Introduction

Kinyambo provides useful data for examining the treatment of adjuncts and phonological phrasing. APs are post-nominal, and we have clear data on phrasing thanks to High Tone Deletion (1) (Bickmore 1990).

1. **High Tone Deletion** (Bickmore 1990)
 \[H \to \emptyset / (\phi \ldots (w \ldots . . .) (w \ldots H \ldots . . .) . . .) \]
 Bickmore (1990) shows that in simple intransitives, 1-word NPs phrase with V, while 2-word NPs phrase separately, as shown by HTD.

2. a. \(\{\phi \text{ abakazi bākaijina} \) ‘the workers helped’
 b. \(\{\phi \text{ abakazi bākiru} \) \(\{\phi \text{ bākaijina} \) ‘the mature workers helped’

We have uncovered a pathological prediction of some implementations of Match Theory (Selkirk 2011) and Align/Wrap (Truckenbrodt 1999): the **Adjunct Cohesion Pathology** (3).

3. **Adjunct Cohesion Pathology**
 \[\text{TP} \ [w \ N \ A] [w \ V \ . . .] \to \ldots N \ldots (\phi \ldots . . . A \ldots V \ldots) \ldots \]

Objectives

Conduct a computationally rigorous study in OT to address:
- the proper interpretation of adjunct structure
- the predictions of Match Theory vs. Align/Wrap
- the precise formulation of φ-binarity constraints

Methods

We examine 12 typologies generated by crossing three factors:

- XP-segment visibility: See visibility settings in (4).
- type of faithfulness: Match = [Match-XP, Match-φ] vs. Align = [Align-L(XP), Align-R(XP), Wrap(XP)]
- definition of binarity: number of branches vs. number of words

4. **Adjunction Visibility Settings**
 a. \(H+L \) visible b. Only \(H \) visible c. Only \(L \) visible
 \(\text{N} \) \(\text{XP} \)

We employ the computational tools OT Workplace (Prince, Tesar, & Merchant 2015) and SPOT (Bellik, Bellik, & Kalivoda 2015), a new JavaScript application which we have developed. SPOT allows us to automatically generate and evaluate prosodic tree structures of arbitrary length and depth.

Results

Only Match systems generate Kinyambo phrasings. Also, the high XP segment must be visible to ensure that an adjunct phrases with what it modifies (avoid ACP).

Major results

- Our Match systems can capture Kinyambo and avoid ACP if high XP segments are visible (i.e., all L systems fail).
- Align/Wrap: All systems both undergenerate and overgenerate.

The typologies from each system are summarized in Table 1.

Table 1: Summary of results from all 12 systems. Green = no ACP, yellow = ACP tie, orange = ACP winner

- HL+Match+BinBr is an exemplary successful system: HL+Match+BinBr
- H+Match+BinBr

But this success is fragile: if the higher segment of XP is invisible, as in L+Match+BinBr, the ACP candidate ties with the desired optimum.

5. Support for Kinyambo ranking in HL+Match+BinBr

But this success is fragile: if the higher segment of XP is invisible, as in L+Match+BinBr, the ACP candidate ties with the desired optimum.

6. ACP and attested output tie in L+Match+BinBr

Worse still, there is a ranking paradox when the high segment of XP is invisible.

7. Ranking paradox in L+Match+BinBr

Conclusions

- The high XP segment must be visible for faithfulness to distinguish phrasings where the adjective phrases with its noun, and phrasings where the adjective phrases with the verb.

- **Match provides better empirical coverage** than Align.
 - All Match systems in which the high XP segment was visible achieved empirical coverage and avoided the ACP.
 - No Align system generates Kinyambo, and all generate ACP systems.
 - Even with Truckenbrodt’s visibility settings, NonRec and Exhaustivity must be added to CON to achieve empirical coverage with Align.

- **Word-based Binarity yields larger typologies** than branch-based Binarity, but each predicts languages that the other doesn’t – an area for further investigation.

Constants

We hold the following factors constant in all systems:

- Sentences examined are of the forms in (2) and (8) (Bickmore 1989, 1990).
 a. \(\text{b-he-will-give worker chair slowly} \)
 b. \(\text{b-he-will-give worker chair slowly} \)

- Their syntactic structures are assumed to be:

- GEN: allows non-vacuous recursion, & violations of exhaustivity & headedness.
- Visibility settings: AP, Adv, functional projection (TP, VP, VP headed by trace) count for faithfulness. N.B. These assumptions are usual for Match Theory but not for Align/Wrap.
- All versions of CON include EQUALSISTERS (see Myrberg 2013).

References

Acknowledgements

Thanks to Ozan Bellik, Junko Ito, Armin Mester, and all the participants of the syntax-prosody seminars at UCSC.