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1Introduction

Goal
Solve the compressible Euler equations (2D)

∂U

∂t
+

∂

∂x
F(U) +

∂

∂y
G(U) = 0

U =


ρ
ρu
ρv
E

 F(U) =


ρu

ρu2 + p
ρuv

u(E + p)

 G(U) =


ρv
ρuv

ρv2 + p
v(E + p)


accurately and robustly

Finite volume considerations
Handles shocks naturally
Discretely conservative
Agreeable with AMR
Non-trivial to take beyond 2nd order accuracy
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2Finite volume formulation

Integrate over Di,j =
[
xi−1/2, xi+1/2

]
×
[
yj−1/2, yj+1/2

]
and normalize∫

Di,j

∂U

∂t
dV = −

∫
Di,j

∇ · FdV

∂〈U〉i,j
∂t

= − 1

∆x∆y

∫
∂Di,j

F · n̂dS

∂〈U〉i,j
∂t

=
1

∆x

(
〈F〉i−1/2,j − 〈F〉i+1/2,j

)
+

1

∆y

(
〈G〉i,j−1/2 − 〈G〉i,j+1/2

)
where

〈h〉i,j =
1

∆x∆y

∫
Di,j

hdV 〈h〉i±1/2,j =
1

∆y

yj+1/2∫
yj−1/2

h(xi±1/2, y)dy
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3Accuracy requirement

Numerical flux

〈F〉i±1/2,j =
1

∆y

yj+1/2∫
yj−1/2

F(U(xi±1/2, y))dy

≈ 1

∆y

yj+1/2∫
yj−1/2

F̂
(
U−i±1/2(y),U+

i±1/2(y)
)
dy

Two barriers to high order in multiple dimensions

Integral must be done accurately
Numerical flux is defined pointwise, thus need accurate
pointwise values of U±i±1/2
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4Naive dimension-by-dimension approach

Polynomial reconstruction
Given the stencil {〈U〉i−r,j , · · · , 〈U〉i,j , · · · , 〈U〉i+r,j}, there is a
unique polynomial Q(x) of degree p = 2r satisfying:

1

∆x

xi+s+1/2∫
xi+s−1/2

Q(x)dx = 〈U〉i+s,j , s = −r, . . . , r

which yields the approximation

〈U〉i±1/2,j = Q(xi±1/2) +O(∆xp+1)

Just plug it in, what could go wrong?
First note

U(xi±1/2, yj) = 〈U〉i±1/2,j +O(∆xp+1) +O(∆y2),

and

〈F〉i±1/2,j = F
(
U(xi±1/2, yj)

)
+O(∆y2)

= F
(
U(xi±1/2, yj)

)
+O(∆y2).

The face averaged flux is 2nd order accurate regardless of how
accurate 〈U〉i±1/2,j is.
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5

Special cases

If F(U) = AU then,

〈F〉i±1/2,j =
1

∆y

yj+1/2∫
yj−1/2

AU
(
xi±1/2, y

)
dy

= A〈U〉i±1/2,j
= AQ(xi±1/2) +O(∆xp+1).

Linear benchmarks
Consider the Euler equations on [0, 1]2 with periodic boundaries and
the initial condition:

ρ
u
v
p

 =


1 + e−50(x+y−2)

2

+ e−50(x+y−1)
2

+ e−50(x+y)
2

1
1

1/γ

 .

run to a final time of T = 1/2.
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6Special cases
Convergence study
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Figure: Modifications to retain non-linear accuracy don’t matter for this
benchmark.
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7Special cases
Convergence study

Experimental convergence rates

L1 L∞ L1 L∞
r = 1 2.29 2.32 2.29 2.32
r = 2 3.65 3.75 3.65 3.75
r = 3 4.94 5.08 4,94 5.08
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Routes to high order

Expensive, but intuitive method

Use multidimensional reconstruction to point values on faces
directly
Approximate flux integral with a Gauss rule
⇒ Need multiple point values on each face, multiple calls to
Riemann solver

Modified dimension-by-dimension

Use 1D stencils to get accurate face-averaged states
Reconstruct along faces to get accurate face-centered states
Call Riemann solver once per interface
Reconstruct face-average fluxes from face-centered fluxes

Ian May GP-FVM UC Santa Cruz
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9Modified dimension-by-dimension
Diagramatically
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10Why Gaussian processes?

They generalize very well

Dimension agnostic
Order agnostic
(Un)Structured grid agnostic
Flexible stencil choices
Directly incorporate problem physics

Downsides of Gaussian processes (subjective)

Ill-conditioning problems
Less intuitive
Almost too flexible, lot’s of choices to investigate
The buzzword factor is high

Ian May GP-FVM UC Santa Cruz
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11Gaussian processes

Definition
For a domain D, a Gaussian process is given by a distribution over a
function space:

f(x) ∼ N (0,K(x,x′; `)) ,

such that for y ∈ D, f(y) belongs to a multivariate normal distribution:

f(y) ∼ N (0,K)

Kij = K(yi, yj ; `),

for some correlation (kernel) function K. Defined here as:

K(x,y; `) = e−
||x−y||2

2`2

Ian May GP-FVM UC Santa Cruz



27
12Gaussian process interpolation

Posterior distribution
The Gaussian process conditioned on some given data, f(yk) = q at
some locations yk ∈ D, goes as:

(f(x) |f(y) = q ) ∼ N (µy,Ky)

µy = K (x,y; `)K−1q

Ky = K(x,x′; `)−K(x,y; `)K−1K(y,x′; `).

All functions described by this process interpolate the data.

Mean is the most likely interpolant
To predict f(x∗) for some x∗ ∈ D evaluate the mean: f(x∗) ≈ µy(x∗).
Compactly:

f(x∗) ≈ K (x∗,y; `)K−1q

≈ wT
∗ q

Ian May GP-FVM UC Santa Cruz
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Gaussian process reconstruction – 1D
Average values → point values

Dealing with cell/face averaged values
We want to use GP to convert between data types. Define correlation
matrix to match input data,

Cij =
1

||Di|| ||Dj ||

∫
Di

∫
Dj

K(x,y)dxdy

and sample respecting the correlation between data types,

Ti =
1

||Di||

∫
Di

K(x∗,x)dx

to find
f(x∗) ≈ TTC−1g

for known cell/face averages, g

Ian May GP-FVM UC Santa Cruz
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Gaussian process reconstruction – 1D
Point values → average values

Converting point values back to average values
Very similar to interpolation, but with appropriate sample vector.
Defining:

Kij = K(xi,xj)

Ti =
1

||Di||

∫
D∗

K(xi,x)dx

we find
〈f(x)〉i ≈ TTK−1q

from known point values q

Ian May GP-FVM UC Santa Cruz
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The isentropic vortex problem

A truly nonlinear benchmark problem
The Euler equations on [−L,L]2 with periodic boundaries and initial
condition 

ρ
u
v
p

 =


T 1/(γ−1)

1− yω
1 + xω
T γ/(γ−1)


T = 1− γ − 1

8γπ2
e1−x

2−y2

ω =
1

2π
e(1−x

2−y2)/2

recover the intial condition at time Tf = 2L

Ian May GP-FVM UC Santa Cruz
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The isentropic vortex problem
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The isentropic vortex problem
Convergence rates

Experimental convergence rates

L1 L∞ L1 L∞
r = 1 2.38 2.22 2.33 2.21
r = 2 2.53 2.95 4.22 4.08
r = 3 2.23 2.37 6.19 6.16
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Dealing with shocks – GP-WENO

Nonlinear GP reconstruction
The reconstruction presented is linear, i.e.

〈U〉i±1/2,j =

r∑
s=−r

w±k 〈U〉i+s,j

which is hopeless near discontinuities (Godunov)

WENO (weighted essentially non-oscillatory) methods
Idea: Break full stencil into substencils, reconstruct on each
separately, use a weighted combination of these reconstructions

〈U〉i±1/2,j;k =

k−1∑
s=k−r−1

〈U〉i+s,j

〈U〉i±1/2,j;k =
∑

ω±k 〈U〉i±1/2,j;k

Ian May GP-FVM UC Santa Cruz
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Optimal weights

For smooth data, ω±k should reduce to some optimal weights such
that

r∑
s=−r

w±s 〈U〉i+s,j ≈
∑

γ±k 〈U〉i±1/2,j;k

which can be found by solving the least squares problem (e.g. r = 2)
w1,1 0 0
w2,1 w1,2 0
w3,1 w2,2 w1,3

0 w3,2 w2,3

0 0 w3,3


γ1γ2
γ3

 =


w1

w2

w3

w4

w5
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Smoothness indicators

Following Jiang and Shu, we can define

ωk =
ω̃k∑
ω̃s

ω̃k =
γk

(ε+ βk)
p

where βk measures the smoothness of the data on the kth sub-stencil

Likelihood measures smoothness
A GP with a SE kernel is good at representing smooth functions, thus
the log-likelihood

logLk = −1

2

(
log |Kk|+ qTK−1k q + 2 log(2π)

)
indicates how smooth the kth sub-stencil is. Choosing

βk = qTK−1k q

works well for equispaced grids
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Notes on (GP) WENO

General WENO
Transform to characteristic variables first
Componentwise limiting works well enough, lower dissipation
Lots of non-linear weights other than WENO-JS

GP-WENO
Note Kk instead of Ck in formula for βk
Could use completely different types of stencils
No need to derive new expressions for each order
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The isentropic vortex – WENO active
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The isentropic vortex – WENO active
Convergence rates

Experimental convergence rates

L1 L∞ L1 L∞
r = 1 1.90 1.65 1.88 1.66
r = 2 2.79 3.12 3.46 3.98
r = 3 2.51 3.29 5.38 5.80
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Sod shock tube

The standard Riemann problem
Euler equations on [0, 1] with inflow/outflow boundaries and initial
condition ρu

p

 =


(

1 0 1
)T

, x < 0.5(
0.125 0 0.1

)T
, x > 0.5
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Sod shock tube
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2D Riemann problem configuration 3

Euler equations on [0, 1]2 with outflow boundaries and initial condition
ρ1
u1
v1
p1

 =


0.5323
1.206

0
0.3



ρ2
u2
v2
p2

 =


1.5
0
0

1.5



ρ3
u3
v3
p3

 =


0.138
1.206
1.206
0.029



ρ4
u4
v4
p4

 =


0.5323

0
1.206
0.3
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2D Riemann problem configuration 3
Without flux correction
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2D Riemann problem configuration 3
With flux correction
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Sedov blast problem

Ian May GP-FVM UC Santa Cruz



2727
Final thoughts

Conclusion
Naive use of 1D stencils in 2D yields 2nd nonlinear accuracy
A cheap modification to the reconstruction recovers accuracy
(Buchmuller and Helzel)
Gaussian process reconstruction is super flexible, same formulas
for many orders
GP yields simple, effective, smoothness indicators for WENO

Next steps

Appropriate limiting for flux reconstruction
Time stepping without RK
Ideal MHD – Divergence free GP methods
3D problems
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The isentropic vortex problem
L∞
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