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The architecture of modern computing systems is getting more 
and more parallel, in order to exploit more of the offered 
parallelism by applications and to increase the system's overall 
performance. This includes multiple cores per processor 
module, multi-threading techniques and the resurgence of 
interest in virtual machines. In spite of this amount of 
parallelism the network interface is typically available only 
once. If the network interface is not able to exploit the offered 
parallelism, it becomes a bottleneck limiting the system's 
overall performance. To overcome this situation a new 
virtualization method for network interface is proposed, 
relying on a speculative mechanism to enqueue work requests. 
It offers unconstrained and parallel access without any 
involvement of software instances, allowing to exploit any 
available parallelism. For an unrestricted use the I/O interface 
is not modified. Modern parallel computing systems and 
Virtual Machine environments can be significantly improved 
with this new virtualization technique. 

Keywords-Device Virtualization, High Performance 
Networking, Virtual Machine Environment, Speculative 
Enqueue 

I.  INTRODUCTION 
It is commonly accepted that the requirements for 

computing power are steadily increasing. Still the most cost-
effective solution for this requirement is cluster computing. 
This is also shown by the TOP500 Supercomputer Sites List 
[1]. In the current list (November 2008) 410 cluster based 
supercomputers are listed, which is 82% of the 500 fastest 
supercomputers.  

Cluster computing is most effective regarding the cost-
performance ratio, if commodity-of-the-shelf components 
are used. The only exception is the network, the bottleneck 
of cluster computing. Sophisticated networks designed as 
cluster interconnects are for example Infiniband specified by 
the Infiniband Trade Association [2], Quadrics [3] and 
Myrinet [4], trying to keep pace with the processor 
architecture developments. Comparable to the developments 
in the processor architecture, the architecture of 
interconnection networks must be steadily improved. 

The paper presented here focuses on the improvement of 
the Network Interface (NI) architecture. Goal is to virtualize 

a NI in a sense, that any number of client processes is 
supported with a very high efficiency and low overhead. The 
virtualization is performed completely in hardware, shifting 
multiplexing and scheduling overhead from software layers 
to more efficient hardware. Furthermore it is completely 
transparent to the processes. From their point of view, each 
has exclusive access to the network interface. A scalable 
queue-based interface with synchronization support between 
processes and the NI allows very efficient exploitation of the 
available parallelism. The new architecture presented here is 
not limited to NIs, it can be applied to any kind of (high 
performance) devices. 

The main contribution of this work is a speculative 
mechanism to enqueue work requests on the device. It allows 
an efficient, scalable and safe virtualization of devices. The 
key features of the device virtualization are the following: 

• Complete hardware based virtualization 
• Highly efficient use of the limiting I/O interface 
• Scalable with number of accessing processes 
• Secure process identification to prevent misuse 
• Cost-efficient by minimal on-device resources 
The remaining sections of this paper are organized as 

follows. In the next section the background of this work is 
presented. The architecture of the virtualized network 
interface is described in section 3. In section 4 the impact of 
this work on two example applications is shown, which is a 
cluster interconnect and a Virtual Machine environment. 
Section 5 provides basic performance data which is obtained 
from real world experiments. We conclude in the last section 
and provide a short outlook. 

II. BACKGROUND 
Traditionally, the operating system (O/S) multiplexes the 

accesses to network interface (or any kind of device) to 
support more than one client. Here the O/S can supervise the 
client processes regarding correctness of the operations. But 
the required system calls introduce additional overhead 
which leads to performance degradation. The solution for 
this problem is the principle of User-Level Communication 
[5]. Here, a process can directly open the device for 
exclusive usage. Overhead due to system calls is completely 
avoided, but the task of supervision has to be done by the 
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device itself. Additionally only one process can open the 
device. A promising technique to overcome this situation is 
the context switching. It supports several processes accessing 
the device. Each access is followed by a context switch. In 
the context process specific configuration information are 
stored. Typically the switching takes place in a time-sliced 
manner, so the available parallelism generated by several 
processes is not exploited. 

The Infiniband specification defines support for up to 
216 user interfaces, which are implemented as queue pairs 
(QP). Each QP can be assigned to a different process. The 
Infiniband hardware implementations from Mellanox [6] or 
Voltaire [7] which support this large number of processes 
use the context-switching based approach. Best to our 
knowledge the implementation details are not specified and 
the methods developed by the manufacturers like are not 
published. A modification of the firmware of a Mellanox 
Host Channel Adapter [8] also allows the use in Virtual 
Machine environments.  

One major reason for the need of network interface 
virtualization is the increasing number of processes running 
on a system as a result of the increasing parallelism of 
computer systems (SMT, CMP, CMT). Applications are 
increasingly divided into multiple threads to exploit the 
available parallelism. One of the most recent developments 
in modern processor architecture is the virtualization of the 
CPU [9] [10]. This virtualization technology enables 
simplification of Virtual Machine Monitor (VMM) software. 
VMMs like Xen [11] [12] allow multiple operating systems 
(guests) to execute concurrently on commodity x86 
hardware. Devices are either used exclusively by one guest 
or shared with the help of the VMM. For shared devices the 
data transfer is replaced by asynchronous I/O rings and 
interrupts by event notifications. User-Level Communication 
is not possible. A recent approach is to implement the virtual 
device abstraction on the device itself by using an embedded 
network processor with 8 Ethernet communication cores 
[13]. The supported limit is 64 virtual machines and due to 
the targeted application User-Level Communication is not 
possible. 

A very recent approach is to leverage the flow control of 
the HyperTransport (HT) [14] protocol to implement a 
virtualized network interface [15], resulting in a minimal 
overhead and high efficiency. Obviously this approach is 
only compatible with HT based I/O interfaces, while the goal 
here is to develop a virtualization method compatible with 
any kind of I/O system. 

III. ARCHITECTURE OF A VIRTUALIZED NETWORK 
INTERFACE 

The architecture proposed here is enabled by context 
switching of hardware threads running on the device. It 
allows a large amount of processes/threads to access a 
virtualized network interface (VNI) simultaneously. A VNI 
provides several virtual ports, each identified by a Virtual 
Port Identifier (VPID). Each client process is assigned to 
such a virtual port. The clients issue work requests using 
Virtual Communication Instructions (VCI). 

A. Basic architecture 
Instead of executing the VCIs in a timed-sliced manner, 

the architecture should be able to exploit the available 
parallelism. A very efficient approach is to use superscalar 
functional units (FUs) together with multi-threading, known 
as SMT [17]. SMT allows each FU to be assigned to another 
working thread. More sophisticated implementations can 
even pipeline the FUs and allow each pipeline stage of a FU 
to be assigned to another thread. Due to the absence of 
partitioning SMT exploits thread-level parallelism (TLP) or 
coarse-grain parallelism as well as instruction-level 
parallelism (ILP) or fine-grain parallelism [18]. It perfectly 
fits to the situation when only one process is issuing several 
VCIs simultaneously to the VNI, as well as several processes 
simultaneously using the VNI with one or more VCIs. 

B. Recognizing processes 
The most important requirement regarding virtualization 

is that a VNI has to distinguish between accesses from 
different processes. Accesses must be tagged with the VPID 
to allow the VNI to recognize the different processes. The 
VNI stores the information relevant to one VPID in a 
context. A context contains in particular all information 
about the interface between process and VNI (e.g. queue 
offset, read and write pointers), the current state of the virtual 
port, configuration information and permissions. Fast context 
switches occur between operations of different processes, 
configuring the execution unit for this specific user process. 

Here process recognition is realized by providing a set of 
pages in the peripheral address space. Each process maps a 
page and communicates directly with the VNI using 
read/write operations. The address associated with the 
operation is used to distinguish the different processes. This 
method is the most efficient way to signal a unique identifier 
to the VNI when using commodity hardware. The 
virtualization is transparent to a process, which is in 
particular important for security reasons. The main 
processor’s Memory Management Unit (MMU) prevents 
processes from accessing pages from other processes. 

C. Interface between processes and VNI 
Compared to the main memory of the system, on-device 

memory is expensive. When scaling the number of processes 
the on-device memory may also become a bottleneck. To 
keep the requirements for on-device memory as small as 
possible, queues in main memory are very suitable as 
interface from processes to VNI and vice versa. Pinned and 
contiguous memory regions are used, allowing access using 
either virtual or physical addresses without doing an address 
translation for each page. For the direction from process to 
VNI these queues contain instructions (work queues), for the 
opposite direction notifications (notification queues). We 
follow the standard approach to separate work requests into a 
descriptor part and a payload part. 
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Figure 1.  Interface to a Virtualized NI 

Each insertion of a new element is at least dependant on a 
free entry in the queue: Before each insertion, the available 
space must be checked. The cycle of checking and insertion 
is a critical region and may not be interrupted by other 
processes. Instead of checking for available space, another 
solution is to ensure at least one free entry in the queue, e.g. 
done by Mellanox’s Infiniband adapter. But this solution 
introduces a lot of overhead, and all insertion operations 
must be directed to the device. The device then stores the 
queue elements somewhere in main memory. Best to our 
knowledge, the exact working principle is not published. 

Instead of using shared queues we propose to assign 
exclusive queues in main memory for every process (figure 
1). This scales very well with the process count, furthermore 
only for used VPIDs queues have to be allocated. The 
required memory on the VNI is minimized, which 
significantly reduces the costs [19]. Because of the missing 
cache coherence scheme for I/O interconnects, the VNI 
cannot recognize changes in main memory. Polling 
continuously on the queues is not a solution due to the waste 
of I/O bandwidth; additionally it does not scale with the 
number of queues. The best solution is to notify the VNI of a 
new VCI using a central queue located in the VNI. Changes 
to this central trigger queue are immediately visible to the 
VNI. Only the trigger information (i.e. the VPID, here 16 bit) 
is stored in this queue. To maintain scalability, this central 
queue is shared among all client processes. The 
corresponding context points to the work queue in main 
memory which contains the VCI itself. 

D. Instruction Issue 
So a VNI must be explicitly informed by inserting the 

VPID into the central shared trigger queue. The instruction 
issue (or trigger operation) as an enqueue operation is 
normally divided into two steps, the check for available 
space and the insertion of a new element. Because this is a 
shared queue, these two steps are a critical region and may 
not be interrupted. Using an atomic operation is a solution 
for this problem. The read part is the check for available 
space and the write part is the insertion of the VPID. 
Unfortunately, atomic operations are not supported on 
common I/O interfaces and introduce additional overhead. 

 
Figure 2.  Interpretation of addresses 

Our new approach is a kind of speculative execution of 
the enqueue operation. Information about the success of the 
operation must be provided back to the producer. The very 
small payload of a queue element (only the VPID, here 16 
bit) allows using a single read operation. The read address is 
used as immediate value, containing the VPID and a 
command. The read result returns the information about the 
result of the enqueue operation back to the producer. If more 
work requests are issued to the VNI than can be processed, 
the queue fills. In the case of a full queue the enqueue must 
be retried. 

The processes use virtual addresses to access the VNI. 
The MMU automatically translates the virtual address into a 
physical one (figure 2). This address translation only changes 
page information, the lower part of the address remains 
unchanged. Thus the lower part (page offset) is used as 
command section given by the calling process and the upper 
part (page number) contains the VPID. 

During enqueue the VNI observes a read operation to a 
physical address. If a queue entry is free, it converts the 
address to a VPID/command pair, which is then stored in the 
central trigger queue. Otherwise the enqueue operation has 
failed. In both cases the process is informed about the result 
of the enqueue operation by including it in the response of 
the read operation. If the instruction is accepted, the VNI 
returns True, otherwise False. Of course more sophisticated 
return results are possible. If the I/O interconnect supports 
split-phase transactions, this mechanism is even improved. 
Several issue operations can be outstanding, and the VNI is 
able to favor certain ones. 

By coding information in the address a larger amount of 
address space is required. The paging principle limits address 
mapping to pages, so every process opens at least one page, 
named the Triggerpage. Applying an access granularity of 
64bit, 512 different read addresses are possible, allowing the 
trigger operation to be tagged with 512 different commands. 

The required hardware for this access scheme is only a 
queue. The storage in the queue is dependant on several 
conditions, so the queue is called Conditional Store Buffer 
(CSB) [20]. An insertion into this CSB is conditional 
regarding available space, access rights and other 
restrictions. The capability of the VNI to accept or reject 
instructions can be used e.g. for prioritization of instructions. 
The complete issue operation from user process to VNI is 
shown in figure 3. 
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Figure 3.  Issue operation 

User applications are considered to be insecure, e.g. due 
to programming errors or due to harmful software. The 
Triggerpage is an efficient solution for this problem. The 
page mapping mechanism used here prevents processes from 
accessing data/control structures from other processes, 
because the VPID is contained in the page number of the 
read address, which is only visible after address translation. 
Further, the complete mechanism does not involve other 
kernel- or user-level processes, enabling User-Level 
Communication without additional overhead for security. 

IV. APPLICATIONS 
The previous introduced architecture is now evaluated for 

two example applications. The first example is the use in a 
cluster system. The parallelism within a cluster node can be 
fully exploited by a virtualized network interface.  The other 
example is a Virtual Machine environment. Because the 
virtualization mechanism here requires no software 
overhead, it is perfectly suited for Virtual Machine 
environments. 

A. Cluster Interconnect 
Cluster computing implies a lot of parallelism, and 

modern system architectures allow running an increasing 
number of processes on one node. In a typical MPI 
environment, each core is assigned one process. All 
processes can now access the local networking interface for 
communication, rendering dedicated communication 
processes unnecessary. 

All accesses from the host side to the VNI are fully 
virtualized by the Triggerpage and the CSB. Another access 
is possible, coming from the network side. As opposed to the 
software access, no security mechanisms are required here, 
all traffic being received is generated by other network 
interfaces. These are expected to generate only valid network 
packets. Hence the only requirement for network access is to 
have all network packets tagged with a context identifier. For 
the support of 216 processes, this will only add 16 bits to the 
header section of each packet. 

During packet injection by the sending NI, the target 
VPID is well-known as the end-point of communication. 
Hence it can be simply integrated into the packet header. 
Upon receipt of a packet, the target NI fetches the 

appropriate context to configure one of its FUs, where this 
packet is then processed. 

B. Improving Virtual Machine environments 
VMMs like Xen allow multiple operating systems (guest 

systems) to execute concurrently on commodity x86 
hardware. Each guest system runs in another domain. The 
VMM is part of the privileged domain 0 where also one 
guest system is running. The VMM virtualizes the 
underlying hardware, e.g. CPU, memory and devices. A 
device is shared by redirecting all I/O traffic to the VMM, 
which is responsible to schedule the accesses. 

Virtual Machine environments benefit a lot from 
hardware based virtualization. It allows every guest 
operating system to open any number of virtual ports of the 
VNI. Processes from different guest systems can 
concurrently and directly access the VNI without scheduling 
by the VMM. The VMM is only responsible to manage the 
VNI. Each process (independent from which guest system, if 
kernel- or user-level) can directly access the VNI over a 
Triggerpage. The VNI itself is responsible for the scheduling 
of work requests from the different processes. From the 
VNI’s point of view, it is completely irrelevant if these 
processes are part of one or different guest systems. 

Figure 4 shows a typical situation in a Virtual Machine 
environment with a VNI. The VNI provides one 
management page and replicated Triggerpages. All 
Triggerpages in the physical address space map to the same 
hardware resource. Configuration and management of the 
VNI is done by the VMM, which runs in domain 0. There 
are no restrictions regarding the domain of a process or the 
total number of domains. All Triggerpages can be mapped 
into one domain or each into another domain. 

 

 
Figure 4.  Virtual Machine environment 
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V. EXPERIMENTAL RESULTS 
The speculative mechanism to enqueue work requests as 

the most important part of the virtualization has been tested 
successfully using an FPGA device. This FPGA device is 
connected to the host using a PCI interface running at 33 
MHz. The host runs under Linux 2.6 and is equipped with a 
2.8 GHz Intel Xeon (single core) and 1 GB of RAM. The 
tests include a single user process issuing several 
instructions, as well as several user processes issuing several 
instructions (see Table 1).  

The first test shows that a work request enqueue does not 
last longer than a normal PCI read operation (which is 630ns 
for a PCI-33MHz device). This in particular shows the 
excellent performance of the speculative enqueue 
mechanism. 

Only one process is used in this test to prevent O/S 
scheduling effects, but several different VPIDs are used to 
test the process identification. Hence the device itself sees 
accesses from different processes. 

The next two tests increase the number of client 
processes. Compared to the first test now multiple processes 
are competing for the CPUs, but the device sees again 
accesses from different processes. The required scheduling 
by O/S dramatically increases the average time for a one 
work request issue. This is in particular shown by the non-
linear increase from the second to the third test. While the 
number of processes is increased by a factor of 8, the 
measured average latency is increased by a factor of 
approximately 14. This is even better visualized by the total 
time required, which is 6.9ms for the second test, and 775ms 
for the third test (factor of approximately 112). 

But these two tests show the basic functionality of the 
speculative work issue when accessed by a large number of 
client processes. For a better measurement of the 
performance a multi-core system is required. At the time of 
measuring this was not available; hence a single-core 
machine had to be used. In spite of this, the excellent 
performance of the work request issue to shown by the first 
test. This test avoids O/S scheduling effects, although it uses 
different VPIDs. 

TABLE I.  EXPERIMENTAL RESULTS 

Client 
processes 

Work request issues 
per process 

Average time for one 
work request issue 

1 1000 
(using different VPIDs) 630 ns 

8 8 107 μs 

64 8 1500 μs 
 
 
 
 
 
 
 
 

VI. CONCLUSION AND OUTLOOK 
This paper presents a new and efficient mechanism to 

virtualize network interfaces. As computing systems become 
more parallel, unrestricted and efficient simultaneous access 
from user processes to the network interface becomes more 
and more important. In a Virtual Machine environment the 
virtualization can be used to bypass the VMM, minimizing 
the overall overhead. 

In order to provide access to a non-virtualized device for 
any number of processes, O/S involvement is mandatory. 
This additional overhead is avoided by the virtualization 
presented here. It allows virtually any number of client 
processes to access directly the network interface. User-level 
Communication is still possible to minimize communication 
overhead. 

Building blocks for the virtualization are a speculative 
mechanism to enqueue work requests on the device and an 
optimized set of queues. The queue set is separated into 
exclusive queues in main memory and one shared queue on 
the device. With main memory as cost-effective resource the 
exclusive queues scale with the number of processes. Shared 
is only the central trigger queue with minimal entry size. The 
speculative enqueue mechanism is implemented as a single 
read operation. The payload is included in the read address, 
information about the success in the read result. Security is 
guaranteed by the Triggerpage which is mapped into the user 
space. 

Two example applications for a VNI are shown. In a 
cluster environment the available parallelism can be 
perfectly exploited by the network interface architecture, 
allowing each process to communicate directly and without 
any O/S involvement with other processes. Virtual Machine 
environments can also be improved a lot by the virtualization 
concept. Each guest O/S can directly access the network 
interface without involvement of the VMM or other 
supervising software instances. 

An FPGA based experimental test system is used to 
measure the basic performance of the speculative work 
request issue mechanism. The performance data in terms of 
issue latency shows the excellent performance of the 
proposed virtualization method. 

In the future a virtualized network interface is going to be 
developed on a HyperTransport connected rapid prototyping 
station [21], which can contain more logic than the FPGA 
used in the experiments here. This rapid prototyping station 
can be used to implement a complete network interface for a 
use in real world environments. 
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