VELO: A Novel Communication Engine for Ultra-low Latency Message Transfers

Heiner Litz Holger Froening

Mondrian Nuessle Ulrich Bruening

University of Heidelberg
Computer Architecture Group
Germany
{heiner.litz, holger.froening, mondrian.nuessle, ulrich.bruening}@?ziti.uni-heidelberg.de

ABSTRACT

This paper presents a novel stateless, virtualized com-
munication engine for sub-microsecond latency. Using a
Field-Programmable-Gate-Array (FPGA) based prototype
we show a latency of 970 ns between two machines with
our Virtualized Engine for Low Overhead (VELO). The
FPGA device is directly connected to the CPUs by a
HyperTransport link. The described hardware architecture
is optimized for small messages and avoids the overhead
typically found with Direct-Memory Access (DMA) con-
trolled transfers. The stateless approach allows to use the
hardware unit directly from many threads and processes
simultaneously. It provides a secure user level communica-
tion with an extremely optimized start-up phase. Micro-
benchmarks results are reported both based on proprietary
API and OpenMPI basis.

Keywords: fine-grain communication, low-latency
message passing, device virtualization, interconnection
networks, high-performance computing

1. Introduction

Cluster interconnects typically reach their highest band-
width at message sizes of 4KB and higher. Such long mes-
sage transfers are usually executed using DMA in order to
offload the CPU. The required initialization of the DMA
engine results in an overhead for message start-up. This
overhead can be accepted in relation to the long message
transfer time.

Short messages suffer from this overhead and therefore
Programmed-1/O (PIO) is used in this case. Many propos-
als and implementations have shown that this method can
provide low latency and sufficient bandwidth for small
messages [1][2][3][4]. Nonetheless, the communication

latency is much higher than a memory access to a remote
memory module in a NUMA architecture. This is due to a
missing communication instruction and the overhead in the
protocol conversion from the CPU interface to the network
protocol and vice versa.

The primary goal of our design is to close the gap
between memory accesses and network transfers. Then the
overhead for a small data transfer is low enough to effi-
ciently use fine-grain communication techniques. Data
structures do not have to be collected in large bulk trans-
fers, each element can be sent out independently. Typical
examples for applications which demand support for fine-
grain communication are distributed databases like
MySQL Cluster [7] or applications based on the Parti-
tioned Global Address Space (PGAS) model, for instance
based on UPC [6]. Such low-latency fine-grain networking
will improve scalability of existing applications as well as
enable new implementations of communication-bound
problems in the many-core era.

The approach to reach this goal is based on a set of tech-
niques which are novel in this combination. These tech-
niques include in particular:

 Stateless work processing

» Secure and atomic triggering from user space

 Integrated end-to-end flow control

 Virtual cut through in all pipeline stages

» Context minimization for virtualization

In particular the atomic triggering and the integrated
flow control rely on a seamless integration of the commu-
nication engine into the existing system. In [14] it is shown
that a highly efficient host interface is necessary to achieve
lowest latency. The HyperTransport (HT) technology [8]
offers a direct connection from peripheral device to the
host CPU, avoiding protocol conversions and intermediate

bridges. Its lean protocol is designed for high bandwidth
and low latency.

The prototype implementation shown in figure 1 cur-
rently uses an 8-bit wide HT200 core [20] providing
800 MB/s of aggregate bi-directional bandwidth and runs
internally with 100 MHz clock frequency. To maintain the
advantage of several virtual channels and to support multi-
ple functional units in the device, the HT-Core is connected
to the VELO unit by means of a crossbar.

The actual process of assembling and retrieving mes-
sages is carried out by the VELO Functional Unit (FU).
The requester unit is responsible for sending, the completer
performs the task of receiving messages and transferring
them into main memory, accordingly. The VELO engine is
optimized for small messages with low latency, hence
applications which have to transmit large messages should
employ the Remote Memory Access (RMA) engine to
keep CPU utilization low. On every send the APl decides
whether a message is processed by the VELO or RMA
engine. A detailed discussion of the RMA and other possi-
ble functional units is out of the scope of this paper. The
complete system runs at 100 MHz clock frequency and the
links provide a bandwidth of 2 Gbit/s.

Network\

/H

yperTransport
= RMA =p
o > € Engine <
ki =)
| | 2P VELO 2
I S 5 g
— b= o VELO T S
I 2 @ =P |Requester| =P E
angl 5 L E [P
= = VELO g -
E T 4- Completer 4- %
o 4
T -
€ = Register
4 | Fie

K Network Interface j

Figure 1. NIC architecture with VELO

The remainder of this paper is structured as follows: In
the next section we present a summary of related work in
the field of fine grain communication. The properties of the
architecture are explained in section 3, while in section 4
details about the implementation and a hardware resource
analysis are given. The implementation in hardware allows
us to present real-world measurements in section 5, which
are enriched by performance results from simulation. In the
last section we conclude and provide a brief overview of
the future work.

2. Related Work

There have been several attempts with the goal of mini-
mizing communication latency. They can be summed up
into well documented research projects which are mostly
software oriented and hardware implementations realized
by several High Performance Computing (HPC) vendors.
Some examples for the first group are U-Net [9] or Active
Messages [5] developed at the University of Berkeley by
Culler and Eicken. Those research groups have been work-
ing on software stack optimizations, operating system
bypass or latency hiding techniques, however with the dis-
advantage of not being able to modify the underlying hard-
ware according to their needs. An exception thereof is the
DIMMnet project [4] by the Tokyo University which is a
hardware-software co-design. It introduced a new low
latency technique called AOTF [10] and led to an ASIC
implementation which can be directly connected to the
CPUs via the system’s memory interface. This interface
provides much better latency performance than PCI/PCI-X,
however it comes with several disadvantages like a
restricted unidirectional communication. Other hardware
implementations are Quadrics STEN [2] which is a dedi-
cated functional unit for low latency communication which
takes advantage of a large SRAM based message buffer.
Cray offers communication latency in the range of 2 us
with its RapidArray fabric [11] in the XD1 machines and
the SeaStar interconnect [12] in the XT3 machines. Both
implementations of Cray are HyperTransport based which
seems to emerge as the new standard for low latency com-
munication. Fréning et al. propose another mechanism
called ULTRA [13] based on PCI-X which provides
latency below 2 us. One other solution is the InfiniPath [1]
adapter from QLogic. It is a streamlined design which
lacks many common features like message offloading and
RDMA support, however it offers the currently best
latency performance of about 1.1 ps. The goal for next
generation network interfaces will therefore be to provide
sub-microsecond latency. A possible approach is shown in
this paper.

3. Architecture

To meet the design goal several issues have to be con-
sidered. They include an efficient host interface with an
optimized access scheme, a simple conversion from host
interface protocol to network protocol (and vice versa) and
support for virtualization to allow an unconstrained usage
of resources.

Achieving the best network interface performance
requires optimization of all system layers. In the case of a
network interconnection device this includes the software
layer, the system interconnect, the network, link-, and the

physical layer of both the sending and receiving side. Fur-
thermore the intermediate switching fabric has to be taken
into account.

User-level Communication. From an architectural point
of view VELO reuses many common and well researched
operation principles like User-level Communication [15]
and one-copy messaging. It combines them uniquely and
enriched with new features, though. User-level Communi-
cation to access the NIC directly without O/S involvement
for send/receive operations is mandatory for achieving
good latency and bandwidth performance. However it
removes the O/S’s capability of sharing the device among
several processes. Systems which implement this technique
like [1] and [3] generally restrict the number of concurrent
threads which may access the NIC from user space directly
to a very limited number. VELO on the other hand offers
sending capability to a virtually infinite number of threads.
Therefore every thread obtains a mapping of the VELO I/O
space into its own address space. This enables a thread to
access the NIC by simply writing to the correct address.
Security issues and race conditions which generally arise
when a single physical resource is shared by many are
resolved by introducing virtualization.

Context minimization for virtualization. VELO is a self
virtualizing device which allows it to be utilized by a large
number of software threads concurrently. In contrast to the
concept described by Raj and Schwan in [16], which is
based on eight replicated Ethernet communication cores
accessed by guest O/Ss in a Virtual Machine environment,
VELO allows direct access from user space.

The concept of providing hardware support for virtual-
ization is powerful. However, in general large hardware
structures and memories are required to store the context
information. To alleviate this problem we propose the
novel concept of context minimization for virtualization.
This allows user-level communication for up to 64K
threads without any O/S intervention.

The basic idea behind this principle is the following.
First of all the required context information is reduced to
an absolute minimum. In the case of VELO we found out
that a secure and reliable communication only requires
three attributes to sufficiently describe a message. These
are the target node, the receiving thread running on that
node and the length of the message. The goal now is to pro-
vide this context information together with the data pay-
load to the NIC as efficient as possible. This can be done
by including it in the message itself avoiding any addi-
tional look-ups. Instead of putting the context in the data
payload, VELO defines a new mechanism which reuses the
address that is used to access the NIC. Figure 2 shows how
to embed context information in the address directly. Dur-

ing system boot the VELO hardware acquires a large base
address register (BAR) space from the O/S. As 40 or more
bit addresses are common in current computing systems
this is absolutely tolerable. The key idea now is to use this
large address space to encode context information instead
of using it in the traditional way of accessing certain regis-
ters or memory areas on the device. This allows to easily
switch contexts on every reception of a new HyperTrans-
port packet. The parameters t (threads) and n (nodes) which
define the maximum number of nodes and threads in the
system can be set arbitrarily. According to the formulas

Number of nodes N(n,t) = 2(" ™Y
and
Number of threads T(n, t) = N(n,t) .2(t -12)

the values n=28 and t=20 for example allow to support 256
nodes with 65,536 threads total, which results in a BAR
size of 256 MB.

64 b n t 12 9 6 0

nodelD | threadID | Y™ llengthl offset

zeros base
used

Figure 2. Embedded context information

Another advantage of this approach is the feasible
enforcement of access permission. To restrict and manage
the access rights of users it is beneficial to use the higher
bits in the address for encoding target node and thread. As
page mapping is done on a 4 KB basis the upper bits are
transparent to the user. This allows the driver to hand out
specific communication channels between threads by map-
ping the corresponding addresses into user space. The mes-
sage length however is only known by the user (or API)
and therefore has to be encoded into the user accessible
part of the address. This is represented by the length field
in the lower 12 bits of the address. As messages are aligned
to cache lines the offset field starts at 0 and is incremented
during the transfer.

Atomic P1O message triggering. The scheme introduced
above allows the software to send a message with a single
HyperTransport transaction and is therefore called atomic.
Messages are transferred from the software layer to the
NIC using a single P10 access. A single store instruction is
sufficient to send a message. It is obvious that this
approach provides the optimal latency performance; how-
ever it introduces significant overhead which can result in
reduced bandwidth. The overhead is caused by the Hyper-
Transport protocol which frames each data packet with a
64 bit command. In the case of a 64 bit data transfer this
accords to an overhead of 50%. VELO evades this problem

by the aggressive use of write combining. Write combining
is a technique supported on x86 systems which allows for
bursty transfers when using P1O. This feature which is usu-
ally used by graphic adapters can be adopted to VELO by
modifying the Memory Type Range Registers (MTRR)
which leads to a significant increase in bandwidth. By
combining several stores in a single HyperTransport trans-
action the overhead is reduced to approx. 11.1% in the case
of cache line sized messages. Due to the size of the write
combining buffers the maximum size of one VELO trans-
action equals 64 bytes or one cache line.

On the receiver side the software has to poll on a pre-
allocated buffer for newly arrived messages which are pro-
vided by the NIC through DMA. The buffer is cached by
the CPU to avoid unnecessary bus traffic.

Multi-threading support through statelessness. The pro-
posed architecture shows a problem when used in multi
threaded environments. Unfortunately thread scheduling
may cause the atomicity of messages to be destroyed.
VELO messages are generally stored in the write combin-
ing buffer and sent out when the maximum length of a
cache line is reached to reduce overhead and boost perfor-
mance. As the x86 architecture does not support writes of a
larger size than 128 bit (with special MMX/SSE instruc-
tions), write combining of a message may be interrupted if
the sending thread is scheduled away during a copy of data
larger than 128 bit.1

As long as only one thread is using the VELO hardware
the message will be eventually continued causing no prob-
lems. In a multi threaded environment however messages
may interleave each other which leads to the necessity of
having a facility which is capable of reassembling mes-
sages. One solution would be to provide several queues on
the sender side to offer buffering capability for messages of
each thread. This however does not scale well as the num-
ber of sending threads would be restricted by the number of
queues and the buffer utilization would be much worse
than compared with a shared queue.

Our preferred solution is to introduce the concept of
statelessness which removes any context information, used
to describe a thread, from the sender side. By embedding
the information of both the original data length and the
actual data length into the command packet of the HT
transaction the message is implicitly tagged whether it is
fragmented. This enables the receiver to merge several
parts together to eventually recover the original message.
As this process requires a linear search through the receiver
memory buffers until all parts are found and as it occurs

1. With a message rate of 3 million messages per second as shown
in the evaluation paragraph and a thread scheduler that switches
threads every 10ms, one of 30.000 messages will be segmented
on average.

rarely we decided to carry it out in software. The receive
method is non-blocking which means that other messages
arriving in the mean time can still be processed. To avoid
segmentation of the receive buffer with partitioned mes-
sages they are moved in a special recombining buffer. This
approach combines high performance and efficiency with a
guaranteed data consistency. The marginal penalty of hav-
ing to recombine messages can be neglected as this occurs
very rarely.

Buffer requirements and flow control. To provide a
back-to-back stream of messages and to alleviate the
impact of network congestions, buffering capability is
absolutely mandatory. Determining the correct amount of
buffer space can be difficult. Larger buffers usually
improve performance, but are more costly in terms of hard-
ware. It is worth mentioning that on-chip memory
resources have a cost increase of a factor of 1,000 com-
pared to main memory. This implies that main memory
should be used wherever possible and that on-chip memory
has to be used in an optimal way because of its size restric-
tions. To provide decoupling between network and host
system VELO uses an on-chip buffer of minimal size. As
sending capability to a virtually unlimited number of
threads is provided this buffer has to be shared. Virtualiz-
ing a single physical hardware resource requires synchroni-
zation among the producers. Checking for buffer space
negatively affects latency and wastes bandwidth. Even
worse, when performed by several producers concurrently,
race conditions appear. VELO solves these problems by
combining the above principles of atomicity and stateless-
ness with the hardware flow control mechanism of the
HyperTransport protocol. HyperTransport provides a credit
based flow control mechanism between the peripheral
HTX device and the processor which allows optimistic
message injection. The need for checking buffer space is
superseded while guaranteeing strict data integrity. Dis-
carding of messages can be avoided even with full buffers
by generating back pressure to the sender which may then
suppress the injection of new messages. Backward flow
control is a unique feature of HyperTransport enabling
highly efficient injection of messages without the need of
checking for queue space.

The flow control of HyperTransport and the network
layer is combined to provide a true end-to-end hardware-
based flow control. A possible disadvantage of this
approach is that congestion in the network may now propa-
gate into the nodes stalling CPU cores. Congestion man-
agement techniques [17][18] can diminish this effect.
Another solution is to supervise mailbox fill levels from
kernel level and hence ensure free buffer space.

In order to achieve lowest latencies virtual cut-through
techniques are applied to all stages including buffers.

Message transfer overview.

A message transfer consists of several steps which are
shown in figure 3. The sequence starts with the sending
thread performing a PIO write onto the requester BAR
space. The used address defines the destination and packet
length. The write cycle passes the packet payload to the
requester using write combining and also triggers the mes-
sage injection. The requester assembles the packet by pre-
ceding the packet with routing and header. The packet
traverses the network stages to the target node and is there
received by the completer. The completer forwards the
packet’s header and payload to the receiving thread. In
more detail, the packet is stored in a pinned memory region
within the address space of the receiving thread. The
receiving thread can poll on this buffer and the cache
coherency protocol prevents unnecessary main memory
accesses.

Sending thread Receiving thread
| velo_send i |
called ! I velo_recv called:
! | Poll on mailbox
data copy 1 —
|
I —
| —
I 1 /)
velo_send network
done packet —
>
e—
A
Network
packet
Payload to
mailbox
Status update |
To mailbox H
Véssage received
VELO requester VELO completer velo_recv done

Figure 3. VELO message sequence

4. Implementation

To demonstrate the feasibility of our approach we opted
to develop a full-blown FPGA prototype implementation
instead of just simulating the design. This requires major
efforts however it offers several advantages. First of all
results are much more realistic as a prototypes can be used
in a real world system controlled by an O/S running several
applications. Currently simulators are not even close to
emulate a full system including O/S and software in a hard-
ware cycle based fashion. Additionally the simulation time
grows dramatically when using more realistic engines. Our
prototype is hence millions of times faster than a simula-
tion. With the use of an internal Logic State Analyzer
(LSA) e.g. Xilinx Chipscope, detailed and clock cycle

accurate performance measurements can be made to evalu-
ate the design. Another benefit is that the prototype can be
easily ported into a later ASIC implementation.

The employed testbed consists of a HTX prototyping
board [19]. It is equipped with a Xilinx Virtex4 FX-60
FPGA and is perfectly suited for networking applications.

The prototype has been fully implemented in synthesiz-
able RTL level verilog code. It has been aggressively pipe-
lined to support high clock frequencies even on an FPGA
without losing focus on the primary concern of building an
ultra low latency design. The last building blocks form the
lower level network and link layers.

In principle VELO can be build upon any reliable net-
work layer like Infiniband (IB). In this case we have used
our own proprietary network interface layer. This sophisti-
cated network layer provides good latency by cut-through
forwarding and source-path routing. Other interesting fea-
tures are virtual channel support, credit based flow control,
congestion management, automatic CRC checks and a
hardware based automatic re-transmission mechanism. The
FPGA prototype implementation used here runs at 100
MHz with a 16 bit wide data-path providing 200 MB/s of
raw link bandwidth.

Table 1: VELO resource usage

percent of
Component Usage EX60
VELO 88 flip-flops 0
Requester 143 LUTs <1%
VELO 274 flip-flops <1%
Completer 365 LUTs
V_ELO_ 222 flip-flops <1 %
Register file 199 LUTs

To assess the complexity of VELO, Table 1 summarizes
the resource usage of VELO when implementing the Ver-
ilog HDL code on a Xilinx FPGA. As the third column
shows less than 1% of an Virtex4 FX60 FPGA are used by
VELO and the register file portion of VELO (the register
file is used by all components of the design). The complete
system including HyperTransport IP core, crossbar, net-
work-, link- and physical layer uses less than 60% of the
FPGA. we have not specifically performed an ASIC syn-
thesis flow to achieve exact area statistics, but from the
FPGA numbers it is clear that ASIC area consumption
would be very low (based on flip-flop count). These
resource requirements show that VELO is a very compact
design in terms of silicon resources.

5. Results

For performance results, both simulation results and
measurements from the FPGA based prototype are pre-
sented here. The simulation of the complete system is per-
formed using Cadence NCSim and the HyperTransport bus
functional models available from the HyperTransport Con-
sortium. Basic latency characteristics of the hardware can
be gained from simulation.

Trail HT-Core

10

0
11% 16%

HT-Core
5
8%

HT Crossbar
3
5%
VELO requester
1
2%

HT Crossbar
3
5%

VELO Completer
5
8%

Network
28
45%

Figure 4. Hardware latencies in cycles from
simulation

From the start of sending a HyperTransport packet on
the HT link to the transmission of the last word on the HT
link at the receiving side, a latency of 64 clock cycles is
seen. Figure 4 shows the percentile distribution of the
latency to the contributing hardware modules. The VELO
requester contributes only 3 clock cycles and the completer
5 clock cycles to the total hardware latency. This shows
that the VELO mechanism itself is highly efficient consid-
ering latency. The HyperTransport core and the HT cross-
bar contribute 21 cycles. Traversal of the network from
node to node finally adds 28 cycles.

From the clock cycle count, latency times can be
derived. In the FPGA implementation with its 100 MHz
cycle time, this translates to a hardware latency of 640 ns.
In contrast an ASIC implementation would easily be able
to reach a 500 MHz clock frequency thus pushing latency
down to a mere 130 ns, which is in the order of a main
memory access.

In a real system latency is increased by hardware within
the CPU (northbridge) and the memory controller, as well
as by the instructions the software layers need to execute in
order to send and receive messages. To quantify this
latency as well as gain real-world measurements, the com-
plete system is loaded onto two HTX Boards. Measure-

ments are conducted on two identical machines featuring
each an IWill DK8-HTX motherboard, one dual-core
Opteron 870HE and 2GB of RAM. OpenSUSE 10.0 is
used as operating system. For comparison the tests are also
conducted with Infinipath HTX HCAs [1].

To use VELO from application software, driver soft-
ware and APl middleware has to be provided. For this pur-
pose a Linux kernel driver is developed to manage
allocation of resources to client processes, e.g. allocation of
receiver thread IDs together with the associated memory
blocks. Also, access control, configuration and network
control is handled by the kernel-level driver. The second
software component is the VELO API which abstracts both
interaction with the kernel level driver (to allocate resource
etc.) as well as direct user-space interaction with the hard-
ware itself. For parallel programming the de-facto standard
is MPI [21]. To support MPI, a bit-transfer-layer (BTL)
component for OpenMPI [22] is developed which is lay-
ered on top of the VELO API.

NetPIPE (ping pong)

OpenMPI over VELO ——&——
VELO API
Infinipath MPI (over psm) ——8——
7 r OpenMPI over OpenlB (ipath) ——¢—— 4

W

half roundtrip latency
in usec
IS

message size in bytes (log)
Figure 5. VELO half-round-trip latencies (Net-
PIPE)

To put the results into scope, the Qlogic Infinipath HTX
network is benchmarked in the same system. This NIC is
implemented in an ASIC also connected to the host via a
16-bit HT800 HyperTransport link. On the network side
the controller uses a 4x single-data-rate Infiniband inter-
face. The InfiniPath ASIC provides eight times the band-
width and clock rate at the HyperTransport interface and
five times the bandwidth on the network side compared to
the VELO FPGA implementation described above. The
InfiniPath Software version 1.2 together with OpenlB is
used to test MPI performance, both using the InfiniPath
MPI and OpenMPI over OpenlIB. InfiniPath MPI is a spe-
cially optimized MPI version which implements a thin
layer on top of the hardware. The OpenlB version seems to
incur a much higher overhead, probably since standard 1B

interfaces have to implemented by software. The two
InfiniPath HTX HCAs were directly connected, so no
switching delays are encountered.

As a micro benchmark, NetPIPE [23] was chosen. The
code was adapted to enable NetPIPE to run directly on top
of the VELO API. The benchmark was performed for small
messages, the area of application for VELO. So, the maxi-
mum message size is chosen to be smaller than one cache
line to facilitate a one-to-one mapping from higher-level
messages to VELO transactions. Figure 5 shows the laten-
cies of messages from 1 to 48 byte payloads using the API
and the different MPI versions. For VELO, the result for
the half-round-trip latency for minimum sized messages is
0.97 ps. This latency increases to 1.50 ps when using
OpenMPI.

Ping-pong Bandwidth (NetPIPE)
50

ObenMPl over VELO —o——
VELO API
Infinipath MPI (over psm) ——&——
OpenMPI over OpenlB (ipath) —*——

40

30 r

throughput
in MB/s

20

10

1 2 4 8 16 32
message size in bytes (log)

Figure 6. Ping-pong bandwidth (NetPIPE)

CPU, memory controller and software overhead add
about 350 ns to the pure hardware latency seen in simula-
tions. Adding MPI on top of this adds another ~500 ns.
This is probably due to the layered component model of
OpenMPI that generally eases implementation of a new
interconnection network, but also, in the case that one only
writes the lowest layer (the BTL), less than optimal perfor-
mance.

In comparison, the Infinipath HTX adapter, well known
for its especially low latency, reaches 1.14u s using Infini-
path MPI and 5.31us latency over OpenMPI/OpenIB. As
expected the Infinipath MPI performs similar to a propria-
tary API implementation, while the more generic Open-
MPI/OpenIB with it’s additional software layers incurs a
latency penalty. So the Infinipath MPI implementation per-
forms similar to our direct API.

When compared to one of the best ASIC based intercon-
nection solutions currently available, the VELO architec-
ture provides exceptional low latency for small messages.

Figure 6 shows the ping-pong bandwidths. Again
VELO performs excellent, with a bandwidth of 7.8 MB/s at
8 byte message size compared to the 6.5 MB/s of Infinipath
HTX. Finally, figure 7 shows the NetPIPE streaming band-
width available to messages of size 1 to 32, both using
VELO and InfiniPath HTX. VELO achieves a very high
bandwidth of nearly 100 MB/s for 32 byte messages,
Infinipath HTX reaches about 67 MB/s. The N%2 message
size of VELO is as low as 32 byte since 50% of the theoret-
ical peak link bandwidth is reached at this message size.

Often the message rate is referred, too. The maximum
message rate for VELO is 4.8 million messages/s using one
core; InfiniPath HTX reaches 3.0 million message/s in the
tested system.When sending 32-byte sized message the rate
is still over 3 million messages/s.

Streaming Bandwidth (NetPIPE)

dpenMPl over VELO —o——
VELO API

%0 | Infinipath MPI (over psm) ——e&— /|

OpenMPI over OpenlB (ipath) —*——

80

throughput
in MB/s

1 2 4 8 16 32
message size in bytes (log)

Figure 7. Streaming bandwidth (NetPIPE)

6. Conclusion and Outlook

We have shown that the highly efficient VELO func-
tional unit in combination with the HyperTransport inter-
face provides an outstanding low latency of 970 ns
between two nodes, in spite of an FPGA implementation
with a mere clock frequency of 100 MHz. This particularly
demonstrates the excellent performance of the chosen
architecture. To the best of our knowledge this is the best
latency ever reached on standard computing hardware with
FPGA based NICs. Even in comparison with commercially
available, ASIC-based high-performance networks these
results are very promising.

The initial MPI performance numbers are very encour-
aging both for the VELO hardware as well as the software
environment. The architecture principle of stateless, virtu-
alized functional units allows very low latency communi-
cation for short messages.

More complex application-based tests will be carried
out once a larger system becomes available. Additionally,

the benefit of a complete self-virtualized communication
device will be shown when a large number of user pro-
cesses are simultaneously accessing the device. Not only
virtual machine environments, but also multi-core systems
can benefit a lot from shifting the virtualization overhead
from software layers to hardware.

Finally, there are still possibilities to further enhance the
performance. In the future an ASIC implementation will
show a significant decrease of latency and a much higher
bandwidth. In particular moving to an ASIC technology
will scale the hardware latency linear with the clock fre-
quency. Keeping the CPU and software latency compo-
nents at the same level of 300 ns a half-round-trip latency
of less than 0.5 p s is feasible.

7. References

[1] L. Dickman, G. Lindahl, D. Olson, J. Rubin, J. Broughton.
PathScale InfiniPath: A First Look, Proc. of the 13th Sympo-
sium on High Performance Interconnects, Washington, DC,
2005.

[2] F. Petrini, W. Feng, A. Hoisie, S. Coll, E. Frachtenberg. The
Quadrics Network: High-Performance Clustering Technolo-
gy, IEEE Micro, 22(1):46-57, 2002.

[3] H.Froning, M. Nussle, D. Slogsnat, P. R. Haspel, U. Briining.
Performance Evaluation of the ATOLL Interconnect, Proc. of
IASTED Conf. on Parallel and Distributed Computing and
Networks (PDCN), Innsbruck, Austria, 2005.

[4] Konosuke Watanabe, et.al. Martini: A network interface con-
troller chip for high-performance computing with distributed
PCs, IEEE Transactions on Parallel and Distributed Systems,
Vol. 18(9), Sept. 2007.

[5] T.von Eicken, D. E. Culler, S. C. Goldstein, K. E. Schauser.
Active messages: a mechanism for integrated communication
and computation, Proc. of the 19th Annual International Sym-
posium on Computer Architecture, Queensland, Australia,
1992.

[6] W.Chen, C. lancu, K. Yelick. Communication Optimizations
for Fine-Grained UPC Applications, Proc. of the 14th Inter-
national Conf. on Parallel Architectures and Compilation
Techniques, Washington, DC, U. S., 2005.

[71 MySQL AB, Benchmarking Highly Scalable MySQL Clus-
ters, Technical White Paper, 2007

[8] Hypertransport Consortium, HyperTransport Technology 1/0
Link - White Paper, www.hypertransport.org, July 2001.

[9] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Wern-
er Vogels. U-Net: A User-Level Network Interface for Paral-
lel and Distributed Computing, Proceedings of the fifteenth
ACM symposium on Operating systems principles. 1995

[10] Noboru Tanabe, Junji Yamamoto, Hiroaki Nishi, Tomohiro
Kudoh. On-the-fly Sending: A Low Latency High Bandwidth
Message TransferMechanism, 2000 International Symposium
on Parallel Architectures, Algorithms and Networks (ISPAN
'00), 2000.

[11] Brightwell, R. Doerfler, D. Underwood, K.D. A preliminary
analysis of the InfiniPath and XD1 network interfaces, Paral-
lel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International.

[12] Ron Brightwell, Kevin Pedretti, Keith D. Underwood. Initial
Performance Evaluation of the Cray SeaStar Interconnect,
Proceedings of the 13th Symposium on High Performance In-
terconnects, 2006.

[13] H. Fréning, H. Litz, U. Briining. A new Ultra-low Latency
Message Transfer Mechanism, Proc. of IASTED Conference:
Communication Systems and Networks (CSN 2007), Aug. 29
- 31, 2007, Palma de Mallorca, Spain.

[14] J. Beecroft, D. Addison, F. Petrini, M. McLaren. Quadrics Qs-
Netll: A Network for Supercomputing Applications, Proc. of
Hot Chips 15, Palo Alto, California, United States, 2003.

[15] E.W. Felten, R.D. Alpert, A. Bilas, M.A. Blumrich, D.W.
Clark, S. Damianakis, C. Dubnicki, L. Iftode, K. Li. Early ex-
perience with message-passing on the shrimp multicomputer,
Proc. of the 23rd International Symposium on Computer Ar-
chitecture (ISCA23), 1996.

[16] Himanshu Raj, Karsten Schwan. High Performance and Scal-
able 1/0 Virtualization via Self-Virtualized Devices, Proc. of
IEEE International Symposium on High-Performance Dis-
tributed Computing (HPDC), Monterey, California, USA,
2007.

[17] Jose Duato, lan Johnson, Jose Flich, Finbar Naven, Pedro
Garcia, Teresa Nachiondo. A New Scalable and Cost-Effec-
tive Congestion Management Strategy for Lossless Multi-
stage Interconnection Networks, Proc. of the 11th
international Symposium on High-Performance Computer
Architecture (HPCA), 2005

[18] Elvira Baydal, Pedro Lopez, Jose Duato. A Family of Mech-
anisms for Congestion Control in Wormhole Networks, IEEE
Transactions on Parallel and Distributed Systems, vol. 16,
no. 9, pp. 772-784, 2005.

[19] Holger Froéning, Mondrian Nissle, David Slogsnat, Heiner
Litz, Ulrich Briining. The HTX-Board: A Rapid Prototyping
Station, 3rd annual FPGAworld Conference, Nov. 16, 2006,
Stockholm, Sweden.

[20] David Slogsnat, Alexander Giese and Ulrich Bruening. A ver-
satile, low latency HyperTransport core, Fifteenth ACM/SIG-
DA International Symposium on Field-Programmable Gate
Arrays, Monterey, California, February 2007.

[21] Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard, www.mpi-forum.org, 1994.

[22] Edgar Gabriel, et al. Open MPI: Goals, Concept, and Design
of a Next Generation MPI Implementation, EuroPVM/MPI,
2004.

[23] NetPIPE, http://www.scl.ameslab.gov/netpipe.

