
Efficient Virtualization of High-Performance
Network Interfaces

Holger Fröning, Heiner Litz and Ulrich Brüning
Computer Architecture Group, Institute for Computer Engineering

University of Heidelberg
Mannheim, Germany

{holger.froening, heiner.litz, ulrich.bruening}@ziti.uni-heidelberg.de

The architecture of modern computing systems is getting more
and more parallel, in order to exploit more of the offered
parallelism by applications and to increase the system's overall
performance. This includes multiple cores per processor
module, multi-threading techniques and the resurgence of
interest in virtual machines. In spite of this amount of
parallelism the network interface is typically available only
once. If the network interface is not able to exploit the offered
parallelism, it becomes a bottleneck limiting the system's
overall performance. To overcome this situation a new
virtualization method for network interface is proposed,
relying on a speculative mechanism to enqueue work requests.
It offers unconstrained and parallel access without any
involvement of software instances, allowing to exploit any
available parallelism. For an unrestricted use the I/O interface
is not modified. Modern parallel computing systems and
Virtual Machine environments can be significantly improved
with this new virtualization technique.

Keywords-Device Virtualization, High Performance
Networking, Virtual Machine Environment, Speculative
Enqueue

I. INTRODUCTION
It is commonly accepted that the requirements for

computing power are steadily increasing. Still the most cost-
effective solution for this requirement is cluster computing.
This is also shown by the TOP500 Supercomputer Sites List
[1]. In the current list (November 2008) 410 cluster based
supercomputers are listed, which is 82% of the 500 fastest
supercomputers.

Cluster computing is most effective regarding the cost-
performance ratio, if commodity-of-the-shelf components
are used. The only exception is the network, the bottleneck
of cluster computing. Sophisticated networks designed as
cluster interconnects are for example Infiniband specified by
the Infiniband Trade Association [2], Quadrics [3] and
Myrinet [4], trying to keep pace with the processor
architecture developments. Comparable to the developments
in the processor architecture, the architecture of
interconnection networks must be steadily improved.

The paper presented here focuses on the improvement of
the Network Interface (NI) architecture. Goal is to virtualize

a NI in a sense, that any number of client processes is
supported with a very high efficiency and low overhead. The
virtualization is performed completely in hardware, shifting
multiplexing and scheduling overhead from software layers
to more efficient hardware. Furthermore it is completely
transparent to the processes. From their point of view, each
has exclusive access to the network interface. A scalable
queue-based interface with synchronization support between
processes and the NI allows very efficient exploitation of the
available parallelism. The new architecture presented here is
not limited to NIs, it can be applied to any kind of (high
performance) devices.

The main contribution of this work is a speculative
mechanism to enqueue work requests on the device. It allows
an efficient, scalable and safe virtualization of devices. The
key features of the device virtualization are the following:

• Complete hardware based virtualization
• Highly efficient use of the limiting I/O interface
• Scalable with number of accessing processes
• Secure process identification to prevent misuse
• Cost-efficient by minimal on-device resources
The remaining sections of this paper are organized as

follows. In the next section the background of this work is
presented. The architecture of the virtualized network
interface is described in section 3. In section 4 the impact of
this work on two example applications is shown, which is a
cluster interconnect and a Virtual Machine environment.
Section 5 provides basic performance data which is obtained
from real world experiments. We conclude in the last section
and provide a short outlook.

II. BACKGROUND
Traditionally, the operating system (O/S) multiplexes the

accesses to network interface (or any kind of device) to
support more than one client. Here the O/S can supervise the
client processes regarding correctness of the operations. But
the required system calls introduce additional overhead
which leads to performance degradation. The solution for
this problem is the principle of User-Level Communication
[5]. Here, a process can directly open the device for
exclusive usage. Overhead due to system calls is completely
avoided, but the task of supervision has to be done by the

2009 Eighth International Conference on Networks

978-0-7695-3552-4/09 $25.00 © 2009 IEEE

DOI 10.1109/ICN.2009.23

434

Authorized licensed use limited to: National Central University. Downloaded on January 26, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

device itself. Additionally only one process can open the
device. A promising technique to overcome this situation is
the context switching. It supports several processes accessing
the device. Each access is followed by a context switch. In
the context process specific configuration information are
stored. Typically the switching takes place in a time-sliced
manner, so the available parallelism generated by several
processes is not exploited.

The Infiniband specification defines support for up to
216 user interfaces, which are implemented as queue pairs
(QP). Each QP can be assigned to a different process. The
Infiniband hardware implementations from Mellanox [6] or
Voltaire [7] which support this large number of processes
use the context-switching based approach. Best to our
knowledge the implementation details are not specified and
the methods developed by the manufacturers like are not
published. A modification of the firmware of a Mellanox
Host Channel Adapter [8] also allows the use in Virtual
Machine environments.

One major reason for the need of network interface
virtualization is the increasing number of processes running
on a system as a result of the increasing parallelism of
computer systems (SMT, CMP, CMT). Applications are
increasingly divided into multiple threads to exploit the
available parallelism. One of the most recent developments
in modern processor architecture is the virtualization of the
CPU [9] [10]. This virtualization technology enables
simplification of Virtual Machine Monitor (VMM) software.
VMMs like Xen [11] [12] allow multiple operating systems
(guests) to execute concurrently on commodity x86
hardware. Devices are either used exclusively by one guest
or shared with the help of the VMM. For shared devices the
data transfer is replaced by asynchronous I/O rings and
interrupts by event notifications. User-Level Communication
is not possible. A recent approach is to implement the virtual
device abstraction on the device itself by using an embedded
network processor with 8 Ethernet communication cores
[13]. The supported limit is 64 virtual machines and due to
the targeted application User-Level Communication is not
possible.

A very recent approach is to leverage the flow control of
the HyperTransport (HT) [14] protocol to implement a
virtualized network interface [15], resulting in a minimal
overhead and high efficiency. Obviously this approach is
only compatible with HT based I/O interfaces, while the goal
here is to develop a virtualization method compatible with
any kind of I/O system.

III. ARCHITECTURE OF A VIRTUALIZED NETWORK
INTERFACE

The architecture proposed here is enabled by context
switching of hardware threads running on the device. It
allows a large amount of processes/threads to access a
virtualized network interface (VNI) simultaneously. A VNI
provides several virtual ports, each identified by a Virtual
Port Identifier (VPID). Each client process is assigned to
such a virtual port. The clients issue work requests using
Virtual Communication Instructions (VCI).

A. Basic architecture
Instead of executing the VCIs in a timed-sliced manner,

the architecture should be able to exploit the available
parallelism. A very efficient approach is to use superscalar
functional units (FUs) together with multi-threading, known
as SMT [17]. SMT allows each FU to be assigned to another
working thread. More sophisticated implementations can
even pipeline the FUs and allow each pipeline stage of a FU
to be assigned to another thread. Due to the absence of
partitioning SMT exploits thread-level parallelism (TLP) or
coarse-grain parallelism as well as instruction-level
parallelism (ILP) or fine-grain parallelism [18]. It perfectly
fits to the situation when only one process is issuing several
VCIs simultaneously to the VNI, as well as several processes
simultaneously using the VNI with one or more VCIs.

B. Recognizing processes
The most important requirement regarding virtualization

is that a VNI has to distinguish between accesses from
different processes. Accesses must be tagged with the VPID
to allow the VNI to recognize the different processes. The
VNI stores the information relevant to one VPID in a
context. A context contains in particular all information
about the interface between process and VNI (e.g. queue
offset, read and write pointers), the current state of the virtual
port, configuration information and permissions. Fast context
switches occur between operations of different processes,
configuring the execution unit for this specific user process.

Here process recognition is realized by providing a set of
pages in the peripheral address space. Each process maps a
page and communicates directly with the VNI using
read/write operations. The address associated with the
operation is used to distinguish the different processes. This
method is the most efficient way to signal a unique identifier
to the VNI when using commodity hardware. The
virtualization is transparent to a process, which is in
particular important for security reasons. The main
processor’s Memory Management Unit (MMU) prevents
processes from accessing pages from other processes.

C. Interface between processes and VNI
Compared to the main memory of the system, on-device

memory is expensive. When scaling the number of processes
the on-device memory may also become a bottleneck. To
keep the requirements for on-device memory as small as
possible, queues in main memory are very suitable as
interface from processes to VNI and vice versa. Pinned and
contiguous memory regions are used, allowing access using
either virtual or physical addresses without doing an address
translation for each page. For the direction from process to
VNI these queues contain instructions (work queues), for the
opposite direction notifications (notification queues). We
follow the standard approach to separate work requests into a
descriptor part and a payload part.

435

Authorized licensed use limited to: National Central University. Downloaded on January 26, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

Figure 1. Interface to a Virtualized NI

Each insertion of a new element is at least dependant on a
free entry in the queue: Before each insertion, the available
space must be checked. The cycle of checking and insertion
is a critical region and may not be interrupted by other
processes. Instead of checking for available space, another
solution is to ensure at least one free entry in the queue, e.g.
done by Mellanox’s Infiniband adapter. But this solution
introduces a lot of overhead, and all insertion operations
must be directed to the device. The device then stores the
queue elements somewhere in main memory. Best to our
knowledge, the exact working principle is not published.

Instead of using shared queues we propose to assign
exclusive queues in main memory for every process (figure
1). This scales very well with the process count, furthermore
only for used VPIDs queues have to be allocated. The
required memory on the VNI is minimized, which
significantly reduces the costs [19]. Because of the missing
cache coherence scheme for I/O interconnects, the VNI
cannot recognize changes in main memory. Polling
continuously on the queues is not a solution due to the waste
of I/O bandwidth; additionally it does not scale with the
number of queues. The best solution is to notify the VNI of a
new VCI using a central queue located in the VNI. Changes
to this central trigger queue are immediately visible to the
VNI. Only the trigger information (i.e. the VPID, here 16 bit)
is stored in this queue. To maintain scalability, this central
queue is shared among all client processes. The
corresponding context points to the work queue in main
memory which contains the VCI itself.

D. Instruction Issue
So a VNI must be explicitly informed by inserting the

VPID into the central shared trigger queue. The instruction
issue (or trigger operation) as an enqueue operation is
normally divided into two steps, the check for available
space and the insertion of a new element. Because this is a
shared queue, these two steps are a critical region and may
not be interrupted. Using an atomic operation is a solution
for this problem. The read part is the check for available
space and the write part is the insertion of the VPID.
Unfortunately, atomic operations are not supported on
common I/O interfaces and introduce additional overhead.

Figure 2. Interpretation of addresses

Our new approach is a kind of speculative execution of
the enqueue operation. Information about the success of the
operation must be provided back to the producer. The very
small payload of a queue element (only the VPID, here 16
bit) allows using a single read operation. The read address is
used as immediate value, containing the VPID and a
command. The read result returns the information about the
result of the enqueue operation back to the producer. If more
work requests are issued to the VNI than can be processed,
the queue fills. In the case of a full queue the enqueue must
be retried.

The processes use virtual addresses to access the VNI.
The MMU automatically translates the virtual address into a
physical one (figure 2). This address translation only changes
page information, the lower part of the address remains
unchanged. Thus the lower part (page offset) is used as
command section given by the calling process and the upper
part (page number) contains the VPID.

During enqueue the VNI observes a read operation to a
physical address. If a queue entry is free, it converts the
address to a VPID/command pair, which is then stored in the
central trigger queue. Otherwise the enqueue operation has
failed. In both cases the process is informed about the result
of the enqueue operation by including it in the response of
the read operation. If the instruction is accepted, the VNI
returns True, otherwise False. Of course more sophisticated
return results are possible. If the I/O interconnect supports
split-phase transactions, this mechanism is even improved.
Several issue operations can be outstanding, and the VNI is
able to favor certain ones.

By coding information in the address a larger amount of
address space is required. The paging principle limits address
mapping to pages, so every process opens at least one page,
named the Triggerpage. Applying an access granularity of
64bit, 512 different read addresses are possible, allowing the
trigger operation to be tagged with 512 different commands.

The required hardware for this access scheme is only a
queue. The storage in the queue is dependant on several
conditions, so the queue is called Conditional Store Buffer
(CSB) [20]. An insertion into this CSB is conditional
regarding available space, access rights and other
restrictions. The capability of the VNI to accept or reject
instructions can be used e.g. for prioritization of instructions.
The complete issue operation from user process to VNI is
shown in figure 3.

436

Authorized licensed use limited to: National Central University. Downloaded on January 26, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

Figure 3. Issue operation

User applications are considered to be insecure, e.g. due
to programming errors or due to harmful software. The
Triggerpage is an efficient solution for this problem. The
page mapping mechanism used here prevents processes from
accessing data/control structures from other processes,
because the VPID is contained in the page number of the
read address, which is only visible after address translation.
Further, the complete mechanism does not involve other
kernel- or user-level processes, enabling User-Level
Communication without additional overhead for security.

IV. APPLICATIONS
The previous introduced architecture is now evaluated for

two example applications. The first example is the use in a
cluster system. The parallelism within a cluster node can be
fully exploited by a virtualized network interface. The other
example is a Virtual Machine environment. Because the
virtualization mechanism here requires no software
overhead, it is perfectly suited for Virtual Machine
environments.

A. Cluster Interconnect
Cluster computing implies a lot of parallelism, and

modern system architectures allow running an increasing
number of processes on one node. In a typical MPI
environment, each core is assigned one process. All
processes can now access the local networking interface for
communication, rendering dedicated communication
processes unnecessary.

All accesses from the host side to the VNI are fully
virtualized by the Triggerpage and the CSB. Another access
is possible, coming from the network side. As opposed to the
software access, no security mechanisms are required here,
all traffic being received is generated by other network
interfaces. These are expected to generate only valid network
packets. Hence the only requirement for network access is to
have all network packets tagged with a context identifier. For
the support of 216 processes, this will only add 16 bits to the
header section of each packet.

During packet injection by the sending NI, the target
VPID is well-known as the end-point of communication.
Hence it can be simply integrated into the packet header.
Upon receipt of a packet, the target NI fetches the

appropriate context to configure one of its FUs, where this
packet is then processed.

B. Improving Virtual Machine environments
VMMs like Xen allow multiple operating systems (guest

systems) to execute concurrently on commodity x86
hardware. Each guest system runs in another domain. The
VMM is part of the privileged domain 0 where also one
guest system is running. The VMM virtualizes the
underlying hardware, e.g. CPU, memory and devices. A
device is shared by redirecting all I/O traffic to the VMM,
which is responsible to schedule the accesses.

Virtual Machine environments benefit a lot from
hardware based virtualization. It allows every guest
operating system to open any number of virtual ports of the
VNI. Processes from different guest systems can
concurrently and directly access the VNI without scheduling
by the VMM. The VMM is only responsible to manage the
VNI. Each process (independent from which guest system, if
kernel- or user-level) can directly access the VNI over a
Triggerpage. The VNI itself is responsible for the scheduling
of work requests from the different processes. From the
VNI’s point of view, it is completely irrelevant if these
processes are part of one or different guest systems.

Figure 4 shows a typical situation in a Virtual Machine
environment with a VNI. The VNI provides one
management page and replicated Triggerpages. All
Triggerpages in the physical address space map to the same
hardware resource. Configuration and management of the
VNI is done by the VMM, which runs in domain 0. There
are no restrictions regarding the domain of a process or the
total number of domains. All Triggerpages can be mapped
into one domain or each into another domain.

Figure 4. Virtual Machine environment

437

Authorized licensed use limited to: National Central University. Downloaded on January 26, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

V. EXPERIMENTAL RESULTS
The speculative mechanism to enqueue work requests as

the most important part of the virtualization has been tested
successfully using an FPGA device. This FPGA device is
connected to the host using a PCI interface running at 33
MHz. The host runs under Linux 2.6 and is equipped with a
2.8 GHz Intel Xeon (single core) and 1 GB of RAM. The
tests include a single user process issuing several
instructions, as well as several user processes issuing several
instructions (see Table 1).

The first test shows that a work request enqueue does not
last longer than a normal PCI read operation (which is 630ns
for a PCI-33MHz device). This in particular shows the
excellent performance of the speculative enqueue
mechanism.

Only one process is used in this test to prevent O/S
scheduling effects, but several different VPIDs are used to
test the process identification. Hence the device itself sees
accesses from different processes.

The next two tests increase the number of client
processes. Compared to the first test now multiple processes
are competing for the CPUs, but the device sees again
accesses from different processes. The required scheduling
by O/S dramatically increases the average time for a one
work request issue. This is in particular shown by the non-
linear increase from the second to the third test. While the
number of processes is increased by a factor of 8, the
measured average latency is increased by a factor of
approximately 14. This is even better visualized by the total
time required, which is 6.9ms for the second test, and 775ms
for the third test (factor of approximately 112).

But these two tests show the basic functionality of the
speculative work issue when accessed by a large number of
client processes. For a better measurement of the
performance a multi-core system is required. At the time of
measuring this was not available; hence a single-core
machine had to be used. In spite of this, the excellent
performance of the work request issue to shown by the first
test. This test avoids O/S scheduling effects, although it uses
different VPIDs.

TABLE I. EXPERIMENTAL RESULTS

Client
processes

Work request issues
per process

Average time for one
work request issue

1 1000
(using different VPIDs) 630 ns

8 8 107 μs

64 8 1500 μs

VI. CONCLUSION AND OUTLOOK
This paper presents a new and efficient mechanism to

virtualize network interfaces. As computing systems become
more parallel, unrestricted and efficient simultaneous access
from user processes to the network interface becomes more
and more important. In a Virtual Machine environment the
virtualization can be used to bypass the VMM, minimizing
the overall overhead.

In order to provide access to a non-virtualized device for
any number of processes, O/S involvement is mandatory.
This additional overhead is avoided by the virtualization
presented here. It allows virtually any number of client
processes to access directly the network interface. User-level
Communication is still possible to minimize communication
overhead.

Building blocks for the virtualization are a speculative
mechanism to enqueue work requests on the device and an
optimized set of queues. The queue set is separated into
exclusive queues in main memory and one shared queue on
the device. With main memory as cost-effective resource the
exclusive queues scale with the number of processes. Shared
is only the central trigger queue with minimal entry size. The
speculative enqueue mechanism is implemented as a single
read operation. The payload is included in the read address,
information about the success in the read result. Security is
guaranteed by the Triggerpage which is mapped into the user
space.

Two example applications for a VNI are shown. In a
cluster environment the available parallelism can be
perfectly exploited by the network interface architecture,
allowing each process to communicate directly and without
any O/S involvement with other processes. Virtual Machine
environments can also be improved a lot by the virtualization
concept. Each guest O/S can directly access the network
interface without involvement of the VMM or other
supervising software instances.

An FPGA based experimental test system is used to
measure the basic performance of the speculative work
request issue mechanism. The performance data in terms of
issue latency shows the excellent performance of the
proposed virtualization method.

In the future a virtualized network interface is going to be
developed on a HyperTransport connected rapid prototyping
station [21], which can contain more logic than the FPGA
used in the experiments here. This rapid prototyping station
can be used to implement a complete network interface for a
use in real world environments.

REFERENCES
[1] TOP500 Supercomputer Sites, http://www.top500.org.
[2] Infiniband Trade Association, InfiniBand Architecture Specification

Release 1.2, 2004, available from http://www.infinibandta.org.
[3] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The

Quadrics Network: High-Performance Clustering Technology”, IEEE
Micro, 22(1):46-57, 2002.

[4] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W. Su, “Myrinet: A Gigabit-persecond Local Area
Network”, IEEE Micro, 15(1):29-36, 1995.

438

Authorized licensed use limited to: National Central University. Downloaded on January 26, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

[5] E.W. Felten, R.D. Alpert, A. Bilas, M.A. Blumrich, D.W. Clark, S.
Damianakis, C. Dubnicki, L. Iftode, and K. Li, “Early experience
with message-passing on the shrimp multicomputer”, Proc. of the
23rd International Symposium on Computer Architecture (ISCA23),
1996.

[6] Mellanox Technologies, Inc., InfiniHost III Product Family.
Available from http://www.mellanox.com.

[7] Voltaire, Inc., Voltaire HCA 4X0 Product Family. Available from
http://www.voltaire.com.

[8] J. Liu, W. Huang, B. Abali and D. K. Panda, “High Performance
VMM-Bypass I/O in Virtual Machines”, Proc. of USENIX Annual
Technical Conference, 2006.

[9] Advanced Micro Devices, Inc., AMD I/O Virtualization Technology
(IOMMU) Specification. Available from http://developer.amd.com.

[10] Intel, Vanderpool technology. Available from
http://www.intel.com/technology/platform-
technology/virtualization/index.htm.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, A. Warfield, „Xen and the art of virtualization”,
Proc. of the 19th ACM Symposium on Operating Systems Principles,
2003.

[12] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, M.
Williamson. „Safe Hardware Access with the Xen Virtual Machine
Monitor”, Proc. of the 2004 ACM OASIS Workshop, 2004.

[13] H. Raj, K. Schwan, “High Performance and Scalable I/O
Virtualization via Self-Virtualized Devices”, Proc. of IEEE

International Symposium on High-Performance Distributed
Computing (HPDC), Monterey, California, USA, 2007.

[14] Hypertransport Consortium. 2008. HyperTransport™ I/O Link
Specification Revision 3.10. http://www.hypertransport.org.

[15] H. Litz , H. Fröning, M. Nüssle and U. Brüning, “VELO: A Novel
Communication Engine for Ultra-low Latency Message Transfers”,
Proc. of the 37th International Conference on Parallel Processing
(ICPP-08), Portland, Oregon, USA, 2008.

[16] PCI SIG, PCI Express 2.0 Base Specification, 2007.
[17] D. M. Tullsen, S. J. Eggers, H. M. Levy, “Simultaneous

Multithreading: Maximizing On-Chip Parallelism”, Proc. of the 22nd
International Symposium on Computer Architecture (ISCA), pages
392-403, 1995.

[18] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, D. M.
Tullsen, “Simultaneous Multithreading: A Platform for Next-
Generation Processors”, IEEE Micro, 17(5):12-19, 1997.

[19] S. Sur, A. Vishnu, H.-W. Jin, W. Huang, D. K. Panda, “Can Memory-
Less Network Adapters Benefit Next-Generation InfiniBand
Systems?”, Proc. of the 13th Annual IEEE Symposium on High-
Performance Interconnects (HOTI), 2005.

[20] L. Schaelicke, A. Davis, “Improving I/O performance with a
conditional store buffer”, Proc. of the 31st annual ACM/IEEE
International Symposium on Microarchitecture, Dallas, Texas, USA,
Pages: 160 - 169, 1998.

[21] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, U. Brüning, “The HTX-
Board: A Rapid Prototyping Station”, Proc. of the 3rd annual
FPGAworld Conference, Stockholm, Sweden, 2006.

439

Authorized licensed use limited to: National Central University. Downloaded on January 26, 2010 at 08:29 from IEEE Xplore. Restrictions apply.

