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1Introduction

Goal
Solve systems of hyperbolic conservation laws

∂U

∂t
+∇ · F(U) = S(U)

with an accurate and robust finite volume method

∂⟨U⟩Ω
∂t

+
1

||Ω||

∫
∂Ω

F̂
(
U−(x),U+(x)

)
· ndx =

1

||Ω||

∫
Ω

S(U)dx

in multiple dimensions.
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2Systems of interest

Compressible Euler equations

∂U

∂t
+

∂

∂x
F(U) +

∂

∂y
G(U) +

∂

∂z
H(U) = 0

U =


ρ
ρu
ρv
ρw
E

 F =


ρu

ρu2 + p
ρuv
ρuw

u(E + p)

 G =


ρv
ρuv

ρv2 + p
ρvw

v(E + p)

 H =


ρw
ρuw
ρvw

ρw2 + p
w(E + p)

 ,

for a calorically ideal gas,

p = (γ − 1)ρϵ, ρϵ = E − 1

2
ρv · v.
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2Systems of interest

Ideal GLM-MHD equations

U =



ρ
ρu
ρv
ρw
E
Bx

By

Bz

ψ


F =



ρu
ρu2 + p∗ −B2

x

ρuv −BxBy

ρuw −BxBz

FE

Chψ
uBy − vBx

uBz − wBx

ChBx


S =



0
−Bx∇ ·B
−By∇ ·B
−Bz∇ ·B
−SE

−u∇ ·B
−v∇ ·B
−w∇ ·B
−v · ∇ψ


,

where,

p∗ = pgas + pmag

FE = u(E + pg) +Bx (Chψ − v ·B)

SE = (v ·B)∇ ·B+ ψv · ∇ψ
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3Quick overview of FVM

Abstract formulation
Partition full domain Ω into finite volumes Ωi such that Ω =

⋃
i

Ωi, and

Ωi ∩ Ωj = ∅, i ̸= j. Denote

⟨·⟩i =
1

||Ωi||

∫
Ωi

·dx,

then for (systems of) hyperbolic conservation laws

∂

∂t
⟨U⟩i = −

1

||Ωi||

∮
∂Ωi

F̂
(
U−,U+

)
· nds

for numeric flux F̂, and states U− and U+ inside and outside Ωi.
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4Quick overview of FVM

Uniform 2D Cartesian grids
Let Ωi,j =

[
xi − ∆x

2 , xi −
∆x
2

]
×
[
yi − ∆y

2 , yj −
∆y
2

]
, then

∂

∂t
⟨U⟩i,j = −

1

||Ωi,j ||

∮
∂Ωi,j

F̂
(
U−,U+

)
· nds

= − 1

∆x

(
⟨F̂⟩i+ 1

2 ,j
− ⟨F̂⟩i− 1

2 ,j

)
− 1

∆y

(
⟨Ĝ⟩i,j+ 1

2
− ⟨Ĝ⟩i,j− 1

2

)
where half-indices indicate integration over faces.

Two barriers to high order in multiple dimensions
Face integral must be done accurately
Numerical flux is defined pointwise, thus need accurate
pointwise values of U on faces

Ian May Kernel-FVM UC Santa Cruz
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⟨Ĝ⟩i,j+ 1

2
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5Accurate construction of Riemann states
Multidimensional concerns

Issues with polynomials
Matching stencils to multivariate polynomial spaces is hard
Forming valid substencils for WENO is even harder
Dimension-by-dimension approaches do work, but get messy

Kernel based interpolation/recovery
Each SPD kernel K : Ω× Ω→ R, induces a reproducing kernel
Hilbert space1, H, consisting of

f(x) =
∑
i

aiK(x, xi)∑
i

∑
j

aiajK(xi, xj) <∞

For this talk: K(x, y) = e−
||x−y||2

2ℓ2 .

1Omitting many technical details
Ian May Kernel-FVM UC Santa Cruz
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6

An exemplary stencil: R = 2
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7

Kernel-based interpolation

Let {xi} ⊂ Ω be distinct, and fi = f(xi) known.
Seek an interpolant of the form:

f̃(x) =

N∑
j=1

ajK(x,xj)

then enforcing that f̃(xi) = fi, requires that a satisfy

Ka = f , Ki,j = K(xi,xj).

Properties of kernel-based interpolation
K(x,xj) ∈ H, hence f̃ ∈ H
(f − f̃) ⊥H span (K(x,xj))

The matrix K is SPD if the kernel K is

Ian May Kernel-FVM UC Santa Cruz
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8Kernel-based generalized interpolation
Symmetric form

Let {λi} ⊂ H′ be linearly independent, and gi = λif known.
Seek an interpolant of the form:

f̃(x) =

N∑
j=1

ajλ
(y)
j K(x, y)

then enforcing that λ(x)i f̃(x) = gi, requires that a satisfy

Ca = g, Ci,j = λ
(x)
i λ

(y)
j K(x, y).

Relationship to regular interpolation
λ
(y)
j K(x, y) ∈ HA, hence f̃ ∈ HA

(f − f̃) ⊥HA
span

(
λ
(y)
j K(x, y)

)
Point evaluation functionals, λj = δxj

, gives previous result
The matrix C is still SPD so long as K is

Ian May Kernel-FVM UC Santa Cruz
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9Kernel-based generalized interpolation
Asymmetric form with polynomial constraints

Additionally let {αk : |αk| ≤ D} be a set of multi-indices.

Seek an interpolant of the form:

f̃(x) =

N∑
j=1

ajK(x, xj) +
∑

|αk|≤D

bkx
αk

then enforcing that λ(x)i f̃(x) = gi, requires that a and b satisfy

Qa+Pb = g, Qi,j = λ
(x)
i K(x, xj), Pi,j = λ

(x)
i xαk .

To be exact for all xαk we also need PTa = 0, so ultimately solve[
Q P
PT 0

](
a
b

)
=

(
g
0

)

Ian May Kernel-FVM UC Santa Cruz
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10Precomputing reconstruction vectors
Asymmetric form

We can solve [
Q P
PT 0

](
a
b

)
=

(
g
0

)
,

then evaluate the resulting interpolant at x∗

f̃(x∗) =

N∑
j=1

ajK(x∗,xj) +
∑

|αk|≤D

bk(x
∗)αk = TTa+ STb.

Hence the reconstruction vector can be precomputed from[
QT P
PT 0

](
r
w

)
=

(
T
S

)
,

giving simply f̃(x∗) = rTg.

Ian May Kernel-FVM UC Santa Cruz
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11Accurate flux integrals
Transverse corrections

We can now obtain accurate point estimates of the solution
Call an (approximate) Riemann solver to find pointwise fluxes
But where should we do this?

Buchmuller-Helzel correction
Generate pointwise fluxes at the center of each face, fit a polynomial
in the transverse direction(s), integrate that polynomial exactly.

Kernel-based quadrature
Find kernel-based interpolant through the fluxes and integrate it
exactly. (Potentially interesting in 3D)

Gaussian quadrature
Solve multiple Riemann problems per face, then do Gaussian
quadrature.
Ultimately, Riemann solvers are not that expensive so this is the
easiest (and most stable) option.

Ian May Kernel-FVM UC Santa Cruz
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12Taylor-Green vortex problem
Compressible Euler equations

Triply periodic vortex on [0, 2π]3 that quickly becomes turbulent.

Initial conditions

ρ = 1

u = sin(x) cos(y) cos(z)

v = − cos(x) sin(y) cos(z)

w = 0

p = 100 + 1
16 (cos(2x) + cos(2y)) (2 + cos(2z))

Note: Without physical viscosity this problem is mostly of qualitative
significance.

Ian May Kernel-FVM UC Santa Cruz
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13Taylor-Green vortex
192× 192× 192, Radius 2, ℓ = 24∆
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14Dealing with shocks: WENO methods

Nonlinear reconstruction
The reconstruction presented is linear, i.e.

f̃(x∗) = rTg,

which is hopeless near discontinuities (Godunov)

WENO (weighted essentially non-oscillatory) methods
Break full stencil into substencils, use weighted combination of
individual reconstructions

f̃(x∗) =
∑

Sk∈Si,j

ωkr
T
(k)g(k)

where Si,j is set of substencils, and ωk depends on the data in Sk.

Ian May Kernel-FVM UC Santa Cruz
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S1: Central substencil
Substencils in the spirit of standard WENO
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S2: North substencil
Substencils in the spirit of standard WENO
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S3: East substencil
Substencils in the spirit of standard WENO
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S4: South substencil
Substencils in the spirit of standard WENO
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S5: West substencil
Substencils in the spirit of standard WENO

Ian May Kernel-FVM UC Santa Cruz



34
16Optimal weights and standard WENO

The optimal linear weights γk minimize discrepancy in

f̃(x∗) ≈
5∑

k=1

γkr
T
(k)g(k)

independent of the data.

Desired behavior of ωk

For smooth data ωk ≈ γk on all substencils
For rough data ωk ≈ 0 on rough substencils

This is obtained by use of smoothness indicators.

Special cases: Polynomial reconstruction
For some polynomial degrees on some (sub)stencil choices, equality
can be obtained (e.g. classical WENO5).
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WENO-AO

Generally, no linear weights, γk, exist that can reproduce the
accuracy of the full stencil.

Adaptive order WENO
Let S0 correspond to the full stencil, and include it explicitly:

f̃(x∗) =
ω0

γ0
rT(0)g(0) +

5∑
k=1

(
ωk − ω0

γk
γ0

)
rT(k)g(k)

Now we can choose γk solely to ensure stability, e.g.

γ0 = Ch,

γ1 = (1− Ch)Cl,

γ2 = γ3 = γ4 = γ5 =
(1− Ch) ∗ (1− Cl)

4
,

where 0 < Ch, Cl < 1, e.g. Ch = Cl = 0.8.
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Smoothness indicators
The last numerical ingredient

The smoothness of the solution on each substencil can be measured
by

βk =

2∑
|α|=1

∑
q

wq

 ∂|α|f̃k
∂xα

∣∣∣∣∣
xq

2

,

Then nonlinear weights are formed using a modified WENO-Z
scheme

τ =

∣∣∣∣∣β0 − 1

4

5∑
k=2

βk

∣∣∣∣∣
ω̃k = γk

(
1 +

(
τ

βk + ϵ

)p)
ωk =

ω̃k∑
ω̃k

Observation: Mixed derivatives can be safely ignored.
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Reconstruction Variables
Linearized primitive variables

The reconstruction scheme is defined for scalar data
Must do reconstruction componentwise
Reconstructing conservative variables directly is a bad idea

Note: Any linear combination of cell-averages is still a cell-average.

Generic transformation
Fix some matrix Φ and set

Wi,j = ΦUi,j , ∀(i, j) ∈ S0,

reconstruct over W componentwise and map back with Φ∗.

Specific transformations
Decompose ∂F

∂U

∣∣
Ũ

= RΛL, set Φ = L and Φ−1 = R
• These are characteristic variables (direction dependent!)

Set Φ = ∂V
∂U

∣∣
Ũ

and Φ−1 = ∂U
∂V

∣∣
V(Ũ)

• We’ve dubbed these linearized primitive variables

Ian May Kernel-FVM UC Santa Cruz
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2D Riemann problem configuration 3
1024× 1024, Radius 2, ℓ = 24∆
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3D Riemann problem configuration 1
128× 128× 128, Radius 2, ℓ = 24∆
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Positivity Preservation
When WENO fails

Strong shocks can still generate negative densities/pressures
Putting hard floors on density/pressure generally fails
Only recourse is to mix in a first-order correction

Applying corrections
Replace Riemann states as U∗ ← Uctr + θ (U∗ −Uctr)

θ ∈ [0, 1], θ = 1 for no correction
Need to find largest θ that gives a valid state
Must use the same θ for all Riemann states on a cell
Trivial to make density valid, trickier for pressure

• Ultimately θ will be a root of a quadratic with messy coefficients

Set bounds on density and pressure using Balsara’s
self-adjusting limiter

Ian May Kernel-FVM UC Santa Cruz
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Overview of RHS evaluation
Method-of-lines integrator

Evaluate all spatial terms on current state
1. Fill ghost cells

2. Reconstruct Riemann states
• Convert values in stencil to reconstruction variables
• Evaluate smoothness indicators
• Form nonlinear weights
• Form face values
• Convert back from reconstruction variables
• Enforce positivity

3. Fill ghost Riemann states
4. Call Riemann solver

• Track largest signal velocity for time stepper

5. Integrate fluxes and accumulate into RHS
6. Accumulate source terms into RHS

Ian May Kernel-FVM UC Santa Cruz
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MHD Rotor
1024× 1024, Radius 2, ℓ = 24∆
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MHD Rotor
192× 192× 192, Radius 2, ℓ = 24∆
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Magnetized Astrophysical Jet
1024× 1536, Radius 2, ℓ = 24∆
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Magnetized Astrophysical Jet
1024× 1536, Radius 2, ℓ = 24∆
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Magnetized Astrophysical Jet
128× 384× 128, Radius 2, ℓ = 24∆
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Expensive parts of RHS evaluation

Evaluate all spatial terms on current state
1. Fill ghost cells
2. Reconstruct Riemann states

• Convert values in stencil to reconstruction variables
• Evaluate smoothness indicators
• Form nonlinear weights
• Form face values
• Convert back from reconstruction variables
• Enforce positivity

3. Fill ghost Riemann states
4. Call Riemann solver

• Track largest signal velocity for time stepper

5. Integrate fluxes and accumulate into RHS
6. Accumulate source terms into RHS
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A cheap local smoothness indicator

Nonlinear reconstruction is only really needed near shocks
Not necessary in smooth regions
Seemingly unnecessary even for contact discontinuities

WENO is mostly independent of the system we are solving.
Can the physics furnish a cheap smoothness indicator?

Large time derivatives of pressure indicate shocks
Only do WENO if: ∣∣p(n) − p(n−1)

∣∣
min

{
p(n), p(n−1)

} > C∆t,

for some C, typically C ≈ 10. (Adapted from Alina Chertok’s LSI)
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2D Riemann problem configuration 3
1024× 1024, Radius 2, ℓ = 24∆
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2D Riemann problem configuration 3
WENO Map for C = 10
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Accelerators and Heterogeneous Computing

The vast majority of the work to be done is the same for each cell.
⇒ Huge amounts of data parallelism.

Difficulties with heterogeneous architectures
Cache misses and memory latency are huge problem for all
hardware choices
Different hardware perform best with different layouts of data in
memory
Supporting a variety of hardware is headache

for ( i n t i =0; i <nX ; i ++) {
for ( i n t j =0; j <nY ; j ++) {

uNew( i , j ) = f ( uOld ( i , j ) ,
uOld ( i +1 , j ) , uOld ( i −1 , j ) ,
uOld ( i , j +1) , uOld ( i , j − 1 ) ) ;

}
}
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Kokkos

Performance portability
Data layout and parallel hardware are tightly coupled
Provide a simple abstraction for launching parallel work
Provide data structures that conform to the chosen architecture

• These also need to account for where data is stored

auto rng = MDRange<Cuda , Rank<2 > >({0 ,0} , {nX , nY } ) ;
p a r a l l e l _ f o r ( ‘ ‘ Kernel Name ’ ’ , rng ,

KOKKOS_LAMBDA ( const i n t i , const i n t j ) {
uNew( i , j ) = f ( uOld ( i , j ) ,

uOld ( i +1 , j ) , uOld ( i −1 , j ) ,
uOld ( i , j +1) , uOld ( i , j − 1 ) ) ;

} ) ;
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Distributed memory parallelism
Communication points

Evaluate all spatial terms on current state
1. Fill ghost cells
2. Reconstruct Riemann states

• Convert values in stencil to reconstruction variables
• Evaluate smoothness indicators
• Form nonlinear weights
• Form face values
• Convert back from reconstruction variables
• Enforce positivity

3. Fill ghost Riemann states
4. Call Riemann solver

• Track largest signal velocity for time stepper

5. Integrate fluxes and accumulate into RHS
6. Accumulate source terms into RHS
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Final thoughts

Conclusion
Kernel based reconstruction is very flexible

• Easy to go straight from averages to point values

There are many choices for reconstruction variables
Effective positivity preservation is reasonably straightforward
Kokkos provides an excellent way to parallelize code

Next steps
Evaluate MHD accuracy fully
Continue on relativistic hydrodynamics
Investigate HWENO methods
Extend to AMR
Incorporate physical viscosity
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The isentropic vortex problem

A truly nonlinear benchmark problem
The Euler equations on [−L,L]2 with periodic boundaries and initial
condition 

ρ
u
v
p

 =


T 1/(γ−1)

1− yω
1 + xω
T γ/(γ−1)


T = 1− γ − 1

8γπ2
e1−x2−y2

ω =
1

2π
e(1−x2−y2)/2

recover the initial condition at time Tf = 2L
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The isentropic vortex problem
Ω = [−10, 10]2, ℓ = 2

Grid L1 Error L1 Order L∞ Error L∞ Order
R = 2

502 1.43e− 1 – 2.29e− 2 –
1002 1.49e− 2 3.27 4.49e− 3 2.35
2002 6.20e− 4 4.58 9.52e− 5 5.56
4002 2.04e− 5 4.93 3.24e− 6 4.88

R = 3
502 8.37e− 2 – 1.89e− 2 –
1002 2.36e− 3 5.15 3.13e− 4 5.91
2002 3.18e− 5 6.21 1.06e− 5 4.89
4002 2.72e− 7 6.87 9.58e− 8 6.78

R = 4
502 4.42e− 2 – 9.31e− 3 –
1002 6.94e− 4 5.99 2.34e− 4 5.31
2002 2.53e− 6 8.10 1.11e− 6 7.72
4002 5.70e− 9 8.80 2.30e− 9 8.92
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Systems of interest

Special relativistic Euler equations

U =


D
Sx

Sy

Sz

τ

 =


ρW

ρhW 2u
ρhW 2v
ρhW 2w

ρW (hW − 1)− p

 F =


Du

Sxu+ p
Sxv
Sxw

Sx −Du

 ,

where,

W = (1− v · v)−1/2

h = 1 + γe

e =
p

(γ − 1)ρ
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Stabilizing large ℓ

We need to compute
zT = wTC(−1),

where C and w both depend on ℓ.
Large values of ℓ tend to give more accurate interpolants
Large values of ℓ give horribly conditioned linear systems

Stable evaluation of prediction vectors
Consider ϵ = ℓ−1, and allow complex ϵ. Then

zi(ℓ
−1) = wTC(−1)ei is holomorphic apart from isolated poles

Evaluate zi(ℓ−1) on a circle in C where computation is stable
Back out an approximate Laurent expansion of zi(ℓ−1)

Evaluate that Laurent expansion at the real ϵ = ℓ−1 of interest
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