How students learn and how we can support it

September 19, 2022

Ian May

Department of Applied Mathematics University of California Santa Cruz

Santa Cruz, CA

Learning objectives

You will be able to ...

- Explain what evidence-based learning is and why we should care
- Describe several ways that people learn
- Distinguish between types of assessments and what they are good for
- Apply principles of universal design for learning

Focusing on what works

- Many people teach by mimicking their past instructors
- Just because something worked for you does not mean it will work for your students
- Focus instead on practices that are **known** to work
- Focus on practices that are informed by how students learn

Focusing on what works

- Many people teach by mimicking their past instructors
- Just because something worked for you does not mean it will work for your students
- Focus instead on practices that are **known** to work
- Focus on practices that are informed by how students learn

Fortunately, cognitive scientists have done the hard work, and some have boiled it down for us non-experts.

Lang: Small Teaching

- Predicting
- Retrieving
- Connecting
- Practicing
- Growth

Even wrong predictions are useful

- Pre-testing students on material they don't yet know improves retention when they do learn it
- The human brain is very good at predicting
- The cycle of prediction, error checking, and correcting is a powerful learning tool
- Soliciting predictions shows students what they don't know

- Simply ask students a question before covering that content
- Pause at a critical step in an example, ask if students know what comes next

- Simply ask students a question before covering that content
- Pause at a critical step in an example, ask if students know what comes next

Considerations

- Keep the topics broad
- Provide rapid feedback
- Provide space to reflect on the predictions

Knowing something is different from recalling something

- Long-term memory can hold a fantastic amount of information
- Retrieving knowledge from long-term memory can be hard
- Knowledge that gets recalled more often is easier to recall
- "If you don't use it, you'll lose it"
- Giving students many chances to retrieve information reinforces what they know

- Before starting on new material, ask students a few questions about previous material
- Ungraded quizzes
- "Retrieval dump": Have students take a moment to write down everything they know about a topic you've covered

- Before starting on new material, ask students a few questions about previous material
- Ungraded quizzes
- "Retrieval dump": Have students take a moment to write down everything they know about a topic you've covered

Considerations

- This takes very little time to do, so you can do it often
- Align retrieval practice with students assessments
- Don't make the retrieval practice too easy/hard

Bridging distinct concepts reinforces them individually

- Students often struggle to see the bigger picture
- How are the different topics in a course related
- Putting a topic into context with the rest of the course requires higher level thinking
- Activating this higher level thinking builds general knowledge and reinforces knowledge on individual topics
- We are literally trying to form neuronal connections

- Provide students with a high level overview of the course
- Ask students how a new topic relates to previous topics
- Try out some group based activities (more on this later!)

- Provide students with a high level overview of the course
- Ask students how a new topic relates to previous topics
- Try out some group based activities (more on this later!)

Considerations

- The connections you see between things may not be what your students see
- Help your students discover connections, rather than trying to spell them out

Let students do what you're teaching them to do

- Giving students a heap of knowledge is very different from having them use that knowledge
- Lectures are often very one-sided, the instructor presents ideas and students try to absorb that information
- Giving students time to *practice* lets them control the learning
- Practicing in the classroom lets you give immediate feedback
- Guided practice is more effective than homework

- Alternate between showing examples and giving the students questions to try
- Do partial examples and have students work through individual parts on their own
- Try out some group based activities (more on this later!)

- Alternate between showing examples and giving the students questions to try
- Do partial examples and have students work through individual parts on their own
- Try out some group based activities (more on this later!)

Considerations

- Try to unpack assessments into their core concepts and pieces
- Provide feedback, ensure students practice the right thing
- Ensure students know why they are practicing what they are practicing

Encouragement goes a long way

- We've seen that students need to feel they belong in a class
- Focusing on growth and affirming your belief in a student can keep them engaged
- People learn much more effectively when they aren't stressed
- People learn much more effectively when they believe they are capable of learning
- This is particularly relevant in STEM courses
 - "I'm just not a math person" Too many of my students
- Recall wise feedback, high expectations *and* belief that students can meet them

Assessment types and purposes

Summative assessments

- Large scale assessments to evaluate student learning
- Exams, projects, reports, etc.
- Mostly given by instructors

Assessment types and purposes

Summative assessments

- Large scale assessments to evaluate student learning
- Exams, projects, reports, etc.
- Mostly given by instructors

Formative assessments

- Smaller, low stakes assessments
- Used to monitor student learning while it is happening
- Easy to use within sections
- Don't even need to be graded, or could be graded just on completion
- Still need to provide feedback, but it could be done in aggregate

Appreciate the different needs of your students

- Equitable teaching means giving everyone what they need to succeed
- Customizing your instruction to each individual is impractical
- Universal design for learning seeks to make individual activities/lessons inclusive
- Try to maximize accessibility of each activity or instruction session

Universal design for learning (UDL)

The what of learning

- Provide your students multiple representations of the content
- Repeat concepts a few times, using different language
- Make your learning objectives concrete and explicit (more on this later)

Universal design for learning (UDL)

The what of learning

- Provide your students multiple representations of the content
- Repeat concepts a few times, using different language
- Make your learning objectives concrete and explicit (more on this later)

The how of learning

- Make space for learning in different formats
- Give students a chance to talk through the content for themselves

Universal design for learning (UDL)

The what of learning

- Provide your students multiple representations of the content
- Repeat concepts a few times, using different language
- Make your learning objectives concrete and explicit (more on this later)

The how of learning

- Make space for learning in different formats
- Give students a chance to talk through the content for themselves

The why of learning

- Try to create relevant and meaningful examples
- Drive students to build connections between the material and their lives

Learning objectives

You should be able to ...

- Explain what evidence-based learning is and why we should care
- Describe several ways that people learn
- Distinguish between types of assessments and what they are good for
- Apply principles of universal design for learning

- Small Teaching by James Lang
- https:

//citl.ucsc.edu/resources/supporting-student-learning/

- https: //citl.ucsc.edu/resources/equity-minded-teaching/udl/
- https://www.retrievalpractice.org/strategies
- https://otl.du.edu/wp-content/uploads/2020/05/ Taxonomy_of_Significant_Learning.pdf
- https: //citl.ucsc.edu/resources/equity-minded-teaching/udl/
- https://citl.ucsc.edu/resources/assessment/
- https://www.understood.org/en/articles/ universal-design-for-learning-what-it-is-and-how-it-works