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Introduction @ 1

Goal

Solve systems of hyperbolic conservation laws
ou
- .F =
5 +V-FU)=0

with an accurate and robust finite volume method

8<U>Q—L 2 (x X)) - ndx
- |Q|aéF(U ( ),U+( )) d

ot

in multiple dimensions.
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Compressible Euler equations, 2D

System of interest

For today, consider

U 0Ly

5 8xF(U) + 6yG(U) =0
p pu
pu pu® +p
U= | p F(U) = puv G(U) =
pw puw
E u(E +p)
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Quick overview of FVM @

Abstract formulation
Partition full domain Q2 into finite volumes 2; such that Q = |, and

Q,NQ; =09, i #j. Denote

o/
‘)i — 'dX7
0=
Q;

then for (systems of) hyperbolic conservation laws

0 1 %A _
—(U); = — F(U,U")  nds
oY= g # £SO

for numeric flux F, and states U~ and U+ inside and outside ;.
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Quick overview of FVM

Uniform 2D Cartesian grids
Let Qi,j = ["El — %,Ii Az] [yz — %ayj — %} , then

0 1 ]{A _
—(U); ;= ——— F(U-,U") - nds
otV = T fFUYY)

a2 (g = B y,) — 2 (@i — @)

where half-indices indicate integration over faces.

Two barriers to high order in multiple dimensions

@ Face integral must be done accurately

@ Numerical flux is defined pointwise, thus need accurate
pointwise values of U, | /2
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Accurate construction of Riemann states

Multidimensional concerns

Issues with polynomials

@ Matching stencils to multivariate polynomial spaces is hard
@ Forming valid substencils for WENO is even harder
@ Dimension-by-dimension approaches do work, but get messy

1Omitting many technical details
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Accurate construction of Riemann states

Multidimensional concerns

Issues with polynomials

@ Matching stencils to multivariate polynomial spaces is hard
@ Forming valid substencils for WENO is even harder
@ Dimension-by-dimension approaches do work, but get messy

Kernel based interpolation/recovery

Each SPD kernel K : Q2 x Q — R, induces a reproducing kernel
Hilbert space', H, consisting of

gal (z,z;)
E g a;a; K (z;,2;) < 00

Hz—yll2

For this talk: K(z,y) =e™ " 22

1Omitting many technical details
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An exemplary stencil: R = 2
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Kernel-MLS 1
Interpolation @ 28

Let f € H with known values y; = f(x;) foraz; € Q, i=1,...,N.
Seek an interpolant of the form:

E Oé] .’L‘.T]

then enforcing that f(xz;) = y; gives that the coefficients satisfy

[K(z,2)] e =y.
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KometMLS D

Let f € H with known values y; = f(x;) foraz; € Q, i=1,...,N.
Seek an interpolant of the form:

E OéJ .’L‘.T]

then enforcing that f(xz;) = y; gives that the coefficients satisfy
(K (z,25)]a=y.
Properties and interpretation of f
Let Ho = span{K (-, z;)} C H.
o (f—1)LHo
@ fis the optimal approximant in Hg

@ For noise-free y;, fis also the best linear unbiased estimate of f
e [ is the posterior mean function of GP(0, K) conditioned on y
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Kernel-MLS . \‘
Generalized interpolation @ 28

What can we do when we do not know point values of f?
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Kernel-MLS . \‘
Generalized interpolation @ 28

What can we do when we do not know point values of f?
Let {\;} C H' be linearly independent, and y; = X; f known.
Seek an interpolant of the form:

N
f@) =" a AWK (z,y)
j=1

then enforcing that Al™) f(z) = y;, requires that « satisfy

[Agx))\gy)K(xi, :zzj)} a=y.
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Kernel-MLS . \‘
Generalized interpolation @ 28

What can we do when we do not know point values of f?
Let {\;} C H' be linearly independent, and y; = X; f known.
Seek an interpolant of the form:

N
f@) =" a AWK (z,y)
j=1

then enforcing that Al™) f(z) = y;, requires that « satisfy

[)\Z(.x))\g.y)K(xi, xj)} a=y.
Relationship to regular interpolation
o MY K(z,y) € H, hence f € H

@ (f—f) L Ho, but H, is different

@ Using point evaluation functionals, A\; = 4., recovers former
result
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Kernel-MLS

Reconstruction

For FVMs the relevant linear functionals are given by cell-averages.
Thus we need to solve

1 1 //
ToT o K(z,y)dedy| a =y,
1€ | 11€21]
Q; Q
and evaluating the interpolant at =* gives
" N
flo)=>"a; /K(x*,y)dy =z'y
Jj=1 Q;

where the prediction vector is given by:

-1

T
z" = /K(IE* y)dy S //K(x y)dzdy| y
’ 119211 1925 ’
Qj Q; Qj
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Stabilizing large ¢

We need to compute
P WTC(_l),

where C and w both depend on /.

@ Large values of ¢ tend to give more accurate interpolants
@ Large values of ¢ give horribly conditioned linear systems
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Stabilizing large ¢

We need to compute
P WTC(_l),
where C and w both depend on ¢.
@ Large values of ¢ tend to give more accurate interpolants
@ Large values of ¢ give horribly conditioned linear systems

Stable evaluation of prediction vectors

Consider ¢ = ¢~!, and allow complex . Then
@ z;(¢~1) = wr'C(=Ve; is holomorphic apart from isolated poles
@ Evaluate z;(¢~!) on a circle in C where computation is stable
@ Back out an approximate Laurent expansion of z;(¢£~1)
@ Evaluate that Laurent expansion at the real ¢ = /~! of interest

[ELRVE KMLS-FVM UC Santa Cruz



Accurate flux integrals

Transverse corrections

@ We can now obtain accurate point estimates of the solution
@ Call an (approximate) Riemann solver to find pointwise fluxes
@ But where should we do this?
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Accurate flux integrals

Transverse corrections

@ We can now obtain accurate point estimates of the solution
@ Call an (approximate) Riemann solver to find pointwise fluxes
@ But where should we do this?

Buchmuller-Helzel correction
Generate pointwise fluxes at the center of each face, fit a polynomial
in the transverse direction, integrate that polynomial exactly.
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Accurate flux integrals

Transverse corrections

@ We can now obtain accurate point estimates of the solution
@ Call an (approximate) Riemann solver to find pointwise fluxes
@ But where should we do this?

Buchmuller-Helzel correction
Generate pointwise fluxes at the center of each face, fit a polynomial
in the transverse direction, integrate that polynomial exactly.

Fit another Gaussian process

Use a similar stencil as Buchmuller-Helzel, but fit a GP through the
fluxes and integrate it exactly.
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Accurate flux integrals

Transverse corrections

@ We can now obtain accurate point estimates of the solution
@ Call an (approximate) Riemann solver to find pointwise fluxes
@ But where should we do this?

Buchmuller-Helzel correction
Generate pointwise fluxes at the center of each face, fit a polynomial
in the transverse direction, integrate that polynomial exactly.

Fit another Gaussian process

Use a similar stencil as Buchmuller-Helzel, but fit a GP through the
fluxes and integrate it exactly.

Gaussian quadrature

Solve multiple Riemann problems on each face, and approximate flux
integral with a Gaussian quadrature rule.

[ELRVE KMLS-FVM UC Santa Cruz



Graphical summary of the method

Find Riemann states at each face of Q; ;
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Graphical summary of the method

Find Riemann states for all other Q; ;
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Graphical summary of the method

Call Riemann solver, and perform transverse integration
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The isentropic vortex problem

A truly nonlinear benchmark problem

The Euler equations on [~ L, L]? with periodic boundaries and initial
condition

T/(—=1)
1 —yw

1+ zw
Tv/(v=1)

RS SERS)

Y= 1 1—azcz—y2
— e

8y

L a—e?—y?)2

w=—ce
2

T_

|
—_
|

recover the initial condition at time 7y = 2L
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ropic vortex problem

4, Linear scheme

L, Density error

T radi 2 Grid L; Error L, Order Lo Error Lo, Order
- ---= Slope 5 R=2
+— Radius 3
-2 <= Slope 7 50 1.58e — 1 - 2.45¢ — 2 -
23 1002 1.75¢ —2  3.17 4.99¢—3  2.30
d 2002 7.28¢—4 459 1.15e—4 5.44
s 400° 2.40e —5 4.92 3.94e—6  4.87
§—S \\\\\\ \\\\ R — 3
" N 507 9.54e — 2 - 2.04e — 2 -
100® 2.83¢ -3 5.08 3.77e—4 5.75
7 S 2002 3.74e—5 6.24 9.99¢—6 524

22 26 400% 322e—7 6.86 9.1le—8 6.78

18 2.0 2.2
l0g10(N)
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Dealing with shocks: WENO methods

Nonlinear GP reconstruction
The reconstruction presented is linear, i.e.

Ui, = U(a") = 2" [(U)] g5

which is hopeless near discontinuities (Godunov)
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Dealing with shocks: WENO methods

Nonlinear GP reconstruction
The reconstruction presented is linear, i.e.

Ui-&-%,j = ﬁ(l’*) =z [<U>]S(i,j)
which is hopeless near discontinuities (Godunov)

WENO (weighted essentially non-oscillatory) methods

Break full stencil into substencils, use weighted combination of
individual reconstructions

U= D wpUg(a")
SkESi,j

where S; ; is set of substencils, and w;, depends on the data in 5.
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S;: Central substencil

Substencils in the spirit of standard WENO
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Ss: North substencil

Substencils in the spirit of standard WENO
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Ss: East substencil

Substencils in the spirit of standard WENO
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S,: South substencil

Substencils in the spirit of standard WENO
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Ss: West substencil

Substencils in the spirit of standard WENO

[ELRVE KMLS-FVM UC Santa Cruz



Optimal weights and standard WENO (®\

17

The optimal linear weights ~;, minimize discrepancy in
~ 5 ~
U(z*) =~ Z*kak(x*)
k=1

independent of the data.
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Optimal weights and standard WENO (®\

17

The optimal linear weights ~;, minimize discrepancy in
~ 5 ~
U(z*) =~ Z*kak(x*)
k=1

independent of the data.

Special cases: Polynomial reconstruction

For some polynomial degrees on some (sub)stencil choices, equality
can be obtained (e.g. classical WENO5).
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Optimal weights and standard WENO (@‘

17

The optimal linear weights ~;, minimize discrepancy in
~ 5 ~
U(z*) =~ Z’kak(x*)
k=1

independent of the data.

Special cases: Polynomial reconstruction
For some polynomial degrees on some (sub)stencil choices, equality

can be obtained (e.g. classical WENO5).
Desired behavior of wy,
@ For smooth data wj, ~ v on all substencils
@ For rough data wy = 0 on rough substencils
This is obtained by use of smoothness indicators.
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WENO-AO @

18
Generally, no linear weights, ~, exist that can reproduce the
accuracy of the full stencil.

Adaptive order WENO

Let Sy correspond to the full stencil, and include it in the nonlinear
reconstruction:

Ui-&-%,j:_UO +Z(Wk—WQ%> Uk( )

o k=1
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WENO-AO @

18
Generally, no linear weights, ~, exist that can reproduce the
accuracy of the full stencil.

Adaptive order WENO

Let Sy correspond to the full stencil, and include it in the nonlinear
reconstruction:

Ui, = L0o(a) + Z (wk - wo%> Uy (o)

7o k=1
Now we can choose ~;, to ensure stability
Yo = Cha
1= (1-Ch)C,

1-Ch)x(1-0C))
4 b

Y2 =73 =74 = "V5 =
where 0 < C,C; < 1,e.9. C, = C; =0.8.
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Smoothness indicators (‘\
The last numerical ingredient @ 28

19

The smoothness of the solution on each substencil can be measured

by
2
(z; 7yj)>

Then nonlinear weights are formed using a modified WENO-Z
scheme

r=1 |o¢|—r

e E % (%

L5
= gZWo—ﬁlJ
k=1

= ) ,
so=n(1+(55) )

W
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ropic vortex problem

20

L, Density error

T radines Grid L, Error L, Order L. Error L., Order
---- Slope 5 R=2
+— Radius 3

50° 1.46e —1 - 2.41e — 2 -

---- Slope 7

z-3 100> 1.73¢—2 3.06 5.00e—3 227
i 200° 7.78¢ —4  4.47 1.15e—4  5.44
g 400° 243e—5 5.00 3.94c—6  4.87
£ R=3

6 50° 7.57e — 2 - 2.09e — 2 -

. | 100 293e—3 4.69 3.82—4 577
2002 4.08¢ —5 6.17 1.00e—6 5.25
24 26 400% 4.73e—7 6.43 9.13¢e—8 6.78

18 2.0 2.2
l0g10(N)
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2D Riemann problem configuration 3 @

21

Euler equations on [0, 1]? with outflow boundaries and initial condition

1 0.5323 P2 15
uy || 1.206 us | [0

V1 o 0 (%) - 0

P1 0.3 P2 1.5

P3 0.138 P4 0.5323
us 1.206 u | | 0
vs | ~ | 1.206 va | — | 1.206
D3 0.029 P4 0.3
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2D Riemann problem configuration 3

400 x 400, Radius 2, ¢ = 12A, HLLC

Time: 8.000e-01 =
1.0
1.6
0.8 1.4
1.2
0.6
1.0
0.4 0.8
0.6
2
0 0.4
2
0.0 0

0.0 0.2 0.4 0.6 0.8 1.0
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2D Riemann problem configuration 3

400 x 400, Radius 2, ¢ = 12A, HLLC

Time: 8.000e-01

1.0
1.6
0.8 1.4
1.2

0.6
1.0

0.4 0.8

0.6

2
0 0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0
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2D Riemann problem configuration 3

400 x 400, Radius 3, £ = 12A, HLLC

Time: 8.000e-01

1.0
1.6
0.8 1.4
o 1.2
1.0
0.4 0.8
0.6
0.2 0.4
0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0
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2D Riemann problem configuration 3

400 x 400, Radius 3, £ = 12A, HLLC

0 Time: 8.000e-01

1.6

0.8 1.4

1.2
0.6

1.0

0.4 0.8

0.6

0.2 0.4

0.0 0.2

0.0 0.2 0.4 0.6 0.8 1.0
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Double mach reflection problem

800 x 200, Radii 2 and 3, ¢ = 12A, HLLC

o Time: 2.500e-01

20
0.75 15
0.50
10
0.25
0.00 . . >
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time: 2.500e-01
0 20
0.75 15
0.50
10
0.25
5

0.00
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Double mach reflection problem

800 x 200, Radius 2, £ = 12A, HLLC

Time: 2.500e-01

20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
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Double mach reflection problem

800 x 200, Radius 3, ¢ = 12A, HLLC

Time: 2.500e-01
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Double mach reflection problem

1600 x 400, Radii 2 and 3, ¢ = 12A, HLLC

Time: 2.500e-01

1.00 20
0.75 15
0.50
10
0.25
0.00 >
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time: 2.500e-01
0 20
0.75 15
0.50
10
0.25
0.00 5
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Double mach reflection problem

1600 x 400, Radius 2, £ = 12A, HLLC

Time: 2.500e-01 22.5

20.0
17.5
15.0
125
10.0
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Double mach reflection problem

1600 x 400, Radius 3, £ = 12A, HLLC

Time: 2.500e-01 22.5
20.0

17.5

12.5
10.0
7.5

5.0
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Liska-Wendroff implosion problem

400 x 400, Radius 2, £ = 12A, HLL

Time: 2.500e+00

0.30

1.0
0.25 A

0.9
0.20 A ‘

. 0.8

0.15

0.7
0.10 0.6
0.05 0.5
0.00 0.4

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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Liska-Wendroff implosion problem C
400 x 400, Radius 2, £ = 12A, HLL @ 2

Time: 2.500e+00

0.30 = - .
) oo "?é / 1.0
D) g = 0.9

0.20 - A
0.8

0.15 -

0.7
0.10 ) 0.6
0.05 0.5
0.00 N LA 0.4

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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Liska-Wendroff implosion problem C
400 x 400, Radius 3, £ = 12A, HLL @ -

Time: 2.500e+00

0.30

1.0
0.25 A

0.9
0.20 A

0.8
0.15

0.7
0.10 06
0.05 0.5
0.00 0.4

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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Time: 2.500e+00

Liska-Wendroff implosion problem C
400 x 400, Radius 3, £ = 12A, HLL @ -

0.30

1.0
0.25 -

0.9
0.20 -

0.8
0.15

0.7
0.10 06
0.05 0.5
0.00 S S0 0.4

0.00 0.05 0.10 oO. 0.20 0.25 0.30
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Final thoughts

Conclusion

@ High-order multidimensional FVMs require careful
implementation

@ Kernel based reconstruction is very flexible

® We can use the flexibility to simplify the implementation
® The length scale is an interesting knob to have available

Next steps
@ Investigate HWENO methods
@ Extend to MHD
@ Extend to 3D/AMR
@ Incorporate viscous terms — implicit time stepping
@ Time stepping without RK
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