A class of high-order non-polynomial finite volume methods

February 5, 2021

lan May, Dongwook Lee

Department of Applied Mathematics University of California Santa Cruz Santa Cruz, CA

Introduction

Goal

Solve systems of hyperbolic conservation laws

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F}(\mathbf{U}) = 0$$

with an accurate and robust finite volume method

$$\frac{\partial \langle \mathbf{U} \rangle_{\Omega}}{\partial t} = \frac{1}{|\Omega|} \int\limits_{\partial \Omega} \hat{\mathbf{F}} \left(\mathbf{U}^{-}(\mathbf{x}), \mathbf{U}^{+}(\mathbf{x}) \right) \cdot \mathbf{n} dx$$

in multiple dimensions.

For today, consider

$$\begin{split} \frac{\partial \mathbf{U}}{\partial t} + \frac{\partial}{\partial x} \mathbf{F}(\mathbf{U}) + \frac{\partial}{\partial y} \mathbf{G}(\mathbf{U}) &= 0 \\ \mathbf{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ E \end{pmatrix} \quad \mathbf{F}(\mathbf{U}) = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ \rho u w \\ u(E+p) \end{pmatrix} \quad \mathbf{G}(\mathbf{U}) = \begin{pmatrix} \rho v \\ \rho u v \\ \rho v^2 + p \\ \rho v w \\ v(E+p) \end{pmatrix}, \end{split}$$

for a calorically ideal gas,

$$p = (\gamma - 1)\rho\epsilon, \quad \epsilon = \frac{E}{\rho} - \frac{\mathbf{v} \cdot \mathbf{v}}{2}.$$

Quick overview of FVM

Abstract formulation

Partition full domain Ω into finite volumes Ω_i such that $\Omega = \bigcup_i \Omega_i$, and

$$\Omega_i \cap \Omega_j = \varnothing, \ i \neq j.$$
 Denote

$$\langle \cdot \rangle_i = \frac{1}{||\Omega_i||} \int_{\Omega_i} \cdot d\mathbf{x},$$

then for (systems of) hyperbolic conservation laws

$$\frac{\partial}{\partial t} \langle \mathbf{U} \rangle_i = -\frac{1}{||\Omega_i||} \oint_{\partial \Omega_i} \hat{\mathbf{F}} \left(\mathbf{U}^-, \mathbf{U}^+ \right) \cdot \mathbf{n} ds$$

for numeric flux $\hat{\mathbf{F}}$, and states \mathbf{U}^- and \mathbf{U}^+ inside and outside Ω_i .

Quick overview of FVM

Uniform 2D Cartesian grids

Let
$$\Omega_{i,j}=\left[x_i-\frac{\Delta x}{2},x_i-\frac{\Delta x}{2}\right] imes\left[y_i-\frac{\Delta y}{2},y_j-\frac{\Delta y}{2}\right]$$
, then

$$\frac{\partial}{\partial t} \langle \mathbf{U} \rangle_{i,j} = -\frac{1}{\|\Omega_{i,j}\|} \oint_{\partial \Omega_{i,j}} \hat{\mathbf{F}} \left(\mathbf{U}^-, \mathbf{U}^+ \right) \cdot \mathbf{n} ds$$

$$= -\frac{1}{\Delta x} \left(\langle \hat{\mathbf{F}} \rangle_{i+\frac{1}{2},j} - \langle \hat{\mathbf{F}} \rangle_{i-\frac{1}{2},j} \right) - \frac{1}{\Delta y} \left(\langle \hat{\mathbf{G}} \rangle_{i,j+\frac{1}{2}} - \langle \hat{\mathbf{G}} \rangle_{i,j-\frac{1}{2}} \right)$$

where half-indices indicate integration over faces.

Two barriers to high order in multiple dimensions

- Face integral must be done accurately
- Numerical flux is defined *pointwise*, thus need accurate *pointwise* values of $\mathbf{U}_{i+1/2}^{\pm}$

Accurate construction of Riemann states

Multidimensional concerns

Issues with polynomials

- Matching stencils to multivariate polynomial spaces is hard
- Forming valid substencils for WENO is even harder
- Dimension-by-dimension approaches do work, but get messy

lan May KMLS-FVM <u>UC Santa Cruz</u>

¹Omitting many technical details

Accurate construction of Riemann states

Multidimensional concerns

Issues with polynomials

- Matching stencils to multivariate polynomial spaces is hard
- Forming valid substencils for WENO is even harder
- Dimension-by-dimension approaches do work, but get messy

Kernel based interpolation/recovery

Each SPD kernel $K: \Omega \times \Omega \to \mathbb{R}$, induces a reproducing kernel Hilbert space¹, \mathcal{H} , consisting of

$$f(x) = \sum_{i} a_i K(x, x_i)$$
$$\sum_{i} \sum_{j} a_i a_j K(x_i, x_j) < \infty$$

For this talk:
$$K(x,y) = e^{-\frac{||x-y||^2}{2\ell^2}}$$
.

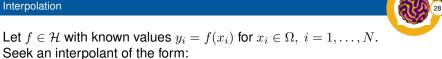
lan May KMLS-FVM UC Santa Cruz

¹Omitting many technical details

An exemplary stencil: R=2

i		Ī
	$\Omega_{i,j}$	

Kernel-MLS



$$\widetilde{f}(x) = \sum_{j=1}^{N} \alpha_j K(x, x_j)$$

then enforcing that $\widetilde{f}(x_i) = y_i$ gives that the coefficients satisfy

$$[K(x_i, x_j)] \alpha = \mathbf{y}.$$

Kernel-MLS

Interpolation

Let $f \in \mathcal{H}$ with known values $y_i = f(x_i)$ for $x_i \in \Omega, i = 1, ..., N$. Seek an interpolant of the form:

$$\widetilde{f}(x) = \sum_{j=1}^{N} \alpha_j K(x, x_j)$$

then enforcing that $\widetilde{f}(x_i) = y_i$ gives that the coefficients satisfy

$$[K(x_i, x_i)] \boldsymbol{\alpha} = \mathbf{y}.$$

Properties and interpretation of \widetilde{f}

Let $\mathcal{H}_0 = \operatorname{span}\{K(\cdot, x_i)\} \subset \mathcal{H}$.

- $(f \widetilde{f}) \perp \mathcal{H}_0$
- ullet \widetilde{f} is the *optimal* approximant in \mathcal{H}_0
- For noise-free y_i , \widetilde{f} is also the best linear unbiased estimate of f
- ullet \widetilde{f} is the posterior mean function of $\mathcal{GP}(0,K)$ conditioned on \mathbf{y}

Kernel-MLS Generalized interpolation

What can we do when we do not know point values of f?

Kernel-MLS Generalized interpolation

28

What can we do when we do not know point values of f? Let $\{\lambda_i\} \subset \mathcal{H}'$ be linearly independent, and $y_i = \lambda_i f$ known. Seek an interpolant of the form:

$$\widetilde{f}(x) = \sum_{j=1}^{N} \alpha_j \lambda_j^{(y)} K(x, y)$$

then enforcing that $\lambda_i^{(x)}\widetilde{f}(x)=y_i$, requires that α satisfy

$$\left[\lambda_i^{(x)}\lambda_j^{(y)}K(x_i,x_j)\right]\boldsymbol{\alpha}=\mathbf{y}.$$

What can we do when we do not know point values of f? Let $\{\lambda_i\} \subset \mathcal{H}'$ be linearly independent, and $y_i = \lambda_i f$ known. Seek an interpolant of the form:

$$\widetilde{f}(x) = \sum_{j=1}^{N} \alpha_j \lambda_j^{(y)} K(x, y)$$

then enforcing that $\lambda_i^{(x)}\widetilde{f}(x)=y_i$, requires that α satisfy

$$\left[\lambda_i^{(x)}\lambda_j^{(y)}K(x_i,x_j)\right]\boldsymbol{\alpha} = \mathbf{y}.$$

Relationship to regular interpolation

- $\lambda_j^{(y)}K(x,y) \in \mathcal{H}$, hence $\widetilde{f} \in \mathcal{H}$
- $(f \widetilde{f}) \perp \mathcal{H}_0$, but \mathcal{H}_0 is different
- Using point evaluation functionals, $\lambda_j = \delta_{x_j}$, recovers former result

For FVMs the relevant linear functionals are given by cell-averages. Thus we need to solve

$$\left[\frac{1}{||\Omega_i||}\frac{1}{||\Omega_j||}\int\limits_{\Omega_i}\int\limits_{\Omega_j}K(x,y)dxdy\right]\boldsymbol{\alpha}=\mathbf{y},$$

and evaluating the interpolant at x^* gives

$$\widetilde{f}(x) = \sum_{j=1}^{N} \alpha_j \int_{\Omega_j} K(x^*, y) dy = \mathbf{z}^T \mathbf{y}$$

where the prediction vector is given by:

$$\mathbf{z}^T = \left[\int\limits_{\Omega_i} K(x^*, y) dy \right]^T \left[\frac{1}{||\Omega_i||} \frac{1}{||\Omega_j||} \int\limits_{\Omega_i} \int\limits_{\Omega_i} K(x, y) dx dy \right]^{-1} \mathbf{y}$$

Stabilizing large ℓ

We need to compute

$$\mathbf{z}^T = \mathbf{w}^T \mathbf{C}^{(-1)},$$

where \mathbf{C} and \mathbf{w} both depend on ℓ .

- Large values of ℓ tend to give more accurate interpolants
- ullet Large values of ℓ give horribly conditioned linear systems

Stabilizing large ℓ

We need to compute

$$\mathbf{z}^T = \mathbf{w}^T \mathbf{C}^{(-1)},$$

where \mathbf{C} and \mathbf{w} both depend on ℓ .

- Large values of \(\ell \) tend to give more accurate interpolants
- ullet Large values of ℓ give horribly conditioned linear systems

Stable evaluation of prediction vectors

Consider $\epsilon = \ell^{-1}$, and allow complex ϵ . Then

- $z_i(\ell^{-1}) = \mathbf{w}^T \mathbf{C}^{(-1)} \mathbf{e}_i$ is holomorphic apart from isolated poles
- Evaluate $z_i(\ell^{-1})$ on a circle in $\mathbb C$ where computation is stable
- Back out an approximate Laurent expansion of $z_i(\ell^{-1})$
- ullet Evaluate that Laurent expansion at the real $\epsilon=\ell^{-1}$ of interest

Accurate flux integrals

Transverse corrections

- We can now obtain accurate point estimates of the solution
- Call an (approximate) Riemann solver to find pointwise fluxes
- But where should we do this?

Accurate flux integrals

Transverse corrections

- We can now obtain accurate point estimates of the solution
- Call an (approximate) Riemann solver to find pointwise fluxes
- But where should we do this?

Buchmuller-Helzel correction

Generate pointwise fluxes at the center of each face, fit a polynomial in the transverse direction, integrate that polynomial exactly.

Accurate flux integrals

Transverse corrections

- We can now obtain accurate point estimates of the solution
- Call an (approximate) Riemann solver to find pointwise fluxes
- But where should we do this?

Buchmuller-Helzel correction

Generate pointwise fluxes at the center of each face, fit a polynomial in the transverse direction, integrate that polynomial exactly.

Fit another Gaussian process

Use a similar stencil as Buchmuller-Helzel, but fit a GP through the fluxes and integrate it exactly.

- We can now obtain accurate point estimates of the solution
- Call an (approximate) Riemann solver to find pointwise fluxes
- But where should we do this?

Buchmuller-Helzel correction

Generate pointwise fluxes at the center of each face, fit a polynomial in the transverse direction, integrate that polynomial exactly.

Fit another Gaussian process

Use a similar stencil as Buchmuller-Helzel, but fit a GP through the fluxes and integrate it exactly.

Gaussian quadrature

Solve multiple Riemann problems on each face, and approximate flux integral with a Gaussian quadrature rule.

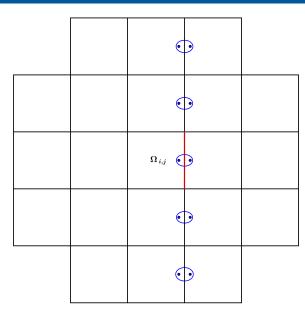
Graphical summary of the method Find Riemann states at each face of $\Omega_{i,j}$

	$\Omega_{i,j}$.	

Graphical summary of the method Find Riemann states for all other $\Omega_{i,j}$

	•	•	
	•	•	
	$\Omega_{i,j}$ •	•	
	•	•	
	•	•	

Graphical summary of the method Call Riemann solver, and perform transverse integration



The isentropic vortex problem

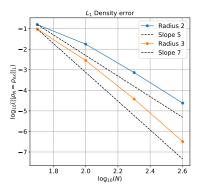
A truly nonlinear benchmark problem

The Euler equations on $[-L,L]^2$ with periodic boundaries and initial condition

$$\begin{pmatrix} \rho \\ u \\ v \\ p \end{pmatrix} = \begin{pmatrix} T^{1/(\gamma-1)} \\ 1 - y\omega \\ 1 + x\omega \\ T^{\gamma/(\gamma-1)} \end{pmatrix}$$
$$T = 1 - \frac{\gamma - 1}{8\gamma\pi^2} e^{1-x^2 - y^2}$$
$$\omega = \frac{1}{2\pi} e^{(1-x^2 - y^2)/2}$$

recover the initial condition at time $T_f = 2L$

The isentropic vortex problem $\Omega = [-10, 10]^2, \, \ell = 4$, Linear scheme



Grid	L_1 Error	L_1 Order	L_{∞} Error	L_{∞} Order
		R=2	2	
50^{2}	1.58e - 1	_	2.45e - 2	_
100^{2}	1.75e - 2	3.17	4.99e - 3	2.30
200^{2}	7.28e - 4	4.59	1.15e - 4	5.44
400^{2}	2.40e - 5	4.92	3.94e - 6	4.87
		R=3	}	
50^{2}	0.010 =	_	2.04e - 2	_
100^{2}	2.83e - 3	5.08	3.77e - 4	5.75
200^{2}	3.74e - 5	6.24	9.99e - 6	5.24
400^{2}	3.22e-7	6.86	9.11e - 8	6.78

Dealing with shocks: WENO methods

Nonlinear GP reconstruction

The reconstruction presented is linear, i.e.

$$\mathbf{U}_{i+\frac{1}{2},j} = \widetilde{\mathbf{U}}(x^*) = \mathbf{z}^T \left[\langle \mathbf{U} \rangle \right]_{S(i,j)}$$

which is hopeless near discontinuities (Godunov)

Dealing with shocks: WENO methods

Nonlinear GP reconstruction

The reconstruction presented is linear, i.e.

$$\mathbf{U}_{i+\frac{1}{2},j} = \widetilde{\mathbf{U}}(x^*) = \mathbf{z}^T \left[\langle \mathbf{U} \rangle \right]_{S(i,j)}$$

which is hopeless near discontinuities (Godunov)

WENO (weighted essentially non-oscillatory) methods

Break full stencil into substencils, use weighted combination of individual reconstructions

$$\mathbf{U}_{i+\frac{1}{2},j} = \sum_{S_k \in \mathcal{S}_{i,j}} \omega_k \widetilde{\mathbf{U}}_k(x^*)$$

where $S_{i,j}$ is set of substencils, and ω_k depends on the data in S_k .

S_1 : Central substencil Substencils in the spirit of standard WENO

	$\Omega_{i,j}$	

S_2 : North substencil Substencils in the spirit of standard WENO

	0	
	$\Omega_{i,j}$	

S_3 : East substencil Substencils in the spirit of standard WENO

	$\Omega_{i,j}$	

S_4 : South substencil Substencils in the spirit of standard WENO

	$\Omega_{i,j}$	

S_5 : West substencil Substencils in the spirit of standard WENO

	$\Omega_{i,j}$	

Optimal weights and standard WENO

The optimal linear weights γ_k minimize discrepancy in

$$\widetilde{\mathbf{U}}(x^*) \approx \sum_{k=1}^{5} \gamma_k \widetilde{\mathbf{U}}_k(x^*)$$

independent of the data.

Optimal weights and standard WENO

The optimal linear weights γ_k minimize discrepancy in

$$\widetilde{\mathbf{U}}(x^*) \approx \sum_{k=1}^{5} \gamma_k \widetilde{\mathbf{U}}_k(x^*)$$

independent of the data.

Special cases: Polynomial reconstruction

For *some* polynomial degrees on *some* (sub)stencil choices, equality can be obtained (e.g. classical WENO5).

Optimal weights and standard WENO

The optimal linear weights γ_k minimize discrepancy in

$$\widetilde{\mathbf{U}}(x^*) \approx \sum_{k=1}^5 \gamma_k \widetilde{\mathbf{U}}_k(x^*)$$

independent of the data.

Special cases: Polynomial reconstruction

For *some* polynomial degrees on *some* (sub)stencil choices, equality can be obtained (e.g. classical WENO5).

Desired behavior of ω_k

- For smooth data $\omega_k \approx \gamma_k$ on all substencils
- For rough data $\omega_k \approx 0$ on rough substencils

This is obtained by use of *smoothness indicators*.

WENO-AO

Generally, no linear weights, γ_k , exist that can reproduce the accuracy of the full stencil.

Adaptive order WENO

Let S_0 correspond to the full stencil, and include it in the nonlinear reconstruction:

$$\mathbf{U}_{i+\frac{1}{2},j} = \frac{\omega_0}{\gamma_0} \widetilde{\mathbf{U}}_0(x^*) + \sum_{k=1}^5 \left(\omega_k - \omega_0 \frac{\gamma_k}{\gamma_0}\right) \widetilde{\mathbf{U}}_k(x^*)$$

WENO-AO

Generally, no linear weights, γ_k , exist that can reproduce the accuracy of the full stencil.

Adaptive order WENO

Let S_0 correspond to the full stencil, and include it in the nonlinear reconstruction:

$$\mathbf{U}_{i+\frac{1}{2},j} = \frac{\omega_0}{\gamma_0} \widetilde{\mathbf{U}}_0(x^*) + \sum_{k=1}^5 \left(\omega_k - \omega_0 \frac{\gamma_k}{\gamma_0}\right) \widetilde{\mathbf{U}}_k(x^*)$$

Now we can choose γ_k to ensure stability

$$\begin{split} &\gamma_0 = C_h, \\ &\gamma_1 = (1 - C_h)C_l, \\ &\gamma_2 = \gamma_3 = \gamma_4 = \gamma_5 = \frac{(1 - C_h) * (1 - C_l)}{4}, \end{split}$$

where $0 < C_h, C_l < 1$, e.g. $C_h = C_l = 0.8$.

Smoothness indicators

The last numerical ingredient

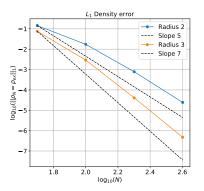
The smoothness of the solution on each substencil can be measured by

$$\beta_k = \sum_{r=1}^2 \sum_{|\alpha|=r} \left(\frac{\partial^{|\alpha|} \widetilde{U}_k}{\partial x^{\alpha}} \bigg|_{(x_i, y_j)} \right)^2,$$

Then nonlinear weights are formed using a modified WENO-Z scheme

$$\begin{split} \tau &= \frac{1}{5} \sum_{k=1}^{5} |\beta_0 - \beta_k| \\ \widetilde{\omega}_k &= \gamma_k \left(1 + \left(\frac{\tau}{\beta_k + \epsilon} \right)^p \right) \\ \omega_k &= \frac{\widetilde{\omega}_k}{\sum \widetilde{\omega}_k} \end{split}$$

The isentropic vortex problem $\Omega = [-10, 10]^2, \, \ell = 4$, weno



Grid	L_1 Error	L_1 Order	L_{∞} Error	L_{∞} Order
R=2				
50^2	1.46e - 1	_	2.41e - 2	_
100^{2}	1.73e - 2	3.06	5.00e - 3	2.27
200^{2}	7.78e - 4	4.47	1.15e - 4	5.44
400^{2}	2.43e - 5	5.00	3.94e - 6	4.87
R=3				
50^{2}	7.57e - 2	_	2.09e - 2	_
100^{2}	2.93e - 3	4.69	3.82e - 4	5.77
200^{2}	4.08e - 5	6.17	1.00e - 6	$\bf 5.25$
400^{2}	4.73e - 7	6.43	9.13e - 8	6.78

2D Riemann problem configuration 3

Euler equations on $[0,1]^2$ with outflow boundaries and initial condition

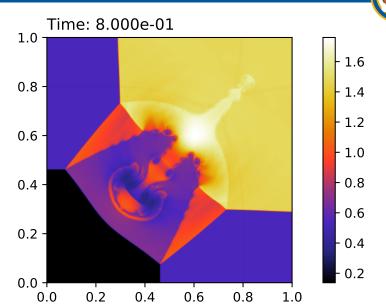
$$\begin{pmatrix} \rho_1 \\ u_1 \\ v_1 \\ p_1 \end{pmatrix} = \begin{pmatrix} 0.5323 \\ 1.206 \\ 0 \\ 0.3 \end{pmatrix} \qquad \begin{pmatrix} \rho_2 \\ u_2 \\ v_2 \\ p_2 \end{pmatrix} = \begin{pmatrix} 1.5 \\ 0 \\ 0 \\ 1.5 \end{pmatrix}$$

$$\begin{pmatrix} \rho_2 \\ u_2 \\ v_2 \\ p_2 \end{pmatrix} = \begin{pmatrix} 1.5 \\ 0 \\ 0 \\ 1.5 \end{pmatrix}$$

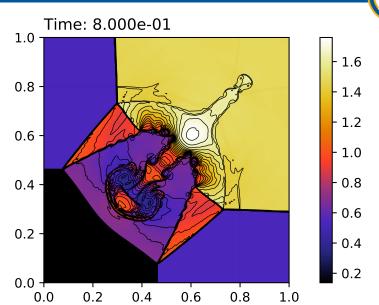
$$\begin{pmatrix} \rho_3 \\ u_3 \\ v_3 \\ p_3 \end{pmatrix} = \begin{pmatrix} 0.138 \\ 1.206 \\ 1.206 \\ 0.029 \end{pmatrix}$$

$$\begin{pmatrix} \rho_4 \\ u_4 \\ v_4 \\ p_4 \end{pmatrix} = \begin{pmatrix} 0.5323 \\ 0 \\ 1.206 \\ 0.3 \end{pmatrix}$$

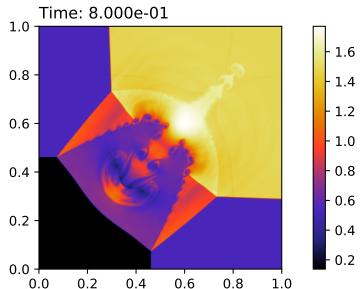
2D Riemann problem configuration 3 400×400 , Radius 2, $\ell = 12\Delta$, HLLC



2D Riemann problem configuration 3 400×400 , Radius 2, $\ell = 12\Delta$, HLLC



2D Riemann problem configuration 3 $_{400 \times 400, \text{ Radius } 3, \ \ell=12\Delta, \text{ HLLC}}$



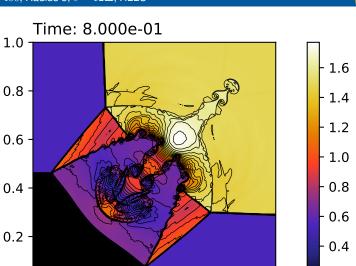
2D Riemann problem configuration 3 400×400 , Radius 3, $\ell = 12\Delta$, HLLC

0.0

0.0

0.2

0.4

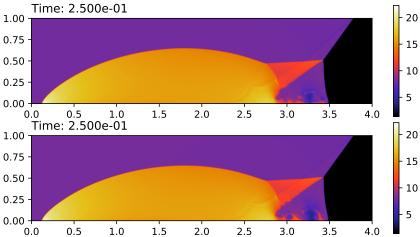


0.8

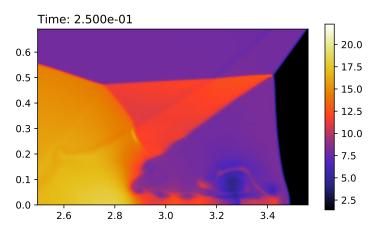
1.0

0.6

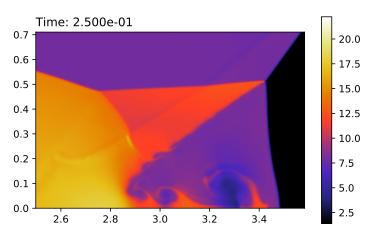
Double mach reflection problem 800×200 , Radii 2 and 3, $\ell=12\Delta$, HLLC



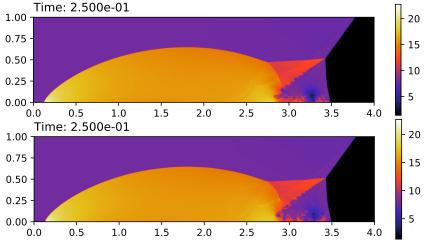
Double mach reflection problem 800×200 , Radius 2, $\ell = 12\Delta$, HLLC



Double mach reflection problem 800×200 , Radius 3, $\ell = 12\Delta$, HLLC

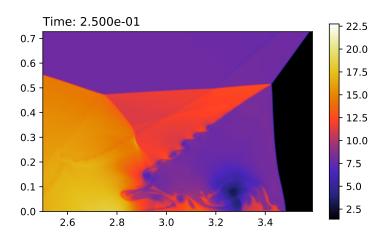


Double mach reflection problem 1600×400 , Radii 2 and 3, $\ell = 12\Delta$, HLLC

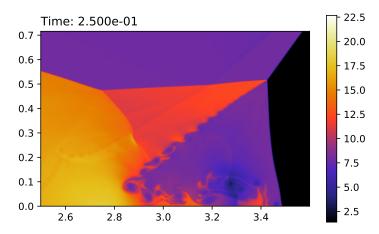


Double mach reflection problem 1600×400 , Radius 2, $\ell = 12\Delta$, HLLC

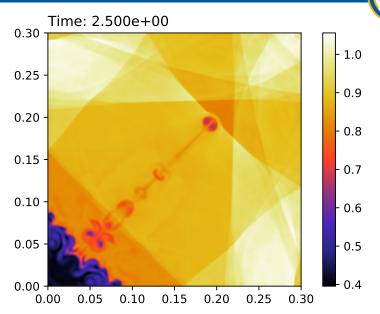
28 25



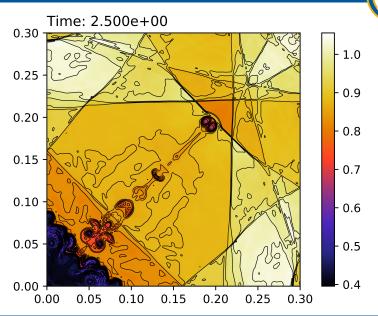
Double mach reflection problem 1600×400 , Radius 3, $\ell = 12\Delta$, HLLC



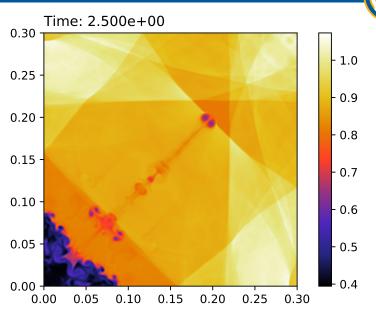
Liska-Wendroff implosion problem 400×400 , Radius 2, $\ell = 12\Delta$, HLL



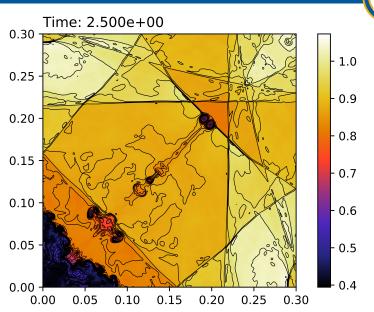
Liska-Wendroff implosion problem 400×400 , Radius 2, $\ell = 12\Delta$, HLL



Liska-Wendroff implosion problem 400×400 , Radius 3, $\ell = 12\Delta$, HLL



Liska-Wendroff implosion problem 400×400 , Radius 3, $\ell = 12\Delta$, HLL



Final thoughts

Conclusion

- High-order multidimensional FVMs require careful implementation
- Kernel based reconstruction is very flexible
 - We can use the flexibility to simplify the implementation
 - The length scale is an interesting knob to have available

Next steps

- Investigate HWENO methods
- Extend to MHD
- Extend to 3D/AMR
- Incorporate viscous terms implicit time stepping
- Time stepping without RK