D Let r(t) be a parameterization of a curve. Suppose that ||r(t)|| = c for all $t \in \mathbb{R}$. Show that r(t) and r'(t) are orthogonal for all $t \in \mathbb{R}$.

The Picture:

Proof We need to show that $r(t) \cdot r'(t) = 0$. By assumption, we have $c^2 = ||r(t)||^2$

Thus, $0 = \frac{d}{dt} c^2 = \frac{d}{dt} ||r(t)||^2 = \frac{d}{dt} (r(t) \cdot r(t))$

(x) Product rule for dot product

 $\begin{array}{ccc} (*) & & \\ & & \\ & & \\ & & \end{array}$ $= & 2r(t)r'(t) \cdot$

Dividing by 2 yields (lt). r(t) = 0.

Det Given a curve rlt) we can define the unit tayent vector:

 $T(t) = \frac{r'(t)}{||r'(t)||}$

By definition ||T(t)|| = 1 for all tER. By Pooblem 1, we know that T(t) is orthogonal to T'(t). So, we define the Unit

Normal Vector

$$N(t) = \frac{T'(t)}{\|T'(t)\|}$$

Further, we define the Unit Binormal Vector by

Blt) is a unit vector since Tand N we unit vectors.

Note that {Tlt), N(t), B(t)} at each point EER can be obtained from the vectors {i, i, k} via translation and rotation. In linear algebra this is called an orthonormal basis.

The "TNB Frame" is used to describe the geometry of a space curve, such as orientation, curvature, and torsion.

Def Let r(t) be a parameterized space curve and P a point on the curve.

. The Normal plane at P is the polare containing P, N, 3 B.

· The Osculating Plane at P is the plane containing P, T, & N.

Recall	
For a purameterized curve r(t) we ha	Ne
$T(t) = \frac{r'(t)}{ r'(t) } - unit tangent vector$	
$N(t) = \frac{T'(t)}{1 T'(t) } - unit normal vector$, \
B(t) = T(t) × N(t) - unit binormal vecto	r

(2) The helix is given by r(t)= (cost, sint, t). When t= \$\mathbb{T}_2\$, find:

(a) The Normal plane

(a) By definition, r'(t) is orthogonal to both N(t) and B(t). When t= 17/2,

we have
$$r(T/2) = (\cos T/2, \sin T/2, T/2) = (0, 1, T/2)$$
 and $r'(T/2) = (-\sin T/2, \cos T/2, 1)$

$$= (-1, 0, 1)$$

So eg. of Nirmal Plane 15:

or equivalently
$$X-Z=-\frac{\pi}{2}$$
.

R

(5) By definition, the vector B(t) is orthogonal to both T(t) and N(t).

we have:
$$T(t) = \frac{r'(t)}{|r'(t)|} = \frac{(-\sin t, \cos t, 1)}{\sqrt{2}}$$

$$N(t) = \frac{T'(t)}{||T'(t)||} = \frac{1}{\sqrt{2}} \left(\frac{-\cos t}{\cos t}, -\sinh t, o \right) = \left(-\cos t, -\sinh t, o \right)$$

$$B(t) = T(t) \times N(t) - \begin{vmatrix} i & i & K \\ -siht & cost & 1 \\ + & - & + \\ -cost & -siht & 0 \end{vmatrix}$$

$$= -\cos t \left(\begin{array}{c|c} S & k \\ cost & 1 \end{array} \right) + Sih t \left(\begin{array}{c|c} C & k \\ -sih t & 1 \end{array} \right)$$

So the normal vector is $B(T/z) = (\sin T/z, -\cos T/z, 1)$ = (1, 0, 1)

So ey of osculating plane is

or equivalently x+2=1/2.

1

Det Let rlt) be a space curve. The curvature of rlt) is given by:

$$K(t) = \frac{\|T'(t)\|}{\|r'(t)\|} = \frac{\|r'(t) \times r''(t)\|}{\|r'(t)\|^3}$$

Note: The equality (x) needs proof, but it is beyond the scope of this exercise.

(3) Show that the curvature of the helix r(t) = (cost, sint, t) is constant,

Solution: We compute:
$$r'(t) = (-\sin t, \cos t, i)$$

 $r''(t) = (-\cos t, -\sin t, o)$

$$r'(t) \times r''(t) = \begin{vmatrix} i & 5 & k \\ -siht & c \cdot st & 1 \\ -(sst - siht) & 0 \end{vmatrix}$$

$$= -\cos t \begin{vmatrix} 5 & k \\ \cos t & 1 \end{vmatrix} + \sin t \begin{vmatrix} i & k \\ -\sin t & 1 \end{vmatrix}$$

So ,
$$K(t) = \frac{\|r'(t) \times r''(t)\|}{\|r'(t)\|^3} = \frac{\sqrt{5ih^2(1+cos^2(t+1))}}{\sqrt{5ih^2(1+cos^2(t+1))}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{2}$$

a) Show that B'(t) \(\tau \) B(t)
b) Show that B'(t) \(\tau \) T(t)

Proof (a) By Problem 1, since ||B(t)||=| for all tElR, we have B(t)·B'(t)=0.

(b) we have

$$B'(t) \cdot T(t) = (T(t) \times N(t))' \cdot T(t)$$

$$= (T'(t) \times N(t) + T(t) \times N'(t)) \cdot T(t)$$

$$= (T'(t) \times N(t)) \cdot T(t) + (T(t) \times N(t)) \cdot T(t)$$

$$= 0 + 0$$

Note that $T'(t) \times N(t) \cdot T(t) = 0$ since $T'(t) \times N(t) = T'(t) \times \frac{T'(t)}{\|T'(t)\|} = (0,0,0)$. Also, $(T(t) \times N'(t)) \cdot T(t) = 0$ since $T'(t) \times N'(t) = T'(t) \times \frac{T'(t)}{\|T'(t)\|} = (0,0,0)$.

By part (a) and (b), we deduce that there is a constant $C(E) \in \mathbb{R}$ such that $B'(E) = C(E) (T(E) \times B(E))$ = -C(E) N(E)

The constant Tlt) is called the Torsion, and it describes the degree of twisting that occurs as we traverse rlt).