(1) Compute the following limits, if they exist. Just if your computations,
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}+2}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+y^{2}}$
c) $\lim _{(x, y) \rightarrow(0,0)}\left(3 x^{2}+3 y^{2}\right) \ln \left(x^{2}+y^{2}\right)$
d) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$

Solution
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}+2}=0$ since $f(x, y)=\frac{x y}{x^{2}+y^{2}+2}$ is
continuous at $(0,0)$.
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{(x-y)^{2}}{x^{2}+y^{2}}$

This function is not continuous at $(0,0)$. To slow that the limit does not exist, we reed to find two different puths that approach $(0,0)$ that give different values in the limit.
For instance, along the path where $x=0$, we have

$$
\lim _{(0, y) \rightarrow(0,0)} \frac{(-y)^{2}}{y^{2}}=1
$$

But alar the path $y=x$ we have
 $\lim _{(x, x) \rightarrow(0,0)} \frac{(x-x)^{2}}{x^{2}+x^{2}}=0$. So the limit doesn't exist!
c) $\lim _{(x, y) \rightarrow(0,0)}\left(3 x^{2}+3 y^{2}\right) \ln \left(x^{2}+y^{2}\right)$

This function is not continuous at $(0,0)$ since $\ln (0)$ is not defined. we cur change the limit to poler coordinates by selling $r=\sqrt{x^{2}+y^{2}}$. Notice thus $\lim \sqrt{x^{2}+x^{2}}=0$
we cur change the limit to polar coordinates by setting $r=J x^{2}+y^{2}$. Notice
that

$$
\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}}=0
$$

So, $\lim _{(x, y) \rightarrow(0,0)}\left(3 x^{2}+3 y^{2}\right) \ln \left(x^{2}+y^{2}\right)=\lim _{r \rightarrow 0} 3 r^{2} \ln r^{2}$

$$
\begin{aligned}
& =3 \cdot \lim _{r \rightarrow 0} \frac{\ln r^{2}}{1 / r^{2}} \\
& =3 \lim _{r \rightarrow 0} \frac{\frac{1}{r^{2}} \cdot 2 r}{-2 / r^{3}} \\
& =3 \lim _{r \rightarrow 0} \frac{1 / r}{-1 / r^{3}} \\
& =3 \lim _{r \rightarrow 0}-r^{2}=3.0 \\
& =0
\end{aligned}
$$

d) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$

This function is not continuous at $(0,0)$. Along the putt $y=0$ we have

$$
\lim _{(x, 0) \rightarrow(0,0)} \frac{x \cdot 0}{x^{2}+0^{2}}=0 .
$$

Along the path $y=x$ we have

$$
\lim _{(x, x) \rightarrow p, 0)} \frac{x^{2}}{x^{2}+x^{2}}=\frac{1}{2}
$$

Thus, the limit doesn't exist.
(2) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are functions such that

$$
f(x, y)=g(x y) \quad\left(\text { for all }(x, y) \in \mathbb{R}^{2}\right)
$$

If $(u, b) \in \mathbb{R}^{2}$ and g is continuous at $a b$, then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and is equal to $\lim _{t \rightarrow a b} g(t)=g(a b)$.

Proof Define a function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ via $h(x, y)=x \cdot y$. Then

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(a, b)} f(x, y) & =\lim _{(x, y) \rightarrow(a, b)} g(x y) \\
& =\lim _{(x, y) \rightarrow(a, b)} g(h(x, y)) \\
& =y\left(\lim _{(x, y) \rightarrow(a, b)} h(x, y)\right) \quad \text { [since } g \text { is continuous at ab] } \\
& =g(a b) \\
& =\lim _{t \rightarrow a b} g(t) .
\end{aligned}
$$

(3) Compute the following limits, if they exist. Justify all computations
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}-1}{y}$
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\cos (x y)-1}{x^{2} y^{2}}$
c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$

Solution

$$
\int \text { look, like } \frac{e^{t}-1}{t}
$$

a) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}-1}{y}=\lim _{(x, y) \rightarrow(0,0)} x \cdot \frac{e^{x y}-1}{x y}$

If we know that $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}-1}{x y}$ exists, then we can write

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}-1}{y} & =\left(\lim _{(x, y) \rightarrow(0,0)} x\right) \cdot\left(\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}-1}{x y}\right) \\
& =0 \cdot 1 \\
& =0 .
\end{aligned}
$$

To compute $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}-1}{x y} 1$ consider $y(t)=\left\{\begin{array}{cc}\frac{e^{t}-1}{t}, & t \neq 0 \\ 1, & t=0\end{array}\right.$
which is continuous at 0 . Notice that $g(x y)=\frac{e^{x y}-1}{x y}$. So,
by problem (2),

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x y}-1}{x y} & =\lim _{t \rightarrow 0} g(t) \\
& =1 .
\end{aligned}
$$

b) $\lim _{(x, y) \rightarrow(0,0)} \frac{\cos (x y)-1}{x^{2} y^{2}}$

Consider the continuous function

$$
g(t)=\left\{\begin{array}{ccc}
\cos t-1 & t \neq 0 \\
-\frac{1}{2} & , & t=0
\end{array}\right.
$$

Note $g(x y)=\frac{\cos (x y)}{x^{2} y^{2}}-1$ for all $(x, y) \in \mathbb{R}^{2}$. Thus,

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{\cos (x y)-1}{x^{2} y^{2}} & =\lim _{t \rightarrow 0} g(t) \\
& =-\frac{1}{2} .
\end{aligned}
$$

c)

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}} & =\lim _{r \rightarrow 0} \frac{\sin r}{r} \\
& =1
\end{aligned}
$$

