(1) For each function, find all critical points and determine whether the y are local maxima/minima or saddle points
a) $f(x, y)=x^{2}+2 x y+y^{2}$
b) $g(x, y)=x \sin y$

Thu If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a local \max / m in at $x_{0} \in \mathbb{R}^{n}$, then $D f\left(x_{0}\right)=0$. Equivalently $\frac{\partial f}{\partial x_{i}}\left(x_{0}\right)=0$ for all $i=1, \ldots, n$.
Def A point $x_{0} \in \mathbb{R}^{n}$ is a critical point for f if $D f\left(x_{0}\right)=0$. Critical points are potential maxima/minima.
Solution (a) To find the critical points for f, we solve the system of equations:

$$
\left\{\begin{array}{l}
0=f_{x}=2 x+2 y \\
0=f_{y}=2 x+2 y
\end{array}\right.
$$

Any point on the line $y=-x$ is a solution so the critical
points are

$$
\{(x,-x): x \in \mathbb{R}\}
$$

Notice that $f(x, y)=x^{2}+2 x y+y^{2}=(x+y)^{2}$ so if $y=-x$, then

$$
f(x, y)=(x-x)^{2}=0
$$

Since $(x+y)^{2} \geq 0$ for all (x, y), all points on the line $y=-x$ are local minima.
(b) We solve the systom of eq's:

$$
\left\{\begin{array}{l}
0=f_{x}=\sin y \\
0=f_{y}=x \cos y
\end{array}\right.
$$

The eq. $\sin y=0$ implies $y=k \pi, k \in \mathbb{Z}$. if $y=k \pi$ then $x \cos k \pi=0$ implies $x=0$. So the critical
points are $\{(0, k \pi): k \in \mathbb{Z}\}_{\}}$.
Apply the second deriuntive test: $f_{x x}=0$ so all critical prints are saddle points.
(2) Find the shortest distance between the point $(1,6,-1)$ and the plane $\quad 2 x-2 y+2 z=6$.

Solution The distance between a point (x, y, z) and $(1,0,-1)$ is given by

$$
d(x, y, z)=\sqrt{(x-1)^{2}+y^{2}+(z+1)^{2}}
$$

Notice that if (x, y, z) is a minimum for $d^{2}=(x-1)^{2}+y^{2}+(z+1)^{2}$ then its also a minimum for d. By Lagrange Multiplior The, if d^{2} attains a maximin subject to the constraint $g(x, y, z)=2 x-2 y+2 z$, then there exists $\lambda \in \mathbb{R}$ such that

$$
\nabla d^{2}=\lambda \nabla G
$$

This gives the system of eq 's:

$$
\left\{\begin{aligned}
2 x-2=2 \lambda & \Rightarrow x=\lambda+1 \\
2 y=-2 \lambda & \Rightarrow y=-\lambda \\
2 z+2=2 \lambda & \Rightarrow z=\lambda-1 \\
2 x-2 y+2 z=6 & \Rightarrow 2(\lambda+1)-2(-\lambda)+2(\lambda-1)=6 \\
& \Rightarrow 6 \lambda=6 \Rightarrow x=1
\end{aligned}\right.
$$

So $\lambda=1$ which implies that $x=2, y=-1, z=0$. S, the only critical point is $(2,-1,0)$.

Theorem 10 Let $f: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be smooth (at
least C^{2}) functions, Let $\mathbf{v}_{0} \in U, g\left(\mathbf{v}_{0}\right)=c$, and S be the level curve for g with
value c. Assume that $\nabla g\left(v_{0}\right) \neq \mathbf{0}$ and that there is a real number λ such that
value c. Assume that $\nabla g\left(\mathbf{v}_{0}\right) \neq 0$ and that there is a real number λ such that
$\nabla f\left(\mathrm{v}_{0}\right)=\lambda \nabla g\left(\mathrm{v}_{0}\right)$. Form the auxiliary function $h=f-\lambda g$ and the bordered
Hessian determinant

$$
\begin{aligned}
& |\Pi|=\left|\begin{array}{ccc}
0 & -\frac{\partial g}{\partial x} & -\frac{\partial g}{\partial y} \\
-\frac{\partial g}{\partial x} & \frac{\partial^{2} h}{\partial x^{2}} & \frac{\partial^{2} h}{\partial x \partial y} \\
-\frac{\partial g}{\partial y} & \frac{\partial^{2} h}{\partial x \partial y} & \frac{\partial^{2} h}{\partial y^{2}}
\end{array}\right| \text { evaluated at } v_{0} \text {. } \\
& >0 \text {, then } \mathbf{v}_{0} \text { is a local maximum point for } f(S .
\end{aligned}
$$

(i) If $|H|>0$, then \mathbf{v}_{0} is a local maximum point for $f \mid S$
for $\quad f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$
(iii) If $\mid \overline{H \mid}=0$, the test is inconclusive and v_{0} may be a minimum, a maximum,
or neither.
This theorem is proved in the Internet supplement for this section

Using theorem 10 , define $h=d^{2}-\lambda g=(x-1)^{2}+y^{2}+(z+1)^{2}-(2 x-2 y+2 z)$
So

$$
|F|=\left|\begin{array}{cccc}
0 & -\frac{\partial y}{\partial x} & -\frac{\partial g}{\partial y} & -\frac{\partial g}{\partial z} \\
\text { n } & \frac{\partial^{2} h}{\partial z} & \frac{\partial^{2} h}{\partial \cdots} & \frac{\partial^{2} h}{\lambda}
\end{array}\right|
$$

$$
\begin{aligned}
\cdots \cdots & \left|\begin{array}{cccc}
- & \partial x & \partial y & \sqrt{z} \\
-\frac{\partial g}{\partial x} & \frac{\partial^{2} h}{\partial x^{2}} & \frac{\partial^{2} h}{\partial x \partial y} & \frac{\partial^{2} h}{\partial x \partial z} \\
\frac{\partial y}{\partial y} & \frac{\partial^{2} h}{\partial x \partial y} & \frac{\partial^{2} h}{\partial y^{2}} & \partial^{2} h \\
-\frac{\partial y}{\partial y} & \frac{\partial^{2} h}{\partial z} \\
\partial x & \frac{\partial^{2} h}{\partial y} \partial z & \frac{\partial^{2} h}{\partial z^{2}}
\end{array}\right| \\
=\left|\begin{array}{cccc}
0 & -2 & 2 & -2 \\
-2 & 2 & 0 & 0 \\
2 & 0 & 2 & 0 \\
-2 & 0 & -0 & +2
\end{array}\right| & =-(-2)\left|\begin{array}{ccc}
-2 & 2 & -2 \\
2 & 0 & 0 \\
0 & 2 & 0
\end{array}\right|+\left|\begin{array}{ccc}
0 & -2 & 2 \\
-2 & 2 & 0 \\
2 & 0 & 2
\end{array}\right| \\
& =2(-2)\left|\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right| \\
& +2\left(2\left|\begin{array}{cc}
-2 & 0 \\
2 & 2
\end{array}\right|+2\left|\begin{array}{c}
-22 \\
2
\end{array}\right|\right) \\
& =-16+2(2(-4)+2(-4)) \\
& =-16+-16=1-3 z
\end{aligned}
$$

So $|\bar{H}|<0$ which means $(2,-1,0)$ is a local minimum.
(3) Let P be a point on the surface S in \mathbb{R}^{3} defined by the equation $f(x, y, z)=1$, where f is continuously differentiable. Suppose the distance between S and $(0,0,0)$ is maximized af P. Show that the vector emanating from $(0,0,0)$ and ending at P is orthogonal to S.
Proof Let $\vec{P}=(x, y, z)$. Since ∇f is orthogonal to S so We need to show that \vec{P} is parallel to $\nabla f(x, y, z)$, i.e., $(x, y, z)=\alpha \nabla f(x, y, z)$. The distance between a point and the origin is given

$$
d(a, b, c)=\sqrt{a^{2}+b^{2}+c^{2}}
$$

As in problem (2), \vec{p} maximizes d if and only if \vec{p} maximizes d^{2}. By Lagrange Multiplier the, there exists $\lambda \in \mathbb{R}$ such that

$$
\nabla d^{2}(x, y, z)=\lambda \nabla f(x, y, z)
$$

This yields the system of eq's,

$$
\left\{\begin{array}{l}
2 x=\lambda f_{x} \\
2 y=\lambda f_{y} \\
2 z=\lambda f_{z}
\end{array}\right.
$$

So, $P=(x, y, z)=\left(\frac{\lambda}{2} f_{x}, \frac{\lambda}{2} f_{y}, \frac{\lambda}{2} f_{z}\right)=\frac{\lambda}{2} \nabla f(x, y, z)$. So
$P=\alpha \nabla f$ where $\alpha=\frac{\lambda}{2}$ which is what we needed to show.
(4) Let A be a non-zero symmetric 3×3 matrix. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ via
(b) Restrict f to the unit sphere S. Does f achieve a global maximin?
(c) Show that there exists a point $x \in S$ and $\lambda \neq 0$ such that

$$
A_{x}=\lambda x
$$

Proof Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33}\end{array}\right]$. Thin we have

$$
f\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\frac{1}{2}\left(a_{11} x^{2}+a_{12} x y+a_{13} x z+a_{12} x y+a_{22} y^{2}+a_{23} y z+a_{13} x z+a_{23} y z+a_{33} z^{2}\right)
$$

So $f_{x}=\frac{1}{2}\left(2 a_{11} x+2 a_{12} y+2 a_{13} z\right)=a_{4} x+a_{12} y+a_{13} z$

$$
\begin{aligned}
& f_{y}=\frac{1}{2}\left(2 a_{12} x+2 a_{22} y+2 a_{23} z\right)=a_{12} x+a_{22} y+a_{23} z \\
& f_{z}=a_{13} x+a_{23} y+a_{33} z
\end{aligned}
$$

So $\nabla f=A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. The unit sphere is the Set

$$
S=\left\{(x, y, z) ; x^{2}+y^{2}+z^{2}=1\right\}
$$

S is clearly bounded and it's closed since it is alevel surface. Since f is continuous on a closed and bounded set, it must attain a maximin.
For (c), let $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}$ be a point where f achieves a max: By Lagrange, there is $\alpha \in \mathbb{R}$ such that $\left.(\omega) \quad g(x, y, z)=x^{2}+y^{2}+z^{2}\right)$

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\nabla f=\alpha \nabla g=\alpha\left[\begin{array}{l}
2 x \\
2 y \\
2 y
\end{array}\right]
$$

Sn $\wedge\left[\begin{array}{l}x \\ \hdashline\end{array}\right]=\lambda\left[\begin{array}{l}x \\ y\end{array}\right] \quad$ where $x=7 \alpha$. And $\alpha=0 \quad \sin 10$.

So $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\lambda\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ where $\lambda=2 \alpha$. And $\alpha=0$ since A is non-zero and $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \neq 0$. We just proved that every real symmetric matrix has at least one non-zero real eigenvalue.

