Destabilizing effects of exchange-rate escape clauses

Maurice Obstfelda,b,c

aDepartment of Economics, 540 Evans Hall, University of California, Berkeley, Berkeley, CA 94720, USA
bNational Bureau of Economic Research, Cambridge, MA 02138, USA
cCentre for Economic Policy Research, London W1X 1LB, UK

Received 1 March 1996; revised 1 November 1996

Abstract

This paper studies policy rules with escape clauses, analyzing as an example fixed exchange rate systems that allow member countries the freedom to realign in periods of stress. While well-designed, escape-clause rules can raise society's welfare in principle, limited credibility makes it difficult to implement such rules in practice. An EMS-type institution that imposes political costs on policymakers who realign may raise welfare, but can also produce equilibria far inferior to an irrevocably fixed exchange rate. Switches between multiple equilibria may have the character of sudden speculative attacks. ©1997 Elsevier Science B.V.

Keywords: Realignment; Escape clause; Credibility; Speculative attack; European Monetary System

JEL classification: F41

1. Introduction

Institutional restraints on monetary policy typically provide for exceptional circumstances. In times of economic crisis, a gold standard may be suspended, a monetary growth target breached, or an exchange rate realigned despite a previous international agreement fixing its level. Underlying such escape clauses is the idea...
that while institutional discipline is on the whole a good thing, social welfare may be improved if policymakers are granted discretion in the face of unusually severe shocks.¹

This paper studies the merits of policy rules with escape clauses, analyzing as an example fixed exchange-rate systems that allow member countries to realign in times of stress, but only at some personal cost to the policymakers in power. Motivating this example is the debate within the European Monetary System (EMS) prior to the 1992–1993 crises over the speed of transition to a single European currency from the then-current regime of national currencies linked by pegged but adjustable exchange rates.

The paper's main point is that while well-designed rules with escape clauses can raise welfare in principle, limited credibility makes it difficult for governments to implement them in practice. The problem is that a narrow-band EMS-type institution—which presumably implies a political cost for policymakers who realign—may induce an optimal escape-clause equilibrium, but may just as well induce alternative equilibria far inferior to an irrevocably fixed exchange rate.² Countries can suffer periods in which no realignment occurs, yet unemployment, real wages, and ex post real interest rates remain persistently and suboptimally high (probably a good description of Italy's pre-September 1992 experience). Switches between possible equilibria may have the character of sudden speculative attacks on a fixed exchange rate.³

The paper is organized as follows. Section 2 sets out a model based on Kydland and Prescott (1977) and Barro and Gordon (1983) in which a policymaker desires to raise employment above its natural rate through surprise currency depreciation. Because the policymaker has an informational advantage over the private sector, policy surprises can play a stabilizing role. But allowing the policymaker freedom

¹Policy rules with escape clauses are examined by Flood and Isard (1989, 1990), Lohmann (1990, 1992), Persson and Tabellini (1990), and De Kock and Grilli (1993). In the model of Lohmann (1992), an escape clause arises endogenously because society [following advice by Rogoff (1985)] has appointed a conservative monetary policymaker whom it can dismiss at a cost. However, she does not consider the possibility of multiple equilibria in her model. That possibility is the major focus of this paper.

²Cukierman (1990) shows how multiple equilibria can arise in a model with a costly devaluation option. In his model, however, exchange-rate changes play no stabilization role, so rigidly fixed exchange rates are, by assumption, socially optimal. The model developed below has very different properties. De Kock and Grilli (1993) uncover multiple trigger-strategy equilibria, analogous to the multiple equilibria I describe here, in a model with an expectational punishment mechanism that leads policymakers to realign currencies only when faced with extreme values of economic shocks. Lewis (1989) mentions the possibility of multiple equilibria in a model where governments face fixed costs of entering into temporary international policy-coordination agreements. For general discussions of the drawbacks of non-credible fixed exchange rates, including possible multiple equilibria, see Obstfeld (1985, 1986).

³Italy's very high public debt/GDP ratio is an additional source of credibility problems. Calvo (1988) and Obstfeld (1994) present theoretical analyses of multiple equilibria in a setting of public-debt devaluation.
to stabilize entails the cost of positive trend inflation. An optimal fixed exchange rate with realignment clauses, described in Section 3, efficiently trades off higher mean inflation against more effective stabilization.

The policy rule described in Section 3 is not time consistent. Section 4 describes how a fixed personal cost of realigning, imposed on the policymaker by society, may induce him to implement the socially optimal escape-clause rule. But this is not the only possible outcome, as Section 5 shows. Even if society imposes the 'correct' fixed cost, there may well be multiple equilibria, some leading to welfare levels far below the one achieved under an unconditionally fixed exchange rate.

Section 6 summarizes the principal results and concludes.

2. Commitment vs. discretion in a standard model

The analytical framework is a standard model of monetary policy choice in a small open economy (as, for example, in Horn and Persson, 1988). On each date t, a policymaker sets the (log) nominal exchange rate, e_t (the price of foreign money in terms of domestic money). Simultaneously, an economy-wide nominal wage, w_{t+1} (also a log), at which workers agree to supply all the labor firms demand on date $t + 1$, is determined in the labor market.

There is a single consumption good. Because its foreign-currency price is fixed, the exchange rate can be identified with the domestic price level. Labor-market equilibrium is assumed to require a constant expected log real wage of 0. Thus if $E\{e_t|I_{t-1}\}$ is the date $t - 1$ conditional expectation of the date t exchange rate, the wage negotiated on date $t - 1$ for date t is

$$w_t = E\{e_t|I_{t-1}\}.$$ \hfill (1)

The conditioning set I_{t-1} includes full and accurate data on the government's incentives, constraints, and information as of $t - 1$.

Labor demand on date t is inversely related to the real wage $w_t - e_t$ and an employment shock u_t that is realized at the start of period t, before date t labor demand is determined but too late to affect the prenegotiated nominal wage w_t. The equation for date t employment, n_t, is

$$n_t = n^* + \sqrt{\alpha}[(e_t - E\{e_t|I_{t-1}\}) - u_t - k].$$ \hfill (2)

In (2), n^* is the employment level targeted by the policymaker, while $k > 0$ represents a fixed distortion in the economy that causes employment systematically to fall short of n^*. (Of course, k will be the source of the policymaker's credibility problem.) The shock, u_t, which is serially uncorrelated with zero conditional mean, can be thought of as a shock to the distortion k.

The policymaker's preferences entail a tradeoff between employment levels
closer to \(n^* \) and inflation rates farther from his target of zero inflation. Specifically, on any date \(t \) the policymaker’s loss function is

\[L_t = (n_t - n^*)^2 + \theta(e_t - e_{t-1})^2. \]

(3)

Here, \(e_t - e_{t-1} \) is home inflation and \(\theta > 0 \). The loss function (3) is assumed to correspond to society’s loss function. Because the model below contains no essential intertemporal links, there is no need to consider the dynamic pattern of societal losses (3).

While labor markets pre-set \(w_t \) in ignorance of the realized value of \(u_t \), the policymaker is assumed to set the exchange rate after having observed the shock. In general the policymaker will want to use the exchange rate to offset some of the effect of \(u_t \) on employment, for example by unexpectedly depreciating the currency (raising \(e_t \) above \(e_{t-1} \) by an amount exceeding labor-market expectations) when \(u_t \) turns out to be positive.

There are at least two distinct policymaking processes that might govern management of the exchange rate. Under discretion authorities choose \(e_t \) to minimize \(L_t \) given \(E\{e_t|Z_{t-1}\} \) and \(u_t \). The exchange-rate change a policymaker chooses under discretion is

\[e_t - e_{t-1} = \lambda(E\{e_t|Z_{t-1}\} - e_{t-1}) + \lambda(k + u_t), \quad \lambda \equiv \frac{\alpha}{\alpha + \theta}. \]

(4)

Under commitment, however, the authority can bind itself ex ante for all dates \(t \) to an irrevocable exchange-rate rule of the form

\[e_t - e_{t-1} = e(u_t,k). \]

(5)

In what follows I will use the unconditional expected policy loss as a ‘Rawlsian’ welfare criterion for ranking policy regimes. Under commitment, then, the authority solves the following problem: Find a function \(e(u_t,k) \) that minimizes the unconditional expectation \(E(L_t) \) subject to \(e_t - e_{t-1} = e(u_t,k) \) and \(E\{e_t|Z_{t-1}\} = e_{t-1} + E\{e(u_t,k)|Z_{t-1}\} \) for all \(t \geq 0 \). It is easy to see that the rule

\[e(u_t,k) = e_t - e_{t-1} = \lambda u_t \]

(6)

is optimal under commitment, where \(\lambda \in [0,1] \) is defined in (4).

Under (6) the authority cushions employment surprises through exchange-rate surprises to a degree inversely related to its relative inflation aversion \(\theta/\alpha \); but it makes no attempt to offset the predictable distortion, \(k \). Mean inflation therefore is zero under commitment, and the (unconditional) expected policy loss is

\[E L_C = \alpha k^2 + \gamma \sigma_u^2, \quad \gamma \equiv (1 - \lambda)\alpha < \alpha, \]

(7)

4In particular, no ‘reputational’ equilibria will be considered.

5In fact, to obtain the commitment equilibrium in this model, it suffices that for any date \(t \), the government is able to bind itself at date \(t-1 \) to the rule it will follow at date \(t \).
where σ_u^2 is the variance of u.

Under discretion the exchange rate is set by (4). Rational expectations in the labor market ensure that in equilibrium

$$e_t - e_{t-1} = \frac{\lambda}{1 - \lambda} k + \lambda u_t,$$

implying an expected loss of

$$EL^D - \gamma E\left(\frac{\lambda k}{1 - \lambda} + k + u\right)^2 = EL^C + \theta \lambda^2 \kappa^2 / (1 - \lambda)^2.$$

EL^D exceeds EL^C for a well-known reason: unless he can commit to zero mean inflation, the policymaker will attempt to offset the distortion k through a surprise reduction in real wages. But the cost of this distortion, αk^2 in (7), is irreducible. Since everyone understands the authority’s goals, equilibrium wages incorporate inflation expectations and rise at the rate $\lambda k/(1 - \lambda)$ [see Eq. (8)]. As a result, the additional expected policy loss implied by a discretionary regime is $\theta \lambda^2 \kappa^2 / (1 - \lambda)^2$.

One particular rule – suboptimal within the narrow confines of the present model – is a fixed exchange rate: $e_t = e_{t-1}$, for all t. Expected loss under this rule (if it can be enforced) is

$$EL^F = \alpha E(k + u)^2 = \alpha k^2 + \alpha \sigma_u^2.$$

A fixed rate prevents any policy response to the shock u, so $E(L^F - L^C) = (\alpha - \gamma) \sigma_u^2$, the gain due to optimal stabilization. However, a fixed rate avoids the secular inflation $\lambda k/(1 - \lambda)$ implied by a discretionary regime. So a comparison of EL^F (fixed rates) with EL^D (pure discretion) is ambiguous in general, depending in an obvious way on the values of θ/α, k, and σ_u^2.

3. Non-discretionary escape clauses

When the potential gains from stabilization are significant, a fixed exchange-rate regime that allows discretion in exceptional circumstances may raise welfare compared with an unconditionally fixed rate. At the same time, a regime of pure discretion may be improved if some statutory limits are placed on the policymaker’s exchange-rate choices. These observations give rise to the idea of policy rules embodying escape clauses.

This section studies non-discretionary escape clauses: binding rules that specify when the exchange rate is to remain fixed and when discretion is permissible. There is an obvious problem with such rules: how can society enforce them if policy commitments are not feasible? To address this problem, the next section takes up discretionary escape clauses, which are invoked when the policymaker chooses, but at a personal cost. The present section’s results remain pertinent,
though, as they clarify the consequences of discretionary and non-discretionary escape clauses alike.\(^6\)

Consider a policymaker bound to the exchange-rate rule:

\[
e_i = \begin{cases}
e_{i-1}, & \text{if } u < u_i < \bar{u} \\
\arg\min_{e_i} \eta, & \text{if } u_i \leq u \text{ or } u_i \geq \bar{u}
\end{cases}
\]

This rule instructs the policymaker to resort to discretion if \(u_i\) assumes an extreme value, i.e. one that lies outside \((u, \bar{u})\).

Expectations under the above rule, Eq. (11), reflect the possibility of a reversion to discretion, and these expectations, in turn, affect the exchange rate chosen when discretion is indeed 'on' [recall (4)]. Let \(G(u)\) be the cumulative distribution function for the i.i.d. shock \(u\), and define the probabilities

\[
\pi = G(u) = \int_{-\infty}^{u} dG(u), \quad \bar{\pi} = 1 - G(\bar{u}) = \int_{\bar{u}}^{\infty} dG(u).
\]

The expected exchange rate under the assumed regime is

\[
E(e_i|u_{i-1}) = \pi E(e_i|u \leq u) + \bar{\pi} E(e_i|u \geq \bar{u}) + (1 - \pi - \bar{\pi}) e_{i-1},
\]

which can be solved, using Eq. (4), for the equilibrium expectation

\[
E(e_i|u_{i-1}) = e_{i-1} + \delta(u, \bar{u}), \quad (12)
\]

where

\[
\delta(u, \bar{u}) = \frac{\lambda(\pi(k + E(u|u \leq u)) + \bar{\pi}(k + E(u|u \geq \bar{u})))}{1 - \lambda(\pi + \bar{\pi})}. \quad (13)
\]

The unconditional expected loss is denoted by \(EL(u, \bar{u})\), where

\[
EL(u, \bar{u}) = (1 - \pi - \bar{\pi}) \alpha E[\delta(u, \bar{u}) + k + u]^2|u \in (u, \bar{u})] + (\pi + \bar{\pi}) \gamma E[\delta(u, \bar{u}) + k + u]^2|u \not\in (u, \bar{u})]. \quad (14)
\]

Eq. (14) is best understood by reference to the results in Section 2. Under both pure discretion and a fixed exchange rate, the policymaker's expected loss is

\(^6\)It may seem artificial to consider binding escape-clause rules; after all, once binding rules are admitted to be feasible, many other rules would be better – for example, keep the exchange rate fixed within a set interval of \(u\) values, but use the optimal rule, Eq. (6), outside. The payoff, to repeat, is a benchmark for analyzing escape clauses that arise in reality and are enforced through sanctions applied to policymakers.

\(^7\)Even if \(\lambda = 1\) (i.e. \(\theta = 0\)), so that the policymaker puts no weight at all on inflation, the expected depreciation rate in Eq. (13) is finite provided at least one threshold is strictly within the support of \(u\). In contrast, equilibrium depreciation is infinite when \(\lambda = 1\) in the case of pure discretion [Eq. (8)].
proportional to $E(\phi + k + u)^2$, where ϕ is the equilibrium expectation of depreciation: $\lambda k/(1 - \lambda)$ under discretion, zero under a fixed rate [see Eqs. (9,10), respectively]. With a fixed rate the proportionality constant is α, while under discretion it is the smaller quantity, $\gamma = \alpha(1 - \lambda)$, because of the policymaker’s ability to stabilize employment (at the cost of higher secular inflation).

The loss, Eq. (14), averages over these two regimes in a particular way. In states of nature where the fixed rate holds steady, the expected loss is α times the corresponding conditional expectation of $(\phi + k + u)^2$; in states where it does not, the expected loss is γ times the conditional expectation of $(\phi + k + u)^2$ corresponding to discretion. Overall expected loss is the appropriate probability-weighted average. The trend expected depreciation rate, $\phi = \delta(u, \tilde{u})$, is constant across realizations of u and leads to a ‘peso problem’. Under fixed rates there is the possibility of a parity change, while under discretionary exchange-rate management there is the possibility of a return to fixed rates. In general, $\delta(u, \tilde{u})$ may be positive or negative. Naturally, the model implies pure discretion as $\tilde{u} - u \rightarrow 0$; a pure fixed rate as \tilde{u} and $-u \rightarrow \infty$.

Non-discretionary escape clauses that strictly dominate both pure discretion and an irrevocably fixed exchange rate often can be designed. Under an optimal escape clause, for example, the incremental stabilization gain from altering a realignment threshold just equals the incremental expected-inflation loss.

Implementing a beneficial escape clause may be problematic, however, because of the assumption that a binding rule governs the section of cases in which discretion is permitted. In effect, the policymaker, like Saint-Exupéry (1943)’s Little Prince on his visit to the incentive compatibility minded monarch of asteroid 325, is commanded by society to do what he wants to do, but only in certain states of the world. Such a rule clearly is not incentive compatible: absent a commitment mechanism, the policymaker will always do what he wants to do, namely exercise full discretion.

One way to impose a non-zero probability that a steady exchange rate is optimal ex post is to posit a fixed social cost χ of currency realignment, over and above the costs captured by the term $\theta(e_t - e_{t-1})$ in Eq. (3). Even under discretion, such a cost will induce the policymaker to keep e fixed over a range of u realizations. The time-inconsistency problem remains, however, because the policymaker’s dis-

8The expectation ϕ is independent of u because that shock is i.i.d. Allowing serial correlation in u would complicate the results (and arguably add to their descriptive realism), but would not alter any fundamental insights. For example, for given escape thresholds, positive serial correlation in u would make wages an increasing function of u. Also, the optimal thresholds generally would depend on the previous period’s shock realization.

9See Persson and Tabellini (1990) for a good discussion of a special case. By construction, no escape-clause rule strictly dominates the optimal rule, Eq. (6). Notice that when u is distributed symmetrically around zero, the optimal bounds are not symmetric: $\tilde{u} < -u$ because $k > 0$. Even symmetric bounds, such as those analyzed by Persson and Tabellini (1990), may raise welfare compared with discretion or fixed rates.
cretionary behavior generally will not minimize the ex ante social loss \(EL - (\pi + \hat{\pi})\chi \).

A fixed personal cost of realignment, imposed on the policymaker only, could reduce the gap between discretionary behavior and the ex ante optimal escape-clause rule. For example, a government might lose face politically if forced to alter a rate it had promised to fix. When the authority conducts a cost–benefit analysis of realignment each period, however, its decision to exercise the escape clause is discretionary.

I now analyze escape clauses triggered by discretion rather than by a rule.

4. Discretionary escape clauses

A well-designed escape clause is potentially welfare-improving, but can fixed personal costs of currency realignments induce policymakers to implement it under discretion? The answer is of particular interest in light of the old narrow-band EMS, which is often viewed as an institution that imposed fixed personal realignment costs on officials. I now argue that a discretionary escape clause can easily fail to reproduce the social optimum.

Assume the policymaker faces a personal cost \(c \) of revaluing the currency (lowering \(e \)) and a cost \(\bar{c} \) of devaluing (raising \(e \)).\(^{10}\) Under discretion the policymaker takes the market’s expected devaluation rate, \(\phi \), as given. The ex post social loss (3) is

\[
L_F^F(\phi, u) = \alpha(\phi + k + u)^2,
\]
given \(u \), if the fixed exchange rate is maintained, and is

\[
L_D^D(\phi, u) = \gamma(\phi + k + u)^2
\]
if the choice is to realign.\(^{11}\)

Since the future is unaffected by decisions made today, the policymaker’s sole concern is the short-run social-cost differential, \(L_F^F - L_D^D \), net of the fixed cost to himself of any parity adjustment. The policymaker’s optimal decision rule is to devalue the currency for \(u \geq \bar{u} \), where \(\bar{u} \) is the solution to

\[
L_F^F(\phi, \bar{u}) - L_D^D(\phi, \bar{u}) = (\alpha - \gamma)(\phi + k + \bar{u})^2 = \bar{c};
\]

\(^{10}\) These costs are taken here as exogenous, although it would be preferable to model them, perhaps as part of an explicit political equilibrium.

\(^{11}\) The formulation here assumes that realignment carries no extra fixed social costs. These could be incorporated without changing the analysis below. The key point about such costs is the one made at the end of the previous section: fixed social costs alone cannot induce the policymaker to implement the ex ante socially optimal rule. An incentive structure that penalizes the policymaker without penalizing the rest of society – for example, a salary cut that accrues to the government budget – is indispensable.
and to revalue for $u \leq u$, where u is the solution to

$$L^F(\phi, u) - L^D(\phi, u) = (\alpha - \gamma)(\phi + k + u)^2 = \zeta. \quad (17b)$$

Fig. 1 illustrates how u and \bar{u} are determined.\(^{12}\)

The relationships in the figure suggest how, for example, a socially optimal escape-clause rule might be implemented. Let u and \bar{u} be optimal switch points; then set c and \bar{c} at the following levels:

$$c = (\alpha - \gamma)[\delta(u, \bar{u}) + k + \bar{u}], \quad \bar{c} = (\alpha - \gamma)[\delta(u, \bar{u}) + k + \bar{u}]. \quad (18)$$

Faced with market depreciation expectations, $\delta(u, \bar{u})$, the authority will pick the optimal boundaries u and \bar{u} if the fixed realignment costs specified in Eq. (18) are imposed [compare Eqs. (17a) and (17b) with Eq. (18)].

This scheme succeeds if the market expects the currency to depreciate at the rate $\phi = \delta(u, \bar{u})$ on average, but there may be no way to ensure that this is the market's expectation. As Eqs. (17a) and (17b) show, changing ϕ to ϕ', say, will lead to different switch points, u' and \bar{u}, even with the same fixed realignment costs; and an additional rational-expectations equilibrium will arise whenever $\phi' = \delta(u', \bar{u}')$. In general, such a self-validating equilibrium produces a strictly lower social welfare level than the optimal one. An equilibrium with a rate of expected depreciation greater than under the optimal rule leads to a higher real wage and, thus, to higher unemployment when the escape clause is not invoked.

Why should multiple equilibria arise at all? The answer lies in the policymaker's inability, under discretion, to forswear credibly the accommodation of

\(^{12}\)The exchange-rate decision depends on u's current value only, given ϕ, k, and realignment costs, because no other variable in the model enters into the policymaker's cost–benefit analysis.
expected depreciation. A rise in expected depreciation on date $t - 1$, other things the same, can push the economy farther from full employment on date t; as Eq. (4) shows, the policymaker will create some date-t inflation to mitigate this employment effect, with the propensity to accommodate measured by λ. Under a discretionary escape clause, different expected switch points imply different exchange-rate expectations. Accommodative (high λ) policymakers may alter their preferred switch points so as to ratify a change in expectations. Multiple equilibria would not arise if the contingency triggering the escape clause were exogenous and easily verifiable – for example, a natural disaster or the outbreak of war – but the escape clauses embodied in postwar fixed exchange-rate arrangements do not have this feature.

One might hope for more success in implementing a socially beneficial escape-clause rule through more complicated incentive structures, for example schemes that make the policymaker’s penalty depend on the size of a realignment. Indeed, the analyses of Persson and Tabellini (1993) and Walsh (1995a) show that society may actually attain the minimal expected loss $\mathbb{E}L^C$ in Eq. (7) by delegating an exchange-rate policy to an agent who minimizes the sum of society’s loss and a contractual penalty that is a function of depreciation [here, $2ak(e_t - e_{t-1})$]. Obstfeld and Rogoff (1996, ch. 9) offer a general discussion of practical obstacles to implementing optimal central banker incentive contracts.13 Perhaps the main rationale for examining a pegged-but-adjustable exchange rate with fixed policymaker realignment costs is the importance of similar regimes in historical and current practice. Arguably both the Bretton Woods system and the EMS fall into this category, but there are countless other examples. Among them are countries attempting to eliminate extreme inflation, which are widely advised to fix their exchange rates at the outset but to retain the option of greater flexibility down the road (Fischer, 1995).

Even for fixed realignment costs, the number of equilibria and their welfare properties depend in a complicated way on the distribution function $G(u)$. For this reason, I now study in detail some specific but empirically plausible examples.

5. Multiple equilibria: Examples

Without substantive loss of generality, I assume that revaluation is ruled out from the start: only large positive realizations of u occasion discretion, in which case a devaluation occurs. The case of a single equilibrium boundary, \bar{u}, accurately portrays devaluation-prone countries while making the algebra much easier.

A devaluation option of this sort imparts a definite inflation bias to the regime; a welfare gain over pure discretion can arise only when the mean inflation bias falls as a result of the limits on the exchange rate’s flexibility. On the negative side, the

13Walsh (1995b) discusses such problems in the specific context of New Zealand’s recent experiment.
escape clause makes employment more variable compared with a free float: in non-devaluation states employment is below the level that would prevail under discretion, while in devaluation states it is higher. Because employment is less variable than under a rigidly fixed exchange rate, however, a mixed regime may— but need not— dominate either polar regime.

In line with the simplifying assumption that only devaluation is possible, define \(\delta(\bar{u}) \) as the expected depreciation rate when the authority holds the exchange rate fixed for \(u < \bar{u} \), but devalues otherwise: \(\delta(\bar{u}) = \lim_{u \to -\infty} \delta(u, \bar{u}) \) [see Eq. (13)]. All the formulas derived above can be extended to the present simpler setting by replacing \(\delta(u, \bar{u}) \) with \(\delta(\bar{u}) \) and \(\pi \) with 0.

The specific distribution assumed for \(u \) has the tent-shaped density function \(g(u) = G'(u) \) (under which \(\sigma_u^2 = \mu^2 / 6 \):

\[
g(u) = \begin{cases}
(\mu - |u|)/\mu^2 & \text{for } u \in [-\mu, \mu] \\
0 & \text{for } u \notin [-\mu, \mu].
\end{cases}
\]

Direct calculation yields the inflation bias of the regime:

\[
\delta(\bar{u}) = \frac{\lambda \bar{\pi}(k + E[u|u \geq \bar{u}])}{1 - \lambda \bar{\pi}},
\]

\[
\bar{\pi} = \begin{cases}
1 - (\mu + \bar{u})^2/2\mu^2 & \text{for } \bar{u} \in [-\mu, 0] \\
(\mu - \bar{u})^2/2\mu^2 & \text{for } \bar{u} \in (0, \mu].
\end{cases}
\]

\[
E[u|u \geq \bar{u}] = (\mu^3 + 2|\bar{u}|^3 - 3\mu \bar{u}^2)/6\bar{\pi}\mu^2.
\]

Naturally, \(\delta(\bar{u}) \to 0 \) as \(\bar{u} \to \mu \) (and the escape option disappears); while \(\delta(\bar{u}) \to \lambda k/(1 - \lambda) \) as \(\bar{u} \to -\mu \) (in which case discretion prevails with probability one).

Now consider equilibria. Eq. (17a) describes how the policymaker will choose a switch point \(\bar{u} \) given expected depreciation \(\phi \). An equilibrium requires, in addition, that \(\phi = \delta(\bar{u}) \). Given the fixed cost \(\bar{c} \), the set of interior equilibrium switch points \(\bar{u} \in (-\mu, \mu) \) consists of the solutions to the (generally very non-linear) equation in \(\bar{u} \):

\[
L^E[\delta(\bar{u}), \bar{u}] - L^D[\delta(\bar{u}), \bar{u}] = (\alpha - \gamma)[\delta(\bar{u}) + k + \bar{u}]^2 = \bar{c}.
\]

More simply, interior equilibria correspond to values of \(\bar{u} \) that solve\(^1\)

\[
\delta(\bar{u}) + k + \bar{u} = \Gamma(\bar{u}) = \sqrt{\bar{c}/(\alpha - \gamma)} = \kappa.
\]

\(^1\)What about solutions to \(\delta(\bar{u}) + k + \bar{u} = \Gamma(\bar{u}) = -\sqrt{\bar{c}/(\alpha - \gamma)} = -\kappa \), which also satisfy the preceding quadratic equation? These define smallest favourable employment shocks such that the authority would be willing to revalue—not devalue—at cost \(\bar{c} \). Such solutions can be disregarded because revaluations have been ruled out. In the numerical multiple equilibrium cases examined below \(\Gamma(-\mu) > 0 \), so revaluations are always unattractive even when \(\zeta = 0 \).
Corner equilibria such that $\bar{u} = -\mu$ or μ also are possible. If $f(u) \geq \kappa$, then $\bar{u} = -\mu$ defines an equilibrium because the policymaker always finds it optimal to exercise discretion if markets expect complete discretion. The policymaker thus incurs the personal cost c period after period. [No interior shock u at which $f(u) > \kappa$ can be an equilibrium switch point, since the policymaker would have a positive incentive to devalue for slightly smaller shock values. But when $\bar{u} = -\mu$, no smaller shock values exist.] Likewise, $\bar{u} = \mu$ defines an equilibrium if $f(\mu) < \kappa$.

Alternative equilibria are most easily studied by graphing the function $f(u)$ defined by Eqs. (19a)-(19c) and Eq. (20). Several different shapes for this function emerge as the parameters k and λ – which respectively measure the severity of the time-inconsistency problem and the willingness to accommodate – are varied. It is assumed in the three examples below that $\mu = 0.03$.

1. **Equilibrium may be unique.** Consider an economy with a relatively small time-inconsistency problem ($k = 0.0075$) whose society and policymaker are averse to accommodation ($\lambda = 0.5$). The finer graph in Fig. 2 shows the expected policy loss implied by different possible switch points $u \in \{-0.03, 0.03\}$ (right-hand vertical axis). The heavier graph shows the $f(u)$ function that arises in this case (left-hand vertical axis).

In Fig. 2 the optimal switch point u^* is 0.0063 (implying a devaluation probability of 0.312). The policy loss at this point is 25.6% — meaning that the cost of this regime relative to the optimal regime is equivalent to having access to commitment, but increasing the standard deviation σ_u from 0.0122 to 0.0153.

The optimal devaluation rule is an improvement over both pure discretion ($\bar{u} = -0.03$, with an associated cost of 0.323) and an unconditional peg ($\bar{u} = 0.03$, with a cost of 0.414). Note that pure discretion dominates a rigidly fixed exchange rate. The example shows that in principle, some limits to exchange-rate flexibility can raise welfare, even though a rigidly fixed rate would not.

Can the optimal switch point be delegated under discretion by imposing the...
appropriate devaluation cost on the policymaker? In this example it can. The \(\Gamma(u) \) function is strictly increasing: setting \(\kappa = \Gamma(\bar{u}^*) \) [as Eq. (20) directs] induces the policymaker to devalue when, and only when, \(u \geq \bar{u}^* \). Expected depreciation in this regime is \(\phi^* = 0.4\% \) per period (compared with 0.75\% under a free float, and zero under a fixed rate). And equilibrium is unique: given \(\kappa \), no expected depreciation rate \(\phi' \) other than 0.4\% can lead the policymaker to a switch point \(\bar{u}' \), where \(\phi' = \delta(\bar{u}') \).

2. There may be several equilibria, one of which entails full discretion. To obtain an example of this case, imagine that all parameters are as in the previous example, except that society and the policymaker are much more accommodative. Now, \(\lambda = 0.9 \).

Fig. 3 graphs the relevant functions. The optimal switch point is \(\bar{u}^* = 0.0049 \) (which is below the last example’s boundary at \(u = 0.0063 \), in line with the present authority’s greater interest in stabilization). The loss implied by this regime is 1.365, lower than under a fixed rate [\(L(0.03) = 2.162 \)] or pure discretion [\(L(-0.03) = 4.895 \)]. The discretionary regime does so poorly because it implies inflation at 6.75\% per period; under the optimal devaluation rule, however, expected inflation is only 0.96\% per period.

Now, however, the optimal escape-clause rule cannot always be delegated by imposing a well-chosen cost on a discretionary policymaker. As Fig. 3 shows, setting \(\kappa = \Gamma(\bar{u}^*) \) yields a second interior equilibrium [the other intersection of the horizontal broken line with the \(\Gamma(u) \) function]. At the switch point \(\bar{u}' = -0.00061 \), expected depreciation is \(\phi' = \delta(\bar{u}') = 1.5\% > \phi^* = \delta(\bar{u}^*) = 0.96\% \). If markets believe \(\bar{u}' \) is the devaluation threshold, then the policymaker will ratify that belief rather than tolerate its effects under the prior exchange parity when \(u \) turns out to be above \(\bar{u}' \).
Real wages in this second equilibrium are higher than in the first in non-devaluation states. Thus, unemployment is higher whenever the exchange rate remains fixed. When currency depreciation does occur it is sharper in the second equilibrium, because nominal wages are further out of line with the authority's employment goals. An extended model would predict higher ex post real interest rates in non-devaluation states at the high-depreciation equilibrium, and a real exchange rate less competitive in either state, other things being equal.

In this example the consequences of being at the \bar{u}' equilibrium are not too severe: the social cost is 1.504, compared with 1.365 at the optimum and 2.162 under a fixed rate. Because society and the policymaker place so heavy a weight on reducing employment fluctuations, the greater scope for stabilization at \bar{u}' largely offsets the higher expected inflation there, leaving the second equilibrium still preferable to a pure fixed rate.

Because $\Gamma(-0.03)$ is above the cost κ that gives equilibria at \bar{u} and \bar{u}', however, there is a third non-interior equilibrium in which discretion is used regardless of the shock realization. This case of undiluted discretion, as we have seen, is much worse than a rigidly fixed exchange rate. Now the market forecasts that the authority has no chance of defending the fixed exchange rate. These expectations lead to nominal wages that are so high (compared with the existing exchange parity) that devaluation always is the outcome.

What is the intuition behind multiple equilibria? They arise because the $\Gamma(u)$ function is non-monotonic in Fig. 3. Non-monotonicity reflects the tension between two factors. As the shock threshold \bar{u} rises, expected inflation eventually falls, lowering the first summand of $\delta(\bar{u}) + k + \bar{u} = \Gamma(\bar{u})$. However, the rise in \bar{u}
directly raises the third summand. When the incentive to inflate under pure discretion is high, the inflation-expectations effect can outweigh the direct effect over some ranges of \bar{u}, rendering $\Gamma(\bar{u})$ alternately increasing, decreasing, and increasing.

3. There may be several equilibria, none of which is fully discretionary. Now reduce λ from 0.9 to 0.75 but raise k to 0.015. The best equilibrium is at $\bar{u}^*=0.0145$ (Fig. 4), with loss $L(\bar{u}^*)=0.867$, expected depreciation $\phi^*=0.39\%$, and a 0.133 chance of devaluation. This equilibrium dominates a fixed rate because $L(0.03)=1$.

Imposing the fixed devaluation cost $\kappa = \Gamma(\bar{u}^*)$ might not suffice to produce this relatively attractive equilibrium. There are two additional interior equilibria, associated with the boundaries $u'=-0.0123$ and $u''=-0.0256$, and with the expected depreciation rates $\phi'=3.0\%$ and $\phi''=4.4\%$, respectively. The implied losses are $L(u')=2.402$ and $L(u'')=3.291$, both much higher than that under a pure fixed-rate regime. Indeed, the low-threshold equilibrium is little better than unfettered discretion, where inflation runs at 4.5% per period and $L(-0.03)=3.359$. Note that $\Gamma(-0.03)$ is less than the policymaker cost κ resulting in the three interior equilibria, so full discretion is not an equilibrium at that level of the cost.

If there is a substantial risk of ending up at a bad equilibrium, then it might be best to go for an irrevocably fixed exchange rate – perhaps by confronting the policymaker with a prohibitively high devaluation cost on entering a common currency area. Uncertainty about the $\Gamma(u)$ function would reinforce this conclusion, since a very small mistake in setting \dot{c} could open the door to a catastrophe in the form of an additional, quite undesirable, equilibrium.

Fig. 4.

<table>
<thead>
<tr>
<th>Devaluation cost, κ</th>
<th>Policy loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.046</td>
<td>3.5</td>
</tr>
<tr>
<td>0.044</td>
<td>3.0</td>
</tr>
<tr>
<td>0.042</td>
<td>2.5</td>
</tr>
<tr>
<td>0.040</td>
<td>2.0</td>
</tr>
<tr>
<td>0.038</td>
<td>1.5</td>
</tr>
<tr>
<td>0.036</td>
<td>1.0</td>
</tr>
<tr>
<td>0.034</td>
<td>0.5</td>
</tr>
<tr>
<td>0.032</td>
<td>0.0</td>
</tr>
<tr>
<td>0.030</td>
<td>-0.5</td>
</tr>
<tr>
<td>0.028</td>
<td>-1.0</td>
</tr>
<tr>
<td>0.026</td>
<td>-1.5</td>
</tr>
</tbody>
</table>
The examples show that attempts to delegate to an agent a rule with an escape clause can backfire. Allowing for additional economic disturbances, for revaluation as well as devaluation options, and for the interaction of several official decision-makers within frameworks like the EMS prior to August 1993 can only multiply the possibilities. Even relatively inflation-averse societies may face problems in implementing adjustable fixed exchange rates. Acknowledging that uncertainty about the economy’s structure and policymaker preferences is pervasive only makes escape options look worse.

6. Conclusion

Simple policy rules can often be amended to include welfare-enhancing escape clauses, which allow the exercise of discretion in well-defined circumstances. But even these amended rules are inherently time-inconsistent. To implement them in a discretionary regime, society must confront policymakers with personal (perhaps political) costs of overriding rules.

Unfortunately, imposing the appropriate cost on the policymaker is necessary, but not sufficient, for reaching a socially preferred equilibrium. Market expectations can be self-fulfilling, leading in plausible cases to any number of equilibria, most of which are dominated by the original simple rule.

This paper illustrated these propositions by analyzing a fixed exchange-rate system amended to include a devaluation option. Numerical examples suggest that a unique equilibrium may exist when a fairly non-accommodative policymaker faces a small time-inconsistency problem. In less favorable circumstances, however, a multiplicity problem plagues attempts to delegate optimal escape-clause rules. The problem is amplified in practice by uncertainty over policymaker preferences and costs.

Acknowledgments

The first draft of this paper was written while I was a visitor at the Department of Economics, Harvard University, and at the NBER; I thank both institutions for their hospitality. The National Science Foundation and the Center for German and European Studies at the University of California, Berkeley, provided generous support. Alex Cukierman, Susanne Lohmann, Gian Maria Milesi-Ferretti, Torsten Persson, two anonymous referees, and a co-editor made helpful comments, as did participants in seminars at Berkeley, UCLA, Vienna, Yale, and the CEPR conference on ‘The Road to EMU: Managing the Transition to a Single European Currency’, Milan, September 1991. All errors are mine.
References

Cukierman, A., 1990, Discretion, precommitments and the prospects for a European central bank – fixed parities versus a commonly managed currency, manuscript, Tel-Aviv University.

Obstfeld, M., 1994, The logic of currency crises, Cahiers économiques et monétaires (Banque de France) 43, 189-213.

