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Introduction @ 1

Goal
Solve the compressible Euler equations (2D)
ou 90 0
= —F — —
o + p (U) + 8yG(U) 0
P é)u pU
_ | pu _ | put+p _ puv
U=1,] FO=1",, GU = 24y
E uw(E + p) v(E +p)

accurately and robustly

Finite volume considerations
@ Handles shocks naturally
@ Discretely conservative
@ Agreeable with AMR
@ Non-trivial to take beyond 2" order accuracy
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Finite volume formulation @

Integrate over D; j = [x;_1/2,Tiy1/2] X [yj—1/2,Yj+1/2] and normalize

CAS / V- FdV
ot =
J Di

Di;
a(U),; 1 .
2 = — F .
ot AzAy / E-ndS
oD; ;
9(U); 1 1
5 L= s (F)icrj2; — (Fiyija;) + Ay (G)ij1/2 = (G)ijy1/2)
where
1 1 Yj41/2
<h>i,j = AzAy / hdV <h>i:i:1/2,j = A_y / h(xi:tl/%y)dy
D; ; Yj—1/2
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Accuracy requirement

Numerical flux

Yjt+1/2
1
(Fit1/2; = Ay / F(U(%41/2,y))dy
Yj—1/2
Yj+1/2

~ A_y / F(Ui_:tl/2(y)’Uj_:tl/2(y))dy

Yj—1/2

Two barriers to high order in multiple dimensions

@ Integral must be done accurately
@ Numerical flux is defined pointwise, thus need accurate

o .
pointwise values of U | /2
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Naive dimension-by-dimension approach

Polynomial reconstruction

Given the stencil {(U);_,;,---,(U);;, -, (U)iyr;}, thereis a
unique polynomial Q(«) of degree p = 2r satisfying:

Litst+1/2

1
Ar / Q(z)dr = (U)its;, s=-r,...,7

LTits—1/2
which yields the approximation
(U)is1/2,; = Q@is1/2) + O(AxPHT)
Just plug it in, what could go wrong?
First note
U(2iz1/2,95) = (U)ix1/2,; + O(AzPTh) + O(Ay?),

and
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Special cases

If F(U) = AU then,
Yi+1/2
(F)iz1/2 = Aiy / AU (zi41/2,y) dy
Yj—-1/2
A(U)it1/2;
= AQ(xiil/2)+O(Amp+l)'

Linear benchmarks
Consider the Euler equations on [0, 1]? with periodic boundaries and

the initial condition:

1 —50(z+y—2)> —50(z+y—1)2 —50(z+y)?
+e +e +e

p
u| 1
v| 1
p 1/

run to a final time of T' = 1/2.
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Special cases

Convergence study

Naive D-by-D Corrected D-by-D

logio|lpo — pr|l1
&

log10l100 = PFll1
&

1.6 1.8 2.0 2.2 2.4 1.6 1.8 2.0 2.2 2.4
log1oNx log1oNx

Figure: Modifications to retain non-linear accuracy don’t matter for this
benchmark.
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Special cases . \‘
Convergence study @ 27

Experimental convergence rates

L Lo | L, Ly
r=1 229 232|229 232
r=2 365 375|365 3.75
r=3 494 508|494 5.08
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Routes to high order

Expensive, but intuitive method
@ Use multidimensional reconstruction to point values on faces
directly
@ Approximate flux integral with a Gauss rule

@ = Need multiple point values on each face, multiple calls to
Riemann solver
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Routes to high order

Expensive, but intuitive method
@ Use multidimensional reconstruction to point values on faces
directly
@ Approximate flux integral with a Gauss rule

@ = Need multiple point values on each face, multiple calls to
Riemann solver

Modified dimension-by-dimension

@ Use 1D stencils to get accurate face-averaged states

@ Reconstruct along faces to get accurate face-centered states
@ Call Riemann solver once per interface

@ Reconstruct face-average fluxes from face-centered fluxes
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Modified dimension-by-dimension

Diagramatically
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Modified dimension-by-dimension

Diagramatically

e
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Modified dimension-by-dimension

Diagramatically
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Why Gaussian processes?

They generalize very well

@ Dimension agnostic

@ Order agnostic

@ (Un)Structured grid agnostic

@ Flexible stencil choices

@ Directly incorporate problem physics
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Why Gaussian processes?

They generalize very well

@ Dimension agnostic

@ Order agnostic

@ (Un)Structured grid agnostic

@ Flexible stencil choices

@ Directly incorporate problem physics

Downsides of Gaussian processes (subjective)

@ lll-conditioning problems

@ Less intuitive

@ Almost too flexible, lot’s of choices to investigate
@ The buzzword factor is high
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Gaussian processes

Definition
For a domain D, a Gaussian process is given by a distribution over a

function space:
f(x) ~N(0,K(x,x';0)),

such that for y € D, f(y) belongs to a multivariate normal distribution:

f(y) ~N(0,K)
Ki; = K(yi,y5:0),

for some correlation (kernel) function K. Defined here as:

2
_ lx=yll

K(x,y;{) =e™ 222
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Gaussian process interpolation 1!®\

Posterior distribution
The Gaussian process conditioned on some given data, f(yx) = q at
some locations y; € D, goes as:

(fG)f(y) =a) ~ N (uy, Ky)
py =K (x,y;0) K 'q
K, = K(x,x';() — Kx,y;)K'K(y,x';0).

All functions described by this process interpolate the data.
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Gaussian process interpolation 1!®\

Posterior distribution
The Gaussian process conditioned on some given data, f(yx) = q at
some locations y; € D, goes as:

(fG)f(y) =a) ~ N (uy, Ky)
py =K (x,y;0) K 'q
K, = K(x,x';() — Kx,y;)K'K(y,x';0).

All functions described by this process interpolate the data.

Mean is the most likely interpolant

To predict f(x*) for some x* € D evaluate the mean: f(x*) ~ puy, (x*).
Compactly:

K (x*,y;0) K 'q

N T
~ w,q

Q

fxT)
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Gaussian process reconstruction — 1D

Average values — point values

Dealing with cell/face averaged values

We want to use GP to convert between data types. Define correlation
matrix to match input data,

1
Cij = 7//K(X,y)dxdy
T Dl 11Dyl
DiDj

and sample respecting the correlation between data types,

1
1D

T, = /K(x*, x)dx

il
D;

to find
f(x") ~TTC g

for known cell/face averages, g
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Gaussian process reconstruction — 1D

Point values — average values

Converting point values back to average values

Very similar to interpolation, but with appropriate sample vector.
Defining:

Kij = K(Xi,Xj)

T, = /K X;, X)dx
I

we find
(fx)i~T'K 'q

from known point values q
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The isentropic vortex problem I@‘m

A truly nonlinear benchmark problem

The Euler equations on [~ L, L]? with periodic boundaries and initial
condition

T/(—=1)
1 —yw

1+ zw
Tv/(v=1)

RS SERS)

Y= 1 1—azcz—y2
— e

8y

L a—e?—y?)2

w=—ce
2

T_

|
—_
|

recover the intial condition at time Ty = 2L
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The isentropic vortex problem

Naive D-by-D Corrected D-by-D
-1
-1.51
_2 B
—-2.01 -3
& 251 & -4y
< g
=) )
2 S -5
g -3.01 S
_6 B
_3'5 -
-7 4
—4.01
T T T T T -8 T T T T T
1.6 1.8 2.0 2.2 2.4 1.6 1.8 2.0 2.2 2.4
log10Nx l0g10Nx
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The isentropic vortex problem @

Convergence rates

Experimental convergence rates
Li Le | Li Le

r=1 238 222|233 221

r=2 253 295|422 4.08

r=3 223 237|619 6.16
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Dealing with shocks — GP-WENO (@‘

18

Nonlinear GP reconstruction
The reconstruction presented is linear, i.e.

T

(U)isrjag = Y, wii(U)igs

which is hopeless near discontinuities (Godunov)

WENO (weighted essentially non-oscillatory) methods

Idea: Break full stencil into substencils, reconstruct on each
separately, use a weighted combination of these reconstructions

k-1
(U)it1/2,50 = Z (U)its,j

s=k—r—1

(U)it1/2,5ik = wa (U)it1/2,5:k
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Optimal weights (@\

19

For smooth data, w;- should reduce to some optimal weights such
that

r

D wF(Uhiges = > v (Uizayz i

S=—T

which can be found by solving the least squares problem (e.g. r = 2)

w11 0 0 w1
wo,1 wiz 0 7 w2
w31 W22 W13 Y2 | = | w3
0 w3 w3 3 Wy
0 0 w33 Ws
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Smoothness indicators @ -

Following Jiang and Shu, we can define &

_ T = — Tk
P (€4 Br)”

where 3, measures the smoothness of the data on the k" sub-stencil

Likelihood measures smoothness
A GP with a SE kernel is good at representing smooth functions, thus
the log-likelihood

Wk

log Ly, = —% (log K| + a"K;'q+ 2log(2))
indicates how smooth the k*" sub-stencil is. Choosing
Br=d"K;'q
works well for equispaced grids
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Notes on (GP) WENO @

21

General WENO

@ Transform to characteristic variables first
@ Componentwise limiting works well enough, lower dissipation
@ Lots of non-linear weights other than WENO-JS

GP-WENO

@ Note K, instead of Cy, in formula for S
@ Could use completely different types of stencils
@ No need to derive new expressions for each order
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The isentropic vortex — WENO active

Naive D-by-D Corrected D-by-D
-1.01 -14
-1.5- Y
L 2.0 .
< < -3
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L -254 L
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o o
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Convergence rates

The isentropic vortex — WENO active @

Experimental convergence rates

Ll Loo Ll Loo
r=1 190 1.65| 1.88 1.66
r=2 279 3.12 | 3.46 3.98
r=3 251 329|538 5.80
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Sod shock tube @ \

The standard Riemann problem
Euler equations on [0, 1] with inflow/outflow boundaries and initial

condition
T
P 1 0 1) , <05
(u): (r 0 1)

p (0.125 0 0.1)T, z>05
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Sod shock tube
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2D Riemann problem configuration 3

Euler equations on [0, 1]? with outflow boundaries and initial condition

lan May

1
U
V1
b1
P3
us
v3
b3

0.5323 P2
1.206 U2
0 U2
0.3 D2
0.138 P4
1.206 ug |
1.206 V4

0.029 P4
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2D Riemann problem configuration 3

Without flux correction

Pseudocolor
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2D Riemann problem configuration 3

With flux correction

Pseudocolor
Var: dens1
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Sedov blast problem

olo ok obe oMo ok | o0 | 000

ailiflee - )
Density

PE PE
0] o
151 o
1] E
PE -
A A A A A A A
Internal Energy Pressure
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Final thoughts @

Conclusion

@ Naive use of 1D stencils in 2D yields 2"¢ nonlinear accuracy

@ A cheap modification to the reconstruction recovers accuracy
(Buchmuller and Helzel)

@ Gaussian process reconstruction is super flexible, same formulas
for many orders

@ GP yields simple, effective, smoothness indicators for WENO

Next steps

@ Appropriate limiting for flux reconstruction
@ Time stepping without RK

@ Ideal MHD — Divergence free GP methods
@ 3D problems
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The isentropic vortex problem

Lo

Naive D-by-D Corrected D-by-D
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