}{d t} k \\
& =0 .
\end{aligned}
$$

(since c lies in S

$$
(f \circ c)(t)=k
$$

Since $c(t)$ was un arbitrary curve, this shows that ∇f is normal to S.

Definition the tangent plane to the surface $f(x, y, z)=K$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by
(*) $\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0$,

Recall The plane tangent to the graph G of $f(x, y)$ is given by

$$
f_{x}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right)=z-f(x, y)
$$

Notice that the surface defined b_{y} the equation $F(x, y, z)=0$ where $F(x, y, z)=f(x, y)-z$ is precisely the graph G of $f(x, y)$. By $(*)$, the tangent plane is

$$
\begin{aligned}
\nabla F(x, y, z)\left(x-x_{0}, y-y_{0}, z-z_{0}\right) & =0 \\
\Rightarrow & \left(f_{x}, f_{y},-1\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)
\end{aligned}
$$

