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1Introduction

Goal
Solve systems of hyperbolic conservation laws

∂U

∂t
+∇ · F(U) = 0

with an accurate and robust finite volume method

∂〈U〉Ω
∂t

=
1

|Ω|

∫
∂Ω

F̂
(
U−(x),U+(x)

)
· ndx

in multiple dimensions.
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2Compressible Euler equations, 2D

System of interest

For today, consider

∂U

∂t
+

∂

∂x
F(U) +

∂

∂y
G(U) = 0

U =


ρ
ρu
ρv
ρw
E

 F(U) =


ρu

ρu2 + p
ρuv
ρuw

u(E + p)

 G(U) =


ρv
ρuv

ρv2 + p
ρvw

v(E + p)

 ,

for a calorically ideal gas,

p = (γ − 1)ρε, ε =
E

ρ
− v · v

2
.
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3Quick overview of FVM

Abstract formulation
Partition full domain Ω into finite volumes Ωi such that Ω =

⋃
i

Ωi, and

Ωi ∩ Ωj = ∅, i 6= j. Denote

〈·〉i =
1

||Ωi||

∫
Ωi

·dx,

then for (systems of) hyperbolic conservation laws

∂

∂t
〈U〉i = − 1

||Ωi||

∮
∂Ωi

F̂
(
U−,U+

)
· nds

for numeric flux F̂, and states U− and U+ inside and outside Ωi.
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4

Quick overview of FVM

Uniform 2D Cartesian grids
Let Ωi,j =

[
xi − ∆x

2 , xi − ∆x
2

]
×
[
yi − ∆y

2 , yj −
∆y
2

]
, then

∂

∂t
〈U〉i,j = − 1

||Ωi,j ||

∮
∂Ωi,j

F̂
(
U−,U+

)
· nds

= − 1

∆x

(
〈F̂〉i+ 1

2 ,j
− 〈F̂〉i− 1

2 ,j

)
− 1

∆y

(
〈Ĝ〉i,j+ 1

2
− 〈Ĝ〉i,j− 1

2

)
where half-indices indicate integration over faces.

Two barriers to high order in multiple dimensions
Face integral must be done accurately
Numerical flux is defined pointwise, thus need accurate
pointwise values of U±i±1/2

Ian May KMLS-FVM UC Santa Cruz



28

5Accurate construction of Riemann states
Multidimensional concerns

Issues with polynomials
Matching stencils to multivariate polynomial spaces is hard
Forming valid substencils for WENO is even harder
Dimension-by-dimension approaches do work, but get messy

Kernel based interpolation/recovery
Each SPD kernel K : Ω× Ω→ R, induces a reproducing kernel
Hilbert space1, H, consisting of

f(x) =
∑
i

aiK(x, xi)∑
i

∑
j

aiajK(xi, xj) <∞

For this talk: K(x, y) = e−
||x−y||2

2`2 .

1Omitting many technical details
Ian May KMLS-FVM UC Santa Cruz
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6

An exemplary stencil: R = 2
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7Kernel-MLS
Interpolation

Let f ∈ H with known values yi = f(xi) for xi ∈ Ω, i = 1, . . . , N .
Seek an interpolant of the form:

f̃(x) =

N∑
j=1

αjK(x, xj)

then enforcing that f̃(xi) = yi gives that the coefficients satisfy

[K(xi, xj)]α = y.

Properties and interpretation of f̃
Let H0 = span{K(·, xi)} ⊂ H.

(f − f̃) ⊥ H0

f̃ is the optimal approximant in H0

For noise-free yi, f̃ is also the best linear unbiased estimate of f
f̃ is the posterior mean function of GP(0,K) conditioned on y

Ian May KMLS-FVM UC Santa Cruz
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8Kernel-MLS
Generalized interpolation

What can we do when we do not know point values of f?

Let {λi} ⊂ H′ be linearly independent, and yi = λif known.
Seek an interpolant of the form:

f̃(x) =
N∑
j=1

αjλ
(y)
j K(x, y)

then enforcing that λ(x)
i f̃(x) = yi, requires that α satisfy[
λ

(x)
i λ

(y)
j K(xi, xj)

]
α = y.

Relationship to regular interpolation
λ

(y)
j K(x, y) ∈ H, hence f̃ ∈ H

(f − f̃) ⊥ H0, but H0 is different
Using point evaluation functionals, λj = δxj

, recovers former
result

Ian May KMLS-FVM UC Santa Cruz
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9Kernel-MLS
Reconstruction

For FVMs the relevant linear functionals are given by cell-averages.
Thus we need to solve 1

||Ωi||
1

||Ωj ||

∫
Ωi

∫
Ωj

K(x, y)dxdy

α = y,

and evaluating the interpolant at x∗ gives

f̃(x) =

N∑
j=1

αj

∫
Ωj

K(x∗, y)dy = zTy

where the prediction vector is given by:

zT =

∫
Ωj

K(x∗, y)dy


T  1

||Ωi||
1

||Ωj ||

∫
Ωi

∫
Ωj

K(x, y)dxdy


−1

y

Ian May KMLS-FVM UC Santa Cruz
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10Stabilizing large `

We need to compute
zT = wTC(−1),

where C and w both depend on `.
Large values of ` tend to give more accurate interpolants
Large values of ` give horribly conditioned linear systems

Stable evaluation of prediction vectors
Consider ε = `−1, and allow complex ε. Then

zi(`
−1) = wTC(−1)ei is holomorphic apart from isolated poles

Evaluate zi(`−1) on a circle in C where computation is stable
Back out an approximate Laurent expansion of zi(`−1)

Evaluate that Laurent expansion at the real ε = `−1 of interest

Ian May KMLS-FVM UC Santa Cruz
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11Accurate flux integrals
Transverse corrections

We can now obtain accurate point estimates of the solution
Call an (approximate) Riemann solver to find pointwise fluxes
But where should we do this?

Buchmuller-Helzel correction
Generate pointwise fluxes at the center of each face, fit a polynomial
in the transverse direction, integrate that polynomial exactly.

Fit another Gaussian process
Use a similar stencil as Buchmuller-Helzel, but fit a GP through the
fluxes and integrate it exactly.

Gaussian quadrature
Solve multiple Riemann problems on each face, and approximate flux
integral with a Gaussian quadrature rule.

Ian May KMLS-FVM UC Santa Cruz
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12Graphical summary of the method

Find Riemann states at each face of Ωi,j
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12Graphical summary of the method

Find Riemann states for all other Ωi,j
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12Graphical summary of the method

Call Riemann solver, and perform transverse integration
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13The isentropic vortex problem

A truly nonlinear benchmark problem
The Euler equations on [−L,L]2 with periodic boundaries and initial
condition 

ρ
u
v
p

 =


T 1/(γ−1)

1− yω
1 + xω
T γ/(γ−1)


T = 1− γ − 1

8γπ2
e1−x2−y2

ω =
1

2π
e(1−x2−y2)/2

recover the initial condition at time Tf = 2L

Ian May KMLS-FVM UC Santa Cruz
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The isentropic vortex problem
Ω = [−10, 10]2, ` = 4, Linear scheme

1.8 2.0 2.2 2.4 2.6
log10(N)

7

6

5

4

3

2

1

lo
g 1

0(
||

N
ex

|| 1
)

L1 Density error
Radius 2
Slope 5
Radius 3
Slope 7

Grid L1 Error L1 Order L∞ Error L∞ Order
R = 2

502 1.58e− 1 – 2.45e− 2 –
1002 1.75e− 2 3.17 4.99e− 3 2.30
2002 7.28e− 4 4.59 1.15e− 4 5.44
4002 2.40e− 5 4.92 3.94e− 6 4.87

R = 3

502 9.54e− 2 – 2.04e− 2 –
1002 2.83e− 3 5.08 3.77e− 4 5.75
2002 3.74e− 5 6.24 9.99e− 6 5.24
4002 3.22e− 7 6.86 9.11e− 8 6.78

Ian May KMLS-FVM UC Santa Cruz
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Dealing with shocks: WENO methods

Nonlinear GP reconstruction
The reconstruction presented is linear, i.e.

Ui+ 1
2 ,j

= Ũ(x∗) = zT [〈U〉]S(i,j)

which is hopeless near discontinuities (Godunov)

WENO (weighted essentially non-oscillatory) methods
Break full stencil into substencils, use weighted combination of
individual reconstructions

Ui+ 1
2 ,j

=
∑

Sk∈Si,j

ωkŨk(x∗)

where Si,j is set of substencils, and ωk depends on the data in Sk.

Ian May KMLS-FVM UC Santa Cruz
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S1: Central substencil
Substencils in the spirit of standard WENO

Ian May KMLS-FVM UC Santa Cruz



28

16

S2: North substencil
Substencils in the spirit of standard WENO

Ian May KMLS-FVM UC Santa Cruz



28

16

S3: East substencil
Substencils in the spirit of standard WENO
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S4: South substencil
Substencils in the spirit of standard WENO
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S5: West substencil
Substencils in the spirit of standard WENO
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17

Optimal weights and standard WENO

The optimal linear weights γk minimize discrepancy in

Ũ(x∗) ≈
5∑
k=1

γkŨk(x∗)

independent of the data.

Special cases: Polynomial reconstruction
For some polynomial degrees on some (sub)stencil choices, equality
can be obtained (e.g. classical WENO5).

Desired behavior of ωk

For smooth data ωk ≈ γk on all substencils
For rough data ωk ≈ 0 on rough substencils

This is obtained by use of smoothness indicators.

Ian May KMLS-FVM UC Santa Cruz
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WENO-AO

Generally, no linear weights, γk, exist that can reproduce the
accuracy of the full stencil.

Adaptive order WENO
Let S0 correspond to the full stencil, and include it in the nonlinear
reconstruction:

Ui+ 1
2 ,j

=
ω0

γ0
Ũ0(x∗) +

5∑
k=1

(
ωk − ω0

γk
γ0

)
Ũk(x∗)

Now we can choose γk to ensure stability

γ0 = Ch,

γ1 = (1− Ch)Cl,

γ2 = γ3 = γ4 = γ5 =
(1− Ch) ∗ (1− Cl)

4
,

where 0 < Ch, Cl < 1, e.g. Ch = Cl = 0.8.

Ian May KMLS-FVM UC Santa Cruz
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Smoothness indicators
The last numerical ingredient

The smoothness of the solution on each substencil can be measured
by

βk =

2∑
r=1

∑
|α|=r

 ∂|α|Ũk
∂xα

∣∣∣∣∣
(xi,yj)

2

,

Then nonlinear weights are formed using a modified WENO-Z
scheme

τ =
1

5

5∑
k=1

|β0 − βk|

ω̃k = γk

(
1 +

(
τ

βk + ε

)p)
ωk =

ω̃k∑
ω̃k

Ian May KMLS-FVM UC Santa Cruz
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The isentropic vortex problem
Ω = [−10, 10]2, ` = 4, WENO

1.8 2.0 2.2 2.4 2.6
log10(N)

7

6

5

4

3

2

1

lo
g 1

0(
||

N
ex

|| 1
)

L1 Density error
Radius 2
Slope 5
Radius 3
Slope 7

Grid L1 Error L1 Order L∞ Error L∞ Order
R = 2

502 1.46e− 1 – 2.41e− 2 –
1002 1.73e− 2 3.06 5.00e− 3 2.27
2002 7.78e− 4 4.47 1.15e− 4 5.44
4002 2.43e− 5 5.00 3.94e− 6 4.87

R = 3

502 7.57e− 2 – 2.09e− 2 –
1002 2.93e− 3 4.69 3.82e− 4 5.77
2002 4.08e− 5 6.17 1.00e− 6 5.25
4002 4.73e− 7 6.43 9.13e− 8 6.78
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2D Riemann problem configuration 3

Euler equations on [0, 1]2 with outflow boundaries and initial condition
ρ1

u1

v1

p1

 =


0.5323
1.206

0
0.3



ρ2

u2

v2

p2

 =


1.5
0
0

1.5




ρ3

u3

v3

p3

 =


0.138
1.206
1.206
0.029



ρ4

u4

v4

p4

 =


0.5323

0
1.206
0.3



Ian May KMLS-FVM UC Santa Cruz
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2D Riemann problem configuration 3
400 × 400, Radius 2, ` = 12∆, HLLC
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2D Riemann problem configuration 3
400 × 400, Radius 3, ` = 12∆, HLLC
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Double mach reflection problem
800 × 200, Radii 2 and 3, ` = 12∆, HLLC
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Double mach reflection problem
800 × 200, Radius 2, ` = 12∆, HLLC
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Double mach reflection problem
1600 × 400, Radii 2 and 3, ` = 12∆, HLLC
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Double mach reflection problem
1600 × 400, Radius 2, ` = 12∆, HLLC
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Double mach reflection problem
1600 × 400, Radius 3, ` = 12∆, HLLC

2.6 2.8 3.0 3.2 3.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Time: 2.500e-01

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ian May KMLS-FVM UC Santa Cruz



28

26

Liska-Wendroff implosion problem
400 × 400, Radius 2, ` = 12∆, HLL
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Liska-Wendroff implosion problem
400 × 400, Radius 2, ` = 12∆, HLL
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Liska-Wendroff implosion problem
400 × 400, Radius 3, ` = 12∆, HLL
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Liska-Wendroff implosion problem
400 × 400, Radius 3, ` = 12∆, HLL
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Final thoughts

Conclusion
High-order multidimensional FVMs require careful
implementation
Kernel based reconstruction is very flexible

• We can use the flexibility to simplify the implementation
• The length scale is an interesting knob to have available

Next steps
Investigate HWENO methods
Extend to MHD
Extend to 3D/AMR
Incorporate viscous terms – implicit time stepping
Time stepping without RK

Ian May KMLS-FVM UC Santa Cruz
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