
Thermometer: Profile-Guided BTB Replacement for Data Center
Applications

Shixin Song
University of Michigan

USA
shixins@umich.edu

Tanvir Ahmed Khan
University of Michigan

USA
takh@umich.edu

Sara Mahdizadeh Shahri
University of Michigan

USA
smahdiz@umich.edu

Akshitha Sriraman
Carnegie Mellon University

USA
akshitha@cmu.edu

Niranjan K Soundararajan
Intel Corporation

India
niranjan.k.soundararajan@intel.com

Sreenivas Subramoney
Intel Corporation

India
sreenivas.subramoney@intel.com

Daniel A. Jiménez
Texas A&M University

USA
djimenez@acm.org

Heiner Litz
University of California, Santa Cruz

USA
hlitz@ucsc.edu

Baris Kasikci
University of Michigan

USA
barisk@umich.edu

ABSTRACT
Modern processors employ a decoupled frontend with Fetch Di-
rected Instruction Prefetching (FDIP) to avoid frontend stalls in data
center applications. However, the large branch footprint of data cen-
ter applications precipitates frequent Branch Target Buffer (BTB)
misses that prohibit FDIP from eliminating more than 40% of all
frontend stalls. We find that the state-of-the-art BTB optimization
techniques (e.g., BTB prefetching and replacement mechanisms)
cannot eliminate these misses due to their inadequate understand-
ing of branch reuse behavior in data center applications.

In this paper, we first perform a comprehensive characterization
of the branch behavior of data center applications, and determine
that identifying optimal BTB replacement decisions requires con-
sidering both transient and holistic (i.e., across the entire execution)
branch behavior. We then present Thermometer , a novel BTB re-
placement technique that realizes the holistic branch behavior via
a profile-guided analysis. Based on the collected profile, Thermome-
ter generates useful BTB replacement hints that the underlying
hardware can leverage. We evaluate Thermometer using 13 widely-
used data center applications and demonstrate that it provides
an average speedup of 8.7% (0.4%-64.9%) while outperforming the
state-of-the-art BTB replacement techniques by 5.6× (on average,
the best performing prior work achieves 1.5% speedup). We also
demonstrate that Thermometer achieves a performance speedup
that is, on average, 83.6% of the speedup achieved by the optimal
BTB replacement policy.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527430

CCS CONCEPTS
• Computer systems organization→ Pipeline computing.

KEYWORDS
Cache replacement, frontend stalls, branch target buffer, data center

ACM Reference Format:
Shixin Song, Tanvir Ahmed Khan, Sara Mahdizadeh Shahri, Akshitha Srira-
man, Niranjan K Soundararajan, Sreenivas Subramoney, Daniel A. Jiménez,
Heiner Litz, and Baris Kasikci. 2022. Thermometer: Profile-Guided BTB
Replacement for Data Center Applications. In The 49th Annual International
Symposium on Computer Architecture (ISCA ’22), June 18–22, 2022, New
York, NY, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3470496.3527430

1 INTRODUCTION
Large instruction footprints exhibited by modern data center ap-
plications induce significant stalls in the frontend of the processor
pipeline, introducing performance losses worth millions of dol-
lars [25, 27, 42, 67, 104, 107, 133]. Modern data center applications
exhibit multi-megabyte code footprints [27, 67, 106, 107] due to
their complex application logic [104] and frequent use of different
libraries [67], language runtimes [19, 103], and kernel modules [27].
Data center applications’ large code footprints do not fit in the pro-
cessor’s instruction cache (I-cache) [25]. As a result, the processor
fails to fetch sufficient instructions, leading to frequent frontend
stalls. Since even single-digit performance gains in data center ap-
plications can minimize the Total Cost of Ownership (TCO) [27, 67]
and reduce data center carbon emissions [133], there is a critical
need to mitigate frontend stalls to improve data center efficiency.

Prior works have proposed numerous techniques to mitigate
frontend stalls including compiler-based Profile-Guided Optimiza-
tions (PGO) [33, 47, 106, 107, 113] and hardware-based instruction
prefetchers [43, 44, 72, 73, 82–84, 108, 119, 121, 131]. On the soft-
ware side, PGO techniques improve instruction locality by putting
frequently executed I-cache lines together. Though, in theory, these

https://doi.org/10.1145/3470496.3527430
https://doi.org/10.1145/3470496.3527430
https://doi.org/10.1145/3470496.3527430

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress Avg

0

5

10

Sp
ee

du
p

(%
)

17 15 65

SRRIP GHRP Hawkeye OPT

Figure 1: Speedup for state-of-the-art BTB replacement poli-
cies [20, 60, 62] over an LRU baseline: existing mechanisms
provide an average speedup of 1.5%, although an optimal re-
placement policy [29] provides an average speedup of 10.4%.
Hence, there is a significant performance gap between the
state-of-the-art and the optimal replacement policy.

code layout optimization techniques are sensitive to profile qual-
ity [55], they work exceptionally well in practice [27, 33, 47, 100,
106, 107]. Profiles for data center applications change slowly over
several weeks [33] while data center operators profile and recompile
applications multiple times a day [21, 33, 106, 107]. Consequently,
these automated techniques have ample opportunity to adapt to
changing application profiles and are widely used in today’s data
centers [27, 33, 47, 106, 107]. For example, half of all CPU cycles
in Google data centers are spent in PGO-optimized binaries [33].
Therefore, we leverage PGO techniques’ effectiveness in this work.

Among hardware techniques, FetchDirected Instruction Prefetch-
ing (FDIP) [118, 119] is an effective technique employed by modern
processors [49, 109, 123, 135] to reduce frontend stalls. FDIP de-
couples the branch prediction unit from the instruction fetch unit
so that the frontend can run ahead, producing the instruction ad-
dresses likely to be executed in the near future. Prefetching I-cache
lines corresponding to these future accesses avoids potential fron-
tend stalls [83, 84], providing performance similar to aggressive
I-cache prefetchers [57, 58].

However, FDIP performs well only as long as the Branch Target
Buffer (BTB) supplies correct targets for all taken branches [23, 44,
75, 83, 84, 132]. Prior works have found that FDIP’s performance is
significantly limited by BTBmisses that stall FDIP’s prefetching [23,
75, 83, 84] or cause FDIP to prefetch incorrect instructions on the
wrong path [44, 132]. As we and others [23, 75, 83, 84, 132] show,
this limitation inhibits FDIP from eliminating more than 40% of all
frontend stalls in data center applications.

To this end, we thoroughly analyze the BTB access behavior of
modern data center applications that limit FDIP’s effectiveness. We
find that data center applications exhibit a unique branch reuse
behavior that is difficult to capture, causing wasteful BTB evictions.
As a result, existing BTB prefetching mechanisms [73, 83] fall short
as they bring in unused branch entries into the BTB, failing to avoid
the majority of frontend stalls. Since avoiding wasteful evictions is
the main responsibility of an effective BTB replacement policy, we
evaluate state-of-the-art replacement policies (GHRP [20], Hawk-
eye [60], and SRRIP [62]) in the context of data center applications’
BTB access patterns. As shown in Fig. 1, these policies provide
a negligible speedup (1.5% on average) over the Least Recently
Used (LRU [96]) replacement policy. In contrast, an optimal BTB
replacement policy provides 10.4% average speedup over LRU.

The key takeaway from our characterization is that existing
replacement policies do not account for the diversity of BTB access

patterns among different executions of the same branch, inhibiting
them from predicting and evicting the branch that is taken furthest
in the future.

We quantify the diversity of BTB access patterns using reuse
distance [37, 62] and introduce the concept of transient and holistic
reuse distance. The transient reuse distance is the most recent reuse
distance that the BTB entry experiences. The holistic reuse distance
of a BTB entry is the average reuse distance for all instances of a
branch across the entire execution. For data center applications, we
show that the transient reuse distance varies significantly (more
than 2×) from the holistic reuse distance. Consequently, we observe
that replacing BTB entries based on a holistic pattern is more ben-
eficial than replacement decisions made using a transient pattern
used by prior work [20, 60, 62].

To classify branches using their holistic pattern, we introduce a
metric, “branch temperature” based on the hit-to-taken percentage
of a branch under the optimal BTB replacement policy, which mea-
sures the benefit (i.e., the number of BTB hits) per given execution
of a branch (i.e., the number of times the branch is taken). We find
that a branch’s hit-to-taken percentage captures the holistic pattern
of that branch as ‘hot’ branches with a high hit-to-taken percentage
result in more hits and are more valuable to keep in the BTB than
‘cold’ branches with a low hit-to-taken percentage.

Driven by our characterization’s insights, we propose Thermome-
ter , a novel BTB replacement technique that accommodates both
holistic and transient patterns of branches in data center applica-
tions. Thermometer calculates the holistic pattern via an offline
profile-guided analysis. Thermometer performs this analysis on a
trace of executed branch instructions collected via efficient hard-
ware support (e.g., Intel PT [1]). Based on this profile-guided analy-
sis, Thermometer tags each branch with a hint defining its holistic
pattern. Finally, Thermometer introduces a small hardware enhance-
ment to the BTB replacement policy to enable eviction decisions
based on both the injected hint and the transient pattern.

We evaluate Thermometer for (1) 13 widely-used data center
applications that experience frequent frontend stalls, (2) 663 indus-
try traces from 5𝑡ℎ Championship Branch Prediction (CBP-5) [15],
and (3) 50 traces from 1𝑠𝑡 Instruction Prefetching Championship
(IPC-1) [17]. Across all applications, Thermometer achieves an aver-
age IPC speedup of 8.7% (0.4%-64.9%) by avoiding 21.3% of all BTB
misses. In comparison, the best performing prior work [62] provides
an average IPC speedup of 1.5% and covers 6.7% of all BTB misses.
Consequently, Thermometer achieves 5.6× greater speedup by elim-
inating 3.2× additional misses compared to the state-of-the-art BTB
replacement techniques [20, 60, 62]. Across 663 CBP-5 traces (that
do not allow generating IPC numbers [20]), Thermometer provides
an average BTB miss reduction of 2.25% over the best performing
prior work [20]. Across 50 IPC-1 traces, Thermometer achieves an
average IPC speedup of 1.07% compared to 0.45% mean speedup
provided by the best performing prior work [62]. Overall, Ther-
mometer achieves a performance speedup that is, on average, 83.6%
of the speedup offered by the optimal BTB replacement policy.

In summary, we contribute:
• A comprehensive characterization of the branch behavior of data
center applications that shows that considering both holistic and

Table 1: Simulation parameters
Parameter Value
CPU 6-wide, 24-entry (192-instruction) FTQ, 60-

entry Decode Queue, 352-entry Re-order Buffer,
128-entry Reservation Station

Branch pre-
diction units

8192-entry 4-way BTB, 4096-entry IBTB, 32-
entry RAS, 64KB TAGE-SC-L [126]

Caches 64B block: 32KB, 8-way L1I, 48KB, 12-way L1D,
512KB 8-way L2C, 2MB 16-way LLC

transient access patterns is critical to achieve near-ideal frontend
performance.
• Thermometer: A novel profile-guided BTB replacement mecha-
nism that identifies holistic branch patterns offline and consid-
ers both holistic and transient patterns online to make close-to-
optimal BTB replacement decisions.
• An extensive evaluation of Thermometer in the context of frontend-
bound data center applications, demonstrating Thermometer’s
potential to avoid costly BTB misses and achieve significant per-
formance improvements.

2 UNDERSTANDING THE CHALLENGES OF
BTB REPLACEMENT

In this section, we analyze the frontend performance of 13 data
center applications. We find that performance, to a large degree,
is determined by the BTB’s hit rate, which in turn is limited by
the efficacy of the BTB replacement policy. We show that existing
replacement policies exhibit a large performance gap compared to
an optimal policy.We also provide insights to close this performance
gap by 83.6%.

2.1 Experimental methodology
Simulation parameters. We simulate and evaluate Thermome-
ter using the ChampSim [5] simulator and adjust simulation pa-
rameters to resemble a recent state-of-the-art industry FDIP base-
line [57, 58], as listed in Table 1. We implement the optimal BTB
replacement policy (Belady’s algorithm [29, 61]) and other existing
policies including SRRIP [62], GHRP [20], and Hawkeye [60] to
compare them with Thermometer .
Data center applications. Prior work from Google and Facebook
shows that their widely-deployed data center applications lose more
than 15% of all pipeline slots due to frontend stalls [25, 27, 67, 133].
As these applications are proprietary, we use the applications used
by prior work [75, 77, 78, 86, 100, 138, 150], where frontend stalls
are similarly frequent (more than 15%) due to large instruction
footprints. These applications include cassandra [2], kafka [3], and
tomcat [4] from the Java DaCapo benchmark suite [31], drupal [142],
wordpress [144], and mediawiki [143] from Facebook’s OSS - perfor-
mance benchmark suite [16], finagle-chirper and finagle-http [12]
from the Java Renaissance benchmark suite [114], clang [6] while
building LLVM [85], PostgreSQL [10]while serving pgbench [9] queries,
Python [14] while running the pyperformance [11] benchmark suite,
MySQL [146] while serving TPC-C queries [35], and verilator [13]
while emulating the Rocket Chip [7].

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress Avg
0

25

50

75

Sp
ee

du
p

(%
)

78 80 30
2

10
8

Perfect-BTB Perfect-BP Perfect-I-Cache

Figure 2: Limit study of FDIP: a perfect BTB provides 63.2%
average speedup that is significantly more than average
speedups provided by a perfect I-cache (21.5%) and a perfect
branch direction predictor (11.3%).

We use traces collected via Intel PT [1] and modify ChampSim
to simulate these traces. Using these traces, we characterize BTB
replacement challenges to design Thermometer , a novel profile-
guided BTB replacement technique. We validate Thermometer’s
effectiveness on 13 data center applications and on CBP-5 [15]
and IPC-1 [17] traces that prior work [20, 24, 57, 58] evaluate their
frontend optimizations.

2.2 Why is the BTB replacement policy
important?

To establish the importance of the BTB performance in modern Out-
of-Order (OoO) cores, we perform limit studies of different frontend
structures determining their individual impact on performance.
In Fig. 2, we measure the Instructions Per Cycle (IPC) speedup
achieved by a perfect BTB that faces nomisses (i.e., every BTB access
is a hit), a perfect branch predictor that always predicts taken and
not taken branches correctly, and a perfect I-cache with no misses.
On average, a perfect BTB achieves 63.2% speedup. In contrast,
perfect branch direction prediction achieves merely 11.3% speedup
and a perfect I-cache achieves only 21.5% speedup. These results
indicate that with a perfect BTB, FDIP can provide more benefits
than with a perfect I-cache or a perfect branch predictor. Hence,
optimizing BTB performance is critical to eliminate frontend stalls
in the most efficient manner (as also reported by prior work [75,
83, 84, 132]).

As shown in Fig. 2, the perfect BTB and perfect I-cache pro-
vides significantly greater speedup for verilator than any other
applications. As shown in Fig. 3, this is because verilator exhibits
at least 300× greater L2 cache level instructions Misses Per Kilo
Instructions (L2iMPKI) than any other applications in the study. Re-
cent works from data center providers [25, 133] observe that their
workloads’ L2iMPKIs range from 10-40, which are considerably
greater than L2iMPKIs of all 12 other applications and closer to
verilator’s L2iMPKI (42). Therefore, we study verilator’s behavior
as a proxy [53] for real world data center applications.

We next investigate if the performance gap between a practical
BTB and a perfect BTB can be closed by existing BTB optimization
techniques. Prior work such as Confluence [73] and Shotgun [83]
use BTB prefetching to reduce BTB misses and improve FDIP per-
formance. In Fig. 4, we compare the IPC speedups of these prior
techniques against a perfect BTB’s speedup. We assume that the
baseline BTB does not have any prefetching and uses the LRU
replacement policy.

As also observed by recent work [75, 132], we find in Fig. 4
that Confluence [73] achieves merely 1.4% average speedup while

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress
0

10−2

10−1

100

101

L2
iM

PK
I(

lo
g-

10
sc

al
e)

Figure 3: L2 cache level instructions Misses Per Kilo Instruc-
tions (L2iMPKI): verilator suffers from at least 300× greater
L2iMPKI compared to other applications in our study. The
y-axis is log-10 scale.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress Avg
−40

−20

0

20

Sp
ee

du
p

(%
)

65 7745 39 33 47 78 80 37 52 30
2

63

Confluence-LRU
Shotgun-LRU

OPT
Confluence-OPT

Shotgun-OPT
Perfect-BTB

Figure 4: Speedup for different BTB configurations over a
baseline BTB using the LRU replacement policy without
prefetching: existing BTB prefetching mechanisms [73, 83]
provide merely 1.4%mean speedup, while a perfect BTB of-
fers 63.2% mean speedup. The optimal BTB replacement pol-
icy [29, 61] significantly reduces this performance gap by
providing 10.4% mean speedup.

Shotgun [83] faces a slight slowdown as it wastes critical BTB ca-
pacity to store unused prefetch metadata. We corroborate the find-
ings [23, 75, 132] of recent work and identify three reasons behind
the performance degradation induced by these prior BTB prefetch-
ing policies [73, 83]. First, like any temporal prefetcher [139–141],
Confluence and Shotgun cannot avoid new and non-recurring tem-
poral streams of BTB misses which constitute almost half (48%)
of all BTB misses [75]. Second, Shotgun statically partitions the
BTB according to the branch type (e.g., conditional, unconditional).
However, Shotgun’s static partitioning does not necessarily match
the working set sizes of conditional and unconditional branches for
data center applications [23, 75]. Third, Shotgun allocates valuable
on-chip storage for not-taken branches [132], resulting in 26 − 45%
of all conditional branches not fitting in the BTB [75]. Hence, both
these prior BTB prefetching techniques significantly fall short of
the 63.2% average speedup achieved by a perfect BTB.

In Fig. 4, we also show the speedup achieved by a BTB with
an optimal replacement policy (Belady’s algorithm [29, 61]). This
provably optimal yet impractical replacement policy evicts the BTB
entry that will be used furthest in the future [30, 96, 98]. Such
a BTB makes optimal replacement decisions with perfect future
knowledge and achieves an average IPC speedup of 10.4%. Moreover,
the optimal BTB replacement policy improves the performance
of these prior BTB prefetching techniques by avoiding prefetch-
induced wasteful evictions. These results demonstrate that a BTB
replacement policy that is more optimized than prior work [73, 83]
can better close the performance gap between a baseline and a
perfect BTB.

Observation: An optimal BTB replacement policy enables
FDIP to achieve near-ideal performance.
Insight: An efficient BTB replacement policy is crucial to
improve FDIP’s performance.

2.3 Why do prior replacement policies fall
short?

In §2.2, we showed that the optimal BTB replacement policy achieves
10.4% average speedup. Now, we investigate whether existing re-
placement policies can provide similar speedup. To our knowledge,
GHRP [20] is the only replacement policy designed for the BTB. To
expand the scope of our analysis, we also adapt existing data cache
replacement policies such as Hawkeye [60] and SRRIP [62] to BTB.

GHRP [20] predicts dead BTB entries (entries that do not experi-
ence hits until eviction [97]) using the global control flow history.
To make a replacement decision, GHRP evicts the BTB entry that
is most likely to be dead based on the prediction results.

Hawkeye [60] simulates the optimal replacement policy [29]
on an access history to determine if a given branch instruction is
“BTB-friendly” or “BTB-averse”, i.e., whether storing the branch
information in the BTB results in a hit or a miss. When making a re-
placement decision, Hawkeye favors keeping BTB-friendly entries
in the BTB and evicting BTB-averse entries.

SRRIP [62] assumes that all newly-executed branch instructions
are BTB-averse. SRRIP only marks a branch as BTB-friendly when
the branch is executed again after it has been inserted into the
BTB. When making replacement decisions, SRRIP prefers to evict
BTB-averse entries.

Fig. 1 shows the speedup for different BTB replacement policies
over the LRU baseline. As shown, none of the 13 applications we
study significantly benefit from these existing replacement policies.
Specifically, the state-of-the-art BTB replacement policy, GHRP
does not perform well for applications with large working sets [78].

As purely hardware techniques, GHRP, Hawkeye, and SRRIP
have no information about branches currently not in the BTB. More-
over, they lose all the information about a branch every time the
corresponding BTB entry is evicted. Since large working set sizes
(both instruction and branch footprint) are the key characteristics
of data center applications [27, 67, 75, 77, 78, 132], it is necessary to
retain branch reuse behavior even when the corresponding entry
is not present in the BTB.

Among existing policies, only SRRIP provides a speedup (1.5% on
average, up to 5.9%) for these data center applications. Still, SRRIP
falls short of the optimal BTB replacement policy which offers an
average IPC speedup of 10.4%.

To understand why existing BTB replacement policies perform
poorly for data center applications, we introduce the concept of
transient and holistic reuse distances. For a given BTB entry 𝑋 ,
reuse distance [37, 62] is the number of unique BTB entries accessed
between two consecutive accesses to 𝑋 (within the associative set
to which𝑋 belongs). The transient reuse distance refers to the reuse
distance between the last two references of a BTB entry (e.g., the
LRU replacement policy considers the transient reuse distance of
accesses). The holistic reuse distance is the average reuse distance
for all instances of a branch across the entire execution of a program.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress Avg
0

2

4

6

V
ar

ia
nc

e

Transient Holistic

Figure 5: Average transient and holistic reuse distance vari-
ance for data center applications: the transient variance is
significantly larger (more than 2×) than the holistic variance.

We find that existing BTB replacement policies perform poorly
for data center applications because they only consider the transient
reuse distance. For data center applications, this transient reuse
distance significantly differs from the holistic reuse distance as we
observe that the reuse distance for a given branch instruction varies
widely during the program execution.

To quantify the variance of branch instructions’ reuse distances,
we define the reuse distance vector 𝑎𝑖 of a certain branch 𝑎, where
𝑖 represents the 𝑖𝑡ℎ execution of that branch for 𝑖 = 2, 3 . . . , 𝑛. Prior
techniques [20, 60, 62] perform BTB replacement decisions based
on a branch’s transient (most recent) reuse distance and hence, they
experience transient variance defined as follows:

Transient variance = 1
𝑛 − 2

𝑛−1∑︁
𝑖=2
(𝑎𝑖 − 𝑎𝑖+1)2

Instead, we recommend performing BTB replacement decisions
based on the holistic (average) reuse distance, 𝑎, which experience
holistic variance defined as follows:

Holistic variance: = 1
𝑛 − 1

𝑛∑︁
𝑖=2
(𝑎𝑖 − 𝑎)2 .

In Fig. 5, we show the average transient and holistic variance
for all 13 data center applications. As shown, transient variance for
data center applications is significantly greater than the holistic
variance. Consequently, replacement decisions made based on the
transient reuse distance are less likely to be accurate as they suffer
from higher variance than replacement decisions made using the
holistic reuse distance.

Qualitatively, holistic reuse distance is more accurate than tran-
sient reuse distance as holistic reuse distance is computed using
reuse distance samples from the entire execution. On the other
hand, transient reuse distance is computed using samples from a
short execution fragment. Consequently, holistic reuse distance is
more accurate and representative of the broad dynamic behavior
of a program. Moreover, data center applications’ dynamic behav-
ior shows increasing variation due to growing software complex-
ity [67, 103, 104, 107], making holistic reuse distance more useful.

Our observation also explains why prior replacement policies
fall significantly short of the optimal replacement policy, as shown
earlier in this subsection. The optimal BTB replacement policy
makes replacement decisions using more holistic, future knowledge.
Consequently, the optimal BTB replacement policy can compute a
perfect reuse distance, making it more accurate than a policy using
the transient reuse distance.

Observation: Existing replacement policies fall short when
applied to BTB.
Insight: It is necessary to analyze holistic branch execution
patterns to design a new replacement policy.

2.4 How do we redesign BTB replacement?
As shown in §2.3, existing replacement policies suffer from a high
transient variance due to their limited knowledge of the behavior
of branches over time, and hence, perform poorly for data center
applications. Since the optimal BTB replacement policy allows de-
termining the perfect reuse distance for a given branch based on its
future knowledge, we analyze the optimal BTB replacement policy
to determine the holistic behavior of branches.

Our goal is to capture the relative benefit of caching a BTB entry.
To do this, we define and compute a normalized metric called hit-
to-taken percentage, which measures the benefit (i.e., the number
of BTB hits) per given execution of a branch instruction (i.e., the
number of times the branch is taken).

Fig. 6 shows the distribution of hit-to-taken percentage for the
optimal BTB replacement policy on several data center applica-
tions’ execution traces. Due to space constraints, we only portray
the behavior of three data center applications, drupal, kafka, and
verilator; the remaining applications exhibit similar behaviors to
drupal and kafka.

In Fig. 6, the 𝑋 -axis represents the percentage of unique taken
branches and the 𝑌 -axis represents the corresponding hit-to-taken
percentage for the optimal BTB replacement policy. The hit-to-taken
percentage indicates which branches would result in more hits
(relative to how many times the branch is taken) and are hence
more valuable to retain in the BTB. As shown in Fig. 6, all branches
from these applications can be categorized to three different types
based on their hit-to-taken percentage. We mark branches with the
highest hit-to-taken percentage as “hot” branches (marked by the
red region), branches with the lowest hit-to-taken percentage as
“cold” branches (marked by the blue region), and branches with a
medium hit-to-taken percentage as “warm” branches (marked by
the yellow region).

Consequently, we introduce a new metric based on the hit-to-
taken percentage, called the “branch temperature”. The temperature
of a branch indicates the branch’s “hot/warm/cold” access behavior
as observed under the optimal BTB replacement policy. In particular,
for a given branch 𝑥 with a hit-to-taken percentage equal to 𝑦, we
define 𝑥 ’s branch temperature as:

Temperature (𝑥) =

cold 𝑦 ≤ 𝑦1
warm 𝑦1 < 𝑦 ≤ 𝑦2
hot 𝑦 > 𝑦2,

where 𝑦1 and 𝑦2 are two empirically decided thresholds such that
0 ≤ 𝑦1 ≤ 𝑦2 ≤ 1. In our experiments, we find that using 𝑦1 =

50%, 𝑦2 = 80% works best. As shown in Fig. 6, only half of all
unique branches are hot and consistently retained in the BTB by
the optimal replacement policy.

Next, we analyze all dynamic BTB accesses to classify them based
on the branch temperature. In Fig. 7, the 𝑋 -axis represents the
percentage of unique taken branches while the 𝑌 -axis represents

0 20 40 60 80 100
% of all unique taken branches

0

25

50

75

100

H
it

-t
o-

ta
ke

n
(%

) hot

warm

cold
drupal
kafka
verilator

Figure 6: The distribution of hit-to-taken percentage using
the optimal BTB replacement policy for all unique taken
branches. Branches are sorted (in descending order) based on
their hit-to-taken percentage. The optimal policy consistently
retains “hot” branches (half of all unique branches) and
rarely stores “cold” branches (20% of all unique branches).

0 20 40 60 80 100
% of all unique taken branches

20

40

60

80

100

D
yn

am
ic

ex
ec

ut
io

n
C

D
F

(%
)

hot

warm
cold

drupal
kafka
verilator

Figure 7: The cumulative distribution of all dynamic BTB
accesses for all unique taken branches. Branches are sorted
(in descending order) based on their hit-to-taken percentage
for the optimal BTB replacement policy. “Hot” branches con-
stitute a large majority (90%) of all BTB accesses.

the percentage of dynamically taken branches, i.e., the percent-
age of BTB accesses. We also mark regions of the corresponding
“hot/warm/cold” branches as defined in Fig. 6.

We find that the “hot” branches marked in Fig. 7 account for more
than 90% of dynamically taken branches. Therefore, when making
replacement decisions, we can achieve a near-optimal performance
if we retained more “hot” branches in the BTB and evict the “cold”
and “warm” branches.

Finally, we compute the correlation between branch temperature
and the holistic (average) reuse distance. As shown in Fig. 8, branch
temperature is strongly correlated with the holistic reuse distance.
Therefore, branch temperature is able to capture the holistic behav-
ior of branches over time.

In Fig. 8, we also show if branch temperature has any correlation
with properties of branch instructions such as the branch type (e.g.,
conditional and unconditional branches), branch target distance,
and branch bias. If any of these properties have a strong correlation
with the branch temperature, we could predict branch tempera-
ture based on those correlated properties without simulating the
optimal BTB replacement policy on the entire application’s trace.
However, we observe that these branch properties do not have any
strong correlation with the branch temperature. Therefore, we must
compute the branch temperature by simulating the optimal BTB
replacement policy on a data center application’s trace.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress
0.0

0.5

1.0

C
or

re
la

ti
on

Branch type v.s. temperature
Distance v.s. temperature

Branch bias v.s. temperature
Avg reuse distance v.s. temperature

Figure 8: Correlation between branch type, target distance,
bias, holistic reuse distance and branch temperature: holistic
reuse distance and branch temperature are strongly corre-
lated, however, branch type, bias, or target distance do not
have strong correlation with branch temperature.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress Avg
0

50

100

By
pa

ss
(%

) Cold Warm Hot

Figure 9: Average percentage of bypass out of all misses for
branches with different temperature: the optimal replace-
ment policy does not even insert cold branches into the BTB
in more than 50% cases.

Observation: Branch “temperature” (determined by a branch’s
hit-to-taken percentage) is a good metric to drive efficient BTB
replacement decisions.
Insight: Evicting cold or warm branches while keeping hot
branches in the BTB can help attain near-optimal performance.
However, accurate measurement of branch temperature requires
simulation of the optimal BTB replacement policy on data cen-
ter applications’ traces.

2.5 Which entries are worth inserting into the
BTB?

In §2.4, we showed how to redesign BTB replacement using the
branch temperature. A BTB entry is replaced when a new entry
is inserted. Now, we investigate if some of these insertions can be
avoided to begin with, i.e., whether the BTB can be bypassed [45, 90]
for some branches based on its temperature. For this, we measure
the number of times a branch is inserted into the BTB and the
number of times it bypasses the BTB, using the optimal replacement
policy. We use these measurements to compute the average bypass
ratio for branches in each temperature category.

As shown in Fig. 9, both cold and warm branches have a higher
bypass ratio, while hot branches have a lower bypass ratio. Hence,
for a given cold or warm branch, we must compare the branch’s
temperature with the temperature of branches currently in the BTB
to determine whether this branch must bypass the BTB. In contrast,
based on Fig. 9, we must always insert hot branches into the BTB
to make near-optimal replacement decisions.

Data Center
11001

01010

11101

Release Binary

Taken IP
T 0xff...1
NT 0xff...1
T 0xff...0

Basic Block Trace

10001

01010

00101

Updated Binary

Temperature IP
92% 0xff...0
64% 0xff...1
11% 0xff...3

1
Profile

Collection

2Temperature
Calculation

3

Hint Injection

4
Hardware BTB
Replacement
Modification

Online

Offline

Figure 10: High level design of Thermometer

Observation: The optimal replacement policy inserts most
hot branches into the BTB, while (on average) half of all cold
branches are not inserted.
Insight: Before inserting a branch in the BTB, comparing
it’s temperature with branches that are already in the BTB
to determine whether to bypass or not, can help make near-
optimal decisions.

3 DESIGN OF THERMOMETER
Our analysis shows that BTB replacement policies significantly af-
fect the performance of data center applications. While the optimal
BTB replacement policy achieves an average IPC speedup of 10.4%
for data center applications, prior replacement policies [20, 60, 62]
are unable to provide a substantial performance benefit (only 1.5%
mean IPC speedup) over LRU. Prior replacement policies fall short
since they only leverage transient branch information and do not
consider holistic branch behavior. We now present Thermometer , a
novel BTB replacement technique that leverages hardware-software
co-design to accommodate both holistic and transient branch behav-
ior of data center applications. Specifically, Thermometer introduces
a profile-guided software mechanism to learn holistic branch be-
havior and then introduces minor hardware modifications to the re-
placement policy to consider both behaviors, enabling near-optimal
replacement decisions.

Thermometer determines branch temperature based on the hit-
to-taken percentage under the optimal replacement policy using
a profile-guided analysis. Branch instructions are annotated with
their temperature and stored as part of a BTB entry whenever a
branch is inserted into the BTB. Whenever the replacement policy
needs to determine an eviction candidate it considers both tem-
perature and LRU information of the candidates as described in
Algorithm 1. In particular, Thermometer first selects the coldest
branch (including the branch to be inserted in BTB) for eviction or,
in the case of a tie, selects a candidate based on LRU.

We show all four of Thermometer’s design components in Fig. 10.
In step 1 (§3.1), Thermometer collects the basic block execution
profile of data center applications at run time with the help of
efficient hardware mechanisms [1, 8, 76, 79]. In step 2 (§3.2), Ther-
mometer simulates the optimal BTB replacement policy offline on

the branch execution profile to determine the temperature of all
branch instructions. In step 3 (§3.3), Thermometer encodes the
temperature as a hint in the branch instruction. Finally, in step 4
(§3.4), Thermometer’s updated BTB replacement policy leverages
Thermometer-injected hints to make close-to-optimal replacement
decisions. Now, we describe each of these four components in detail.

3.1 Profile Collection
Thermometer collects the basic block execution trace using Intel
PT [1]. Similar to prior work [78], Thermometer uses Intel PT due
to its low runtime overhead (only up to 1% [69–71, 151]) and wide-
spread adoption in today’s data centers [36, 39]. Intel PT provides
Thermometer with a trace of dynamically executed branch instruc-
tions. As we show in Fig. 10, the trace contains two specific data
points for each branch instruction. First, the trace includes the di-
rection of a branch, i.e., taken (T) or not-taken (NT). Second, in case
of a taken indirect branch, the trace also contains the address of the
next executed instruction. While Intel PT provides a comprehensive
execution history that enables control-flow analysis, it does not
collect any data about BTB replacement actions.

3.2 Measuring the Branch Temperature
Thermometer simulates the branch execution trace offline using the
optimal replacement policy (Belady’s algorithm [29]) to measure
the temperature of all branch instructions in the application. As we
show in §4.2, the overhead of simulating the optimal replacement
policy is similar to those of widely-adopted profile-guided opti-
mization techniques [106, 107]. To calculate branch temperature,
Thermometer counts two metrics for each branch instruction. First,
Thermometer counts the times a given branch instruction is taken
during the program execution. Second, Thermometer counts the
times when the taken branch’s target can be found in the BTB while
operating under the optimal replacement policy. Thermometer com-
putes the temperature for each branch instruction after dividing
the second value (BTB hit count under optimal replacement policy)
by the first value (branch taken count) and expressing the division
result as a fraction of 100.

3.3 Hint Injection
The goal of Thermometer’s hint injection is to mark hot and cold
branch instructions differently so that the BTB replacement policy
can evict cold branches while keeping hot branches in the BTB. In
the context of hint injection, Thermometer faces two main design
decisions: (1) how many temperature categories (and resulting bits)
to use and (2) which temperature thresholds to use for classifying
branches into one of these categories.
Hint size. Encoding the temperature as part of every branch in-
struction increases the instructionworking set size and also requires
additional storage in the BTB. For example, assuming an 8K entry
BTB and 16 temperature categories, Thermometer introduces a stor-
age overhead of 4KB which may be better invested in additional
BTB entries. Using a small number of bits, on the other hand, intro-
duces quantization errors as Thermometer may inject the same hint
for two branches with a high temperature difference. It is there-
fore important to pick a suitable number of temperature categories
while minimizing storage overheads. In practice, we find that a 2-bit

hint offers a good trade-off between quantization inaccuracy and
storage overhead. Such a 2-bit hint is practically implementable
since both x86 and arch64 branch instruction formats have at least
2 unused bits reserved for future usage [50, 124]. Consequently, a
2-bit hint enables Thermometer to provide the temperature cate-
gory as a replacement hint without incurring any overhead to the
application’s code footprint. We study Thermometer’s sensitivity
for different hint sizes in §4.3.
Temperature thresholds. Depending on the number of temper-
ature categories, Thermometer must determine how to classify
branches into categories. A naive approach is to divide branches
uniformly so that all temperature categories have an equal number
of branches. However, with such an approach, Thermometer may
group two branches with high temperature difference together in
the same category. Such a categorization might occur especially
for branches near the cliffs [28] (areas with high slope in Figure 6,
where temperature drops sharply). To address this issue, Thermome-
ter assigns temperature categories to different branch instructions
based on empirically determined temperature thresholds. Specifi-
cally, with three categories (i.e., hot, warm, and cold), we observe
that the temperature thresholds, 80% and 50% yield the best perfor-
mance for data center applications. If needed, these thresholds are
configurable to meet different applications’ behavior.

3.4 Microarchitectural Modifications
Thermometer extends the BTB replacement policy implemented in
hardware to consider the temperature hint encoded in the branch
instruction. As Thermometer encodes a 2-bit hint for each branch
instruction, Thermometer modifies the baseline BTB to include 2
extra bits per BTB entry. For an 8K-entry, 4-way, 75KB baseline
BTB, this modification introduces a 2KB of extra storage overhead
(2.67%). Using these extra bits, the BTB replacement policy can
distinguish hot (or BTB-friendly entries) from cold (or BTB-averse
entries) to make eviction decisions during the program execution.

Algorithm 1 presents a simplified version of Thermometer’s BTB
replacement policy implemented in hardware. The algorithm takes a
list of branch instructions as input and returns the victim branch in-
struction to be evicted from the BTB as output. Along with branches
that are already in the BTB, the algorithm also considers the current
branch instruction, 𝑥0 for which the new entry would be inserted
into the BTB, as the potential victim. For all these instructions, the
algorithm populates the temperature (Line 1- 2) and then finds the
coldest temperature, 𝑡 (Line 3) among them to leverage holistic
reuse behavior. Next, the algorithm considers all branch instruc-
tions with the coldest temperature 𝑡 as possible victim candidates
(Line 4). Among those victim candidates Thermometer selects the
final line according to the least recently used heuristic (Line 7) lever-
aging transient reuse behavior. Thus, Thermometer combines the
best of both worlds: holistic and transient branch reuse behavior to
make effective BTB replacement decisions.

Thermometer adds one extra operation over the LRU baseline,
which is finding the coldest temperature. For a 4-way BTB, this
operation requires comparing five (𝐴, 𝐵,𝐶, 𝐷, 𝐸) 2-bit values. We
can compute whether A is the coldest way as, 𝐴𝑐 = (𝐴<𝐵) & (𝐴<𝐶)
& (𝐴<𝐷) & (𝐴<𝐸). Each of these comparisons has an overall gate
delay of only 3 logic gates (e.g., 𝐴<𝐵 = (𝐵1&!𝐴1) | (𝐵0&𝐵1&!𝐴0)

| (!𝐴1&!𝐴0&𝐵0)) and different comparisons (e.g., 𝐴<𝐵 and 𝐴<𝐶)
can be performed in parallel. Similarly, the logic to compute 𝐵𝑐
and 𝐶𝑐 can also be performed in parallel. Even if this whole logic
cannot be computed in a single cycle it can be easily pipelined,
e.g., by registering the results of 𝐴<𝐵, 𝐴<𝐶 , 𝐴<𝐷 , and 𝐴<𝐸 in one
cycle and performing the & operation in the next cycle. Finally,
Thermometer can also ensure fast lookup for the newly inserted
BTB entries by placing them in a small replacement buffer similar
to 32-entry prefetch buffer used by state-of-the-art BTB prefetching
solutions [75, 83].

Algorithm 1 BTB replacement policy (implemented in hardware)
to consider both holistic and transient reuse behavior.
Input: Current branch to insert, 𝑥0, branches already in the BTB,

𝑥𝑖 , 𝑖 = 1, 2, . . . , 𝑛, 𝑛 is the number of BTB ways.
Output: Victim, 𝑧
1: for 𝑖 = 0, 1, 2, . . . , 𝑛 do
2: 𝑦𝑖 ← temperature of 𝑥𝑖
3: 𝑡 ←min(𝑦0, 𝑦1, 𝑦2, . . . 𝑦𝑛) ⊲ Find the coldest temperature
4: 𝑆 ←

{
𝑥 𝑗 : 𝑦 𝑗 = 𝑡

}
5: if 𝑥0 ∈ 𝑆 && |𝑆 | = 1 then
6: return 𝑥0 ⊲ Bypass
7: 𝑧 ← the least recently used branch in 𝑆 .
8: return 𝑧

BTB size dependency. Thermometer categorizes branch instruc-
tions based on their temperature for a specific BTB size and as-
sociativity. While this classification is target architecture depen-
dent, such target-dependent optimizations are already deployed in
today’s data centers by widely-used profile-guided optimization
techniques [33, 85, 106, 107]. Data center operators (e.g., Google
and Facebook) already compile and deploy individual binaries for
diverse processor types in their fleet [25, 33, 106, 107, 133]. Hence,
Thermometer can be combined with existing build and deployment
mechanisms used in real data centers today.

4 EVALUATION
In this section, we first describe our experimental methodology.
Next, we evaluate how Thermometer improves data center applica-
tions’ performance using several key metrics. Finally, we present
various sensitivity studies, showing how different design parame-
ters affect Thermometer’s effectiveness.

4.1 Methodology
Data center applications and inputs. As described in §2.1, we
evaluate Thermometer using 13 widely-used data center applica-
tions. For these applications, we vary input configurations by chang-
ing the input data size (e.g., large vs small), the webpage requested
by the client (e.g., feed=rss2 vs p=37), the number of client requests
per second (e.g., 2 vs 10), random number seeds (e.g., 1 vs 10), differ-
ent query mapping styles (e.g., imperative vs declarative), different
database scaling factors (e.g., 100 vs 8000), and different database
queries (e.g., oltp_read_only vs oltp_write_only). We profile only
a portion of each application’s execution; this portion is different
from the tested execution and uses different inputs. Apart from eval-
uating Thermometer on these 13 real-world applications, we also

evaluate Thermometer on a wide-range of common traces (663 CBP-
5 [15] traces and 50 IPC-1 [17] traces) like prior work [20, 24, 57, 58].

4.2 Performance analysis
We evaluate Thermometer’s effectiveness using key performance
metrics. First, we compare Thermometer’s IPC speedup to the speedup
offered by the optimal BTB replacement policy and state-of-the-art
BTB replacement techniques [20, 60, 62]. We also evaluate the BTB
miss reduction Thermometer achieves. Next, we show how Ther-
mometer generalizes across different application inputs. We also
evaluate Thermometer’s replacement coverage and accuracy.
IPC speedup. We measure the IPC speedup that Thermometer
achieves over an LRU baseline for 13 data center applications. Fig. 11
shows Thermometer’s speedup compared against speedups achieved
by the optimal BTB replacement policy and three existing replace-
ment policies (SRRIP [62], GHRP [20], and Hawkeye [60]). We find
that Thermometer always outperforms prior replacement policies
and achieves comparable performance to the theoretically optimal
BTB replacement policy. In particular, Thermometer provides 8.7%
average speedup compared to 10.4% average speedup achieved by
the optimal BTB replacement policy. In other words, Thermometer
achieves an average speedup that is 83.6% of the average speedup
achieved by the optimal BTB replacement policy. The small perfor-
mance gap between Thermometer and the optimal BTB replacement
policy stems from few cases where the branch behavior temporally
diverges from both the profiled holistic and transient branch be-
havior.

We also investigate whether Thermometer would improve perfor-
mance of a 75KB, 8K entry BTB when considering 2-bit overhead
for each branch in BTB. We measure the speedup gained by a
7979-entry BTB that uses Thermometer over an 8K entry BTB that
uses LRU. We ensure the same BTB size since 7979 × (entry size +
2 bits overhead) = 8192×entry size = 75K. As shown, a 7979-entry
BTB that uses Thermometer significantly outperforms existing BTB
replacement mechanisms and achieves comparable performance to
the optimal BTB replacement policy.

We use address modulo total number of BTB sets as the BTB
hash function. For this function, the 7979-entry BTB distributes
branches for some applications (e.g., cassandra, kafka, mysql) more
uniformly than the 8192-entry BTB. Consequently, Thermometer
achieves slightly better performance with the 7979-entry BTB than
the 8192-entry BTB for these applications.
BTB miss reduction. Fig. 12 shows the BTB miss reduction over
LRU achieved by Thermometer and prior replacement policies. Ther-
mometer achieves an average BTB miss reduction of 21.3%, outper-
forming existing replacement policies which achieve at most 6.7%
average miss reduction. Thermometer’s performance corresponds
to 62.6% of the performance of the optimal BTB replacement policy
which achieves an average miss reduction of 34%.
Performance across different application inputs. Computing
branch temperatures for one program input still provides replace-
ment benefits for a different application input since on average
81% of all branches fall in the same temperature category across
different inputs. We quantify this benefit in terms of Thermometer’s
speedup using three separate input configurations (‘#1’ to ‘#3’).

We optimize each application using the training profile from in-
put ‘#0’ and measure Thermometer’s speedup for all three different
test inputs (‘#1, #2, #3’) in Fig. 13 (indicated as ‘training-profile’).
Next, we measure the speedup when Thermometer optimizes each
application with the same input’s profile for comparison, i.e., Ther-
mometer’s speedup for input ‘#1’ using profile information that is
also gathered using input ‘#1’. Fig. 13 shows this result as ‘Same-
input-profile’. As shown, Thermometer provides significant speedup
across different application inputs even with the training input’s
(different from the test input) profile since most branches have same
temperature across different inputs.

For some applications (e.g., finagle-chirper and postgresql),
Thermometer’s speedup with the training input’s profile is even
greater than Thermometer’s speedup with the same input’s profile
even though the training input’s profile causes slightly more BTB
misses than the same input’s profile. In these cases, we find that
training input’s profile triggers less expensive BTB misses than the
same input’s profile as BTB misses incur variable miss penalty.
Static and dynamic overhead. For each branch instruction, Ther-
mometer introduces 2 bits for encoding the temperature category.
Both ARM and x86 branch instructions have at least 2 unused bits
reserved in the ISA for future optimizations [50, 124], which we
can use to encode the category information without any overhead
in the new binary.
Profiling overhead and cost of optimal replacement policy
simulation. There is no extra online cost of Thermometer’s profil-
ing, as data center applications are already routinely profiled with
Intel LBR and PT [27, 33, 36, 39, 106, 107]. As we describe in §3,
Thermometer simulates the optimal BTB replacement policy offline.
The execution time for this offline simulation is in the order of
seconds (4.18-167 seconds and 23.53 seconds on average), as shown
in Fig.14. These durations are similar to those of existing post-
link profile-guided optimization techniques [106, 107] (19.5-168.3
seconds [107]).
Replacement coverage and accuracy.We define “not covered by
Thermometer” as the cases when all branches in a target set are in
the “coldest category”, and Thermometer relies on LRU to choose a
victim. This case will be similar to the LRU baseline. We measure
Thermometer’s replacement coverage in terms of the percentage of
evictions that are “covered by Thermometer”. As show in Fig. 15,
Thermometer achieves an average coverage of 61.4%.

In Fig. 16, we also show the replacement accuracy by measuring
the percentage of victims whose reuse distance is equal to or larger
than the number of BTB ways. In particular, we evaluate 3 tech-
niques. The first technique only considers transient reuse behavior.
The second technique only considers holistic reuse behavior. The
third technique, Thermometer , utilizes both transient and holistic
reuse information. Note that the optimal replacement policy always
ensures 100% replacement accuracy. On average, transient behav-
ior achieves 46.06% accuracy, holistic behavior achieves 63.72%
accuracy, and Thermometer achieves 68.20% accuracy.
BTB miss reduction on CBP-5 traces. We also validate Ther-
mometer’s effectiveness in reducing BTB misses for 663 CBP-5
traces [15]. Since these traces do not allow generating IPC num-
bers [20], we measure the BTB miss reduction (%) achieved by
Thermometer over the best performing prior work, GHRP [20] for

cassa
ndra

clang
drupal

finagle-chirp
er

finagle-http kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress

Avg no verila
tor

Avg

0

5

10

15

Sp
ee

du
p

(%
)

65 6417 65

SRRIP
GHRP

Hawkeye
Thermometer

Thermometer-7979-entry
OPT

Figure 11: Thermometer’s IPC speedup compared to optimal and state-of-the-art replacement policies over an LRU baseline
(with FDIP): Thermometer achieves an average speedup of 8.7% that is 83.6% of the average speedup provided by the optimal
BTB replacement policy.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress Avg

0

50

BT
B

m
is

s
re

du
ct

io
n

(%
)

SRRIP GHRP Hawkeye Thermometer OPT

Figure 12: Thermometer’s BTB miss reduction over an LRU
baseline (with FDIP): Thermometer reduces 21.3% of all BTB
misses compared to 34% miss reduction achieved by the opti-
mal replacement policy.

these traces. As shown in Fig. 17, Thermometer achieves an average
BTB miss reduction of 2.25% over GHRP.

Among all traces (52) that face BTB Misses Per Kilo Instructions
(MPKI) of 1 or greater, Thermometer outperforms GHRP by 11.48%
on average. Thermometer outperforms GHRP for 306 out of 663
traces while GHRP outperforms Thermometer only for 59 traces.
The remaining 298 traces only suffer from compulsory BTB misses
and all replacement policies achieve identical performance.

Thermometer could not outperform GHRP for 59 traces because
the 50% and 80% thresholds do not yield the best performance for
those traces. Consequently, when we find a better threshold using
two-fold cross-validation [145] for these 663 traces, Thermometer
outperforms GHRP for all but 32 traces, as also shown in Fig. 17.
Speedup on IPC-1 traces. To further evaluate Thermometer , we
also measure and show the IPC speedup achieved by Thermometer
for 50 IPC-1 [17] traces in Fig. 18. Thermometer achieves an average
IPC speedup of 1.07% (up to 5.36%) and outperforms prior replace-
ment mechanisms. The best-performing prior work, SRRIP offers
merely 0.45% speedup on average. Among all traces (9) that suffer
from a BTB MPKI of at least 1, Thermometer achieves an average
IPC speedup of 3.59%. For one of the IPC-1 traces (server_010),
both Thermometer and SRRIP outperform the optimal replacement
policy in terms of IPC speedup though they incur more BTB misses
than the optimal replacement policy. That is because the optimal
replacement policy is optimal in terms of reducing the total number
of misses and does not consider the variable latency incurred by

each individual misses [116]. Nevertheless, Thermometer achieves
85.7% of the speedup (on average 1.25%) provided by the optimal
BTB replacement policy. Therefore, Thermometer is able to make
near-optimal BTB replacement decisions for IPC-1 traces.

4.3 Sensitivity analysis
Number of BTB entries.We vary the number of BTB entries from
1024 to 32768 to measure how sensitive Thermometer is to the BTB
size. As shown in Fig. 19 (left), Thermometer outperforms SRRIP
significantly for any BTB size and performs better relative to the
optimal BTB replacement policy with a larger BTB size.
BTB associativity. We also measure Thermometer’s sensitivity to
the BTB associativity by varying the number of BTB ways from 4
to 128. As shown in Fig. 19 (right), Thermometer outperforms SRRIP
significantly for any number of BTB ways. For some traces like
cassandra and drupal, Thermometer’s performance relative to the
optimal BTB replacement policy decreases as the number of BTB
ways increases, while for other traces like tomcat, Thermometer’s
performance increases as the number of BTB ways increases.
Number of bits encoding branch temperature. We investi-
gate Thermometer’s effectiveness with various hint sizes to encode
branch temperatures. We change the number of encoding bits from
1 to 4 and choose 2, 3, 4, 8, 16 categories to measure Thermome-
ter’s speedup compared to the optimal BTB replacement policy.
As shown in Fig. 20 (left), Thermometer achieves the best perfor-
mance when (1) using 2 bits to encode categories and (2) classify-
ing branches into 3 or 4 categories. With fewer categories (e.g., 2
categories), Thermometer cannot characterize all branches’ reuse
behavior, reducing coverage as more branches are misclassified into
the same category. Using more categories such as 8 or 16, leads to
separation of branches with similar reuse behavior into different
categories, reducing the opportunity for the backing LRU policy to
determine transient changes in the reuse behavior dynamically.
FDIP run-ahead.We evaluate Thermometer’s sensitivity to the size
of Fetch Target Queue (FTQ), i.e., the maximum run-ahead distance
of the decoupled frontend. We carry out the experiment using FTQ
sizes of {64, 128, 192, 256} and measure the optimal BTB speedup
percentage achieved by Thermometer . As shown in Fig. 20 (right),

#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 Avg
0

50

100

%
of

op
ti

m
al

po
lic

y
sp

ee
du

p

cassandra clang
drupal

finagle-chirper

finagle-http kafka
mediawiki

mysql
postgresql

python
tomcat

verilator
wordpress

SRRIP Thermometer-training-profile Thermometer-same-input-profile

Figure 13: Thermometer’s IPC speedup across different application inputs as the percentage of the optimal BTB performance

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress Avg
0

20

40

O
ffl

in
e

si
m

ul
at

io
n

(s
)

16
7

Figure 14: Offline simulation time for the optimal replace-
ment policy. The execution time is 4.18-167 seconds and 23.53
seconds on average.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress Avg
0

50

100

C
ov

er
ag

e
(%

)

Figure 15: Replacement coverage of Thermometer for various
applications: 61.4% of replacement requests are processed by
evicting BTB entries that are marked colder by Thermometer.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress Avg
0

50

100

A
cc

ur
ac

y
(%

) Transient Holistic Thermometer

Figure 16: Replacement accuracy of Thermometer, transient
and holistic behavior: on average transient reuse behavior
based replacement decisions achieve 46.06% accuracy, holistic
reuse behavior based replacement decisions achieve 63.72%
accuracy, combining both of them, Thermometer achieves
68.20% accuracy.

Thermometer achieves almost constant speedup relative to the opti-
mal BTB replacement policy with different FTQ sizes. Therefore,
Thermometer generalizes well for different FDIP implementations.
Prefetch-aware replacement.We evaluate Thermometer’s sensi-
tivity to the state-of-the-art BTB prefetching mechanism, Twig [75]
and show the results in Fig. 21. As shown, the combination of Ther-
mometer and Twig provides an average IPC speedup of 30.9% over

0 100 200 300 400 500 600
663 CBP-16 traces

0

20

40

BT
B

m
is

s
re

du
ct

io
n

(%
)

two-fold original

Figure 17: Thermometer’s BTB miss reduction over the best
performing prior work, GHRP [20] on CBP-5 traces [15]:
Thermometer achieves an average BTB miss reduction of
2.25% over the GHRP baseline.

0 10 20 30 40 50
50 IPC-1 traces

0

2

4

6

Sp
ee

du
p

(%
)

SRRIP
GHRP

Hawkeye
Thermometer

OPT

Figure 18: Thermometer’s IPC speedup over an LRU base-
line (with FDIP) for 50 IPC-1 traces [17]: Thermometer out-
performs all prior replacement techniques and provides
speedups comparable to the optimal BTB replacement policy.

1K 2K 4K 8K 16K 32K
of BTB Entries

0

25

50

75

%
of

op
ti

m
al

po
lic

y
sp

ee
du

p

4 8 16 32 64 128
of BTB Ways

20

40

60

Therm-cassandra
SRRIP-cassandra

Therm-drupal
SRRIP-drupal

Therm-tomcat
SRRIP-tomcat

Figure 19:% of speedupThermometer obtains compared to the
optimal BTB replacement policy while varying the number
of BTB entries (left) and the number of BTB ways (right).

the baseline combination of LRU and Twig. Even with BTB prefetch-
ing, Thermometer significantly outperforms the best performing
prior replacement policy (SRRIP) which provides only 1.37% mean
speedup. On average, Thermometer’s speedup is 95.9% of the aver-
age speedup (32.2%) provided by the optimal replacement policy.

2 3 4 8 16
of Temperature Categories

0

25

50

%
of

op
ti

m
al

po
lic

y
sp

ee
du

p

64 128 192 256
of FTQ Entries

20

40

60

Therm-cassandra
SRRIP-cassandra

Therm-drupal
SRRIP-drupal

Therm-tomcat
SRRIP-tomcat

Figure 20:% of speedupThermometer obtains compared to the
optimal BTB replacement policywhile varying the number of
branch temperature categories (left) and the FTQ size (right).

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
resql

python
tomcat

verila
tor

wordpress

Avg no verila
tor

Avg

0

5

Sp
ee

du
p

(%
)

10 9 37
0

3112 12 7 36
9

32

SRRIP Thermometer OPT

Figure 21: Thermometer’s speedup over an LRU baseline
with state-of-the-art BTB prefetching, Twig [75]. Thermome-
ter +Twig achieves an average speedup of 30.9% over the
LRU+Twig baseline. Thus, Thermometer achieves 95.9% of
the average speedup (32.2%) provided by the optimal replace-
ment policy.

5 RELATEDWORK
I-cache performance optimization. There are three main classes
of prior techniques that optimize I-cache performance: software,
hardware, and hybrid software-hardware. Software techniques in-
clude hot/cold splitting [34], block reordering [105, 113], and other
profile-guided optimization approaches [26, 33, 52, 54, 63, 89, 91, 94,
95, 106, 111, 117, 149]. While software techniques improve instruc-
tion locality and eliminate a subset of all I-cache misses, in practice
it is intractable to find the optimal code layout [27, 112]. Hardware
techniques include next-line prefetchers [131], path-based prefetch-
ers [59, 122], record-and-replay prefetchers [43, 44, 72, 73], and BTB-
directed prefetchers [83, 84]. These techniques usually have one
of two limitations: (1) the design is more complex [72, 73, 82] than
real hardware prefetching implementations [119, 122] or (2) the
on-chip storage cost is too high [43, 44]. Hybrid techniques [27, 77]
combine the effectiveness of software and hardware mechanisms
but further increase the code footprint of data center applications.
FDIP [118, 119] offers a good trade-off among existing I-cache
prefetchers as it provides performance comparable to state-of-the-
art prefetchers [22, 46, 48, 51, 99, 101, 120, 127] without incurring a
high storage cost [57, 58]. Consequently, FDIP and its variants are
employed in modern processors [49, 109, 123, 135]. Therefore, we
attempted to improve the effectiveness of FDIP in this work through
an optimized BTB replacement policy which requires negligible
extra storage and hardware modification.
BTB redesign and compression. In addition to storing branch
targets [87, 110], BTB entries generally contain a tag and prediction

information, while block-oriented BTBs also need to store the size
of the corresponding basic block [148]. Existing work [24, 32, 40,
65, 81, 110, 118, 128, 132] proposes BTB compression techniques
including using tags of fewer bits, removing page number, storing
the branch target as a distance from the branch PC, or using a multi-
level BTB. These techniques are orthogonal and can be combined
with Thermometer to further improve the BTB storage efficiency.
Cache and BTB replacement mechanisms. Prior cache replace-
ment policies can be categorized into two types: heuristic-based
and learning-based replacement policies. The former category con-
sists of LRU [68, 88, 102, 130], MRU [115], reuse distance predic-
tion [38, 41, 93], re-reference interval prediction (RRIP [62]), and
additional policies [18, 45, 56, 80, 116, 125, 134, 136]. In the latter
category, some learning-based replacement policies [61, 74, 147]
classify cache lines as cache-friendly and cache-adverse, others [60,
92, 129] use information provided by the optimal replacement pol-
icy [29]. Some recent replacement policies also use machine learn-
ing mechanisms[64, 66, 137]. However, existing replacement polices
are mainly designed for data caches and fall short when applied
to the BTB. GHRP [20] is a replacement policy designed for the
BTB, but it falls short for data center applications due to their large
instruction footprints. We propose a novel profile-guided BTB re-
placement approach that outperforms these existing replacement
policies.

6 CONCLUSION
Data center applications exhibit large branch footprints and suffer
from frequent BTB misses. Prior BTB prefetching and replacement
mechanisms cannot mitigate these misses as they lack proper under-
standing of branch temperature in data center applications. In this
work, we propose Thermometer , a profile-guided BTB replacement
mechanism that considers both holistic and transient branch be-
haviour in data center applications. For 13 widely-used data center
applications, Thermometer provides on average 8.7% (0.4%-64.9%)
speedup that is 83.6% of the mean speedup achieved by the optimal
BTB replacement policy.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback
and suggestions. This work was supported by the generous gifts
from Intel Labs, NSF grants #1942754, #2010810, CCF-1912617, CNS-
1938064, a Rackham Predoctoral Fellowship, and the Applications
Driving Architectures (ADA) Research Center, a JUMP Center co-
sponsored by SRC and DARPA. We thank the University of Michi-
gan Summer Undergraduate Research in Engineering (SURE) pro-
gram as Shixin Song completed this work as her summer under-
graduate research project. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the funding agencies.

REFERENCES
[1] “Adding processor trace support to linux,” https://lwn.net/Articles/648154/.
[2] “Apache cassandra,” http://cassandra.apache.org/.
[3] “Apache kafka,” https://kafka.apache.org/powered-by.
[4] “Apache tomcat,” https://tomcat.apache.org/.
[5] “Champsim,” https://github.com/ChampSim/ChampSim.
[6] “Clang c language family frontend for llvm,” [Online; accessed 19-Nov-2021].

[Online]. Available: https://clang.llvm.org/

https://github.com/ChampSim/ChampSim
https://clang.llvm.org/

[7] “Github - chipsalliance/rocket-chip: Rocket chip generator,” [Online; accessed
19-Nov-2021]. [Online]. Available: https://github.com/chipsalliance/rocket-chip

[8] “An introduction to last branch records,” https://lwn.net/Articles/680985/.
[9] “Postgresql: Documentation: 14: pgbench,” [Online; accessed 19-Nov-2021].

[Online]. Available: https://www.postgresql.org/docs/current/pgbench.html
[10] “Postgresql: The world’s most advanced open source database,” [Online;

accessed 19-Nov-2021]. [Online]. Available: https://www.postgresql.org/
[11] “The python performance benchmark suite,” [Online; accessed 19-Nov-2021].

[Online]. Available: https://pyperformance.readthedocs.io/
[12] “Twitter finagle,” https://twitter.github.io/finagle/.
[13] “Verilator,” https://www.veripool.org/wiki/verilator.
[14] “Welcome to python.org,” [Online; accessed 19-Nov-2021]. [Online]. Available:

https://www.python.org/
[15] “Championship branch prediction,” https://jilp.org/cbp2016/, 2016.
[16] “facebookarchive/oss-performance: Scripts for benchmarking various php

implementations when running open source software,” https://github.com/
facebookarchive/oss-performance, 2019, (Online; last accessed 15-November-
2019).

[17] “The 1st instruction prefetching championship,” https://research.ece.ncsu.edu/
ipc/, 2020.

[18] J. Abella, A. González, X. Vera, and M. F. O’Boyle, “Iatac: a smart predictor to
turn-off l2 cache lines,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 2, no. 1, pp. 55–77, 2005.

[19] K. Adams, J. Evans, B. Maher, G. Ottoni, A. Paroski, B. Simmers, E. Smith, and
O. Yamauchi, “The hiphop virtual machine,” in Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages &
Applications, 2014, pp. 777–790.

[20] S. M. Ajorpaz, E. Garza, S. Jindal, and D. A. Jiménez, “Exploring predictive
replacement policies for instruction cache and branch target buffer,” in 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2018, pp. 519–532.

[21] S. Ananthanarayanan, M. S. Ardekani, D. Haenikel, B. Varadarajan, S. Soriano,
D. Patel, and A.-R. Adl-Tabatabai, “Keeping master green at scale,” in Proceedings
of the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3302424.3303970

[22] A. Ansari, F. Golshan, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Mana: Microarchi-
tecting an instruction prefetcher,” The First Instruction Prefetching Championship,
2020.

[23] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer fron-
tend bottleneck,” in Proceedings of the 47th Annual International Symposium on
Computer Architecture (ISCA), 2020.

[24] T. Asheim, B. Grot, and R. Kumar, “Btb-x: A storage-effective btb organization,”
IEEE Computer Architecture Letters, vol. 20, no. 2, pp. 134–137, 2021.

[25] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory hierarchy
for web search,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2018, pp. 643–656.

[26] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying memory
access patterns for prefetching,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 513–526.

[27] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev, C. Kozyrakis, T. Kr-
ishnamurthy, H. Litz, T. Moseley, and P. Ranganathan, “Asmdb: understanding
and mitigating front-end stalls in warehouse-scale computers,” in Proceedings of
the 46th ISCA, 2019.

[28] N. Beckmann and D. Sanchez, “Talus: A simple way to remove cliffs in cache
performance,” in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2015, pp. 64–75.

[29] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,”
IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[30] L. A. Belady and F. P. Palermo, “On-line measurement of paging behavior by the
multivalued min algorithm,” IBM Journal of Research and Development, vol. 18,
no. 1, pp. 2–19, 1974.

[31] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer et al., “The dacapo benchmarks:
Java benchmarking development and analysis,” in Proceedings of the 21st annual
ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications, 2006, pp. 169–190.

[32] M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas, “Bulldozer: An approach to
multithreaded compute performance,” IEEE Micro, vol. 31, no. 2, pp. 6–15, 2011.

[33] D. Chen, T. Moseley, and D. X. Li, “Autofdo: Automatic feedback-directed opti-
mization for warehouse-scale applications,” in CGO, 2016.

[34] R. Cohn and P. G. Lowney, “Hot cold optimization of large windows/nt applica-
tions,” in Proceedings of the 29th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO 29. IEEE, 1996, pp. 80–89.

[35] T. P. P. Council, “Tpc-c,” [Online; accessed 19-Nov-2021]. [Online]. Available:
http://www.tpc.org/tpcc/

[36] W. Cui, X. Ge, B. Kasikci, B. Niu, U. Sharma, R. Wang, and I. Yun, “{REPT}: Re-
verse debugging of failures in deployed software,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018, pp. 17–32.

[37] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse dis-
tance analysis,” in Proceedings of the ACM SIGPLAN 2003 conference on Program-
ming language design and implementation, 2003, pp. 245–257.

[38] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and A. V. Veidenbaum,
“Improving cache management policies using dynamic reuse distances,” in 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE,
2012, pp. 389–400.

[39] W. Erquinigo, D. Carrillo-Cisneros, and A. Tang, “Reverse debugging at scale,”
https://engineering.fb.com/2021/04/27/developer-tools/reverse-debugging/.

[40] B. Fagin, “Partial resolution in branch target buffers,” IEEE Transactions on
Computers, vol. 46, no. 10, pp. 1142–1145, 1997.

[41] P. Faldu and B. Grot, “Leeway: Addressing variability in dead-block prediction for
last-level caches,” in 2017 26th International Conference on Parallel Architectures
and Compilation Techniques (PACT). IEEE, 2017, pp. 180–193.

[42] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: a study of
emerging scale-out workloads on modern hardware,”Acm sigplan notices, vol. 47,
no. 4, pp. 37–48, 2012.

[43] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in Interna-
tional Symposium on Microarchitecture, 2011.

[44] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Temporal
instruction fetch streaming,” in International Symposium on Microarchitecture,
2008.

[45] H. Gao and C. Wilkerson, “A dueling segmented lru replacement algorithm with
adaptive bypassing,” in JWAC 2010-1st JILP Worshop on Computer Architecture
Competitions: Cache Replacement Championship, 2010.

[46] N. Gober, G. Chacon, D. Jiménez, and P. V. Gratz, “The temporal ancestry
prefetcher.”

[47] Google, “Propeller: Profile guided optimizing large scale llvm-based relinker,”
https://github.com/google/llvm-propeller, 2020.

[48] D. A. J. P. V. Gratz and G. C. N. Gober, “Barca: Branch agnostic region searching
algorithm.”

[49] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez, T. Nakra,
P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha et al., “Evolution of the samsung
exynos cpu microarchitecture,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 40–51.

[50] P. Guide, “Intel® 64 and ia-32 architectures software developer’smanual,”Volume
3B: System programming Guide, Part, vol. 2, no. 11, 2011.

[51] V. Gupta, N. S. Kalani, and B. Panda, “Run-jump-run: Bouquet of instruction
pointer jumpers for high performance instruction prefetching.”

[52] S. Harizopoulos and A. Ailamaki, “Steps towards cache-resident transaction
processing,” in International conference on Very large data bases, 2004.

[53] I. Harshard Sane, Principle Software Engineer, “Active benchmarking for better
performance predictions,” https://www.intel.com/content/dam/www/central-
libraries/us/en/documents/dpm-workloads-explainer-tech-brief.pdf.

[54] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis,
and P. Ranganathan, “Learning memory access patterns,” arXiv preprint
arXiv:1803.02329, 2018.

[55] W. He, J. Mestre, S. Pupyrev, L. Wang, and H. Yu, “Profile inference revisited,”
Proceedings of the ACM on Programming Languages, vol. 6, no. POPL, pp. 1–24,
2022.

[56] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the memory system:
predicting and optimizing memory behavior,” in Proceedings 29th Annual Inter-
national Symposium on Computer Architecture. IEEE, 2002, pp. 209–220.

[57] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Rebasing instruction prefetching:
An industry perspective,” IEEE Computer Architecture Letters, 2020.

[58] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Re-establishing fetch-directed
instruction prefetching: An industry perspective,” IEEE International Symposium
on Performance Analysis of Systems and Software, 2021.

[59] Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path-based next trace prediction,” in
Proceedings of 30th Annual International Symposium on Microarchitecture. IEEE,
1997, pp. 14–23.

[60] A. Jain and C. Lin, “Back to the future: leveraging belady’s algorithm for im-
proved cache replacement,” in 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE, 2016, pp. 78–89.

[61] A. Jain and C. Lin, “Rethinking belady’s algorithm to accommodate prefetching,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer Architec-
ture (ISCA). IEEE, 2018, pp. 110–123.

[62] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance cache
replacement using re-reference interval prediction (rrip),” ACM SIGARCH Com-
puter Architecture News, vol. 38, no. 3, pp. 60–71, 2010.

[63] S. Jamilan, T. A. Khan, G. Ayers, B. Kasikci, and H. Litz, “Apt-get: Profile-guided
timely software prefetching,” in Proceedings of the Seventeenth European Confer-
ence on Computer Systems, 2022, pp. 747–764.

https://github.com/chipsalliance/rocket-chip
https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/
https://pyperformance.readthedocs.io/
https://www.python.org/
https://jilp.org/cbp2016/
https://github.com/facebookarchive/oss-performance
https://github.com/facebookarchive/oss-performance
https://research. ece.ncsu.edu/ipc/
https://research. ece.ncsu.edu/ipc/
https://doi.org/10.1145/3302424.3303970
http://www.tpc.org/tpcc/
https://github.com/google/llvm-propeller
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/dpm-workloads-explainer-tech-brief.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/dpm-workloads-explainer-tech-brief.pdf

[64] D. A. Jiménez, “Insertion and promotion for tree-based pseudolru last-level
caches,” in Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013, pp. 284–296.

[65] D. A. Jiménez, S. W. Keckler, and C. Lin, “The impact of delay on the design of
branch predictors,” in Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture, 2000, pp. 67–76.

[66] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” in 2017 50th
Annual IEEE/ACM International Symposium onMicroarchitecture (MICRO). IEEE,
2017, pp. 436–448.

[67] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei,
and D. Brooks, “Profiling a warehouse-scale computer,” in Proceedings of the
42nd ISCA, 2015.

[68] R. Karedla, J. S. Love, and B. G. Wherry, “Caching strategies to improve disk
system performance,” Computer, vol. 27, no. 3, pp. 38–46, 1994.

[69] B. Kasikci, W. Cui, X. Ge, and B. Niu, “Lazy diagnosis of in-production con-
currency bugs,” in Proceedings of the 26th Symposium on Operating Systems
Principles, 2017, pp. 582–598.

[70] B. Kasikci, C. Pereira, G. Pokam, B. Schubert, M. Musuvathi, and G. Candea,
“Failure sketches: A better way to debug,” ser. Hot Topics in Operating Systems,
2015, p. 5.

[71] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea, “Failure sketching:
A technique for automated root cause diagnosis of in-production failures,” in
Proceedings of the 25th Symposium on Operating Systems Principles, 2015, p.
344–360.

[72] C. Kaynak, B. Grot, and B. Falsafi, “Shift: Shared history instruction fetch for
lean-core server processors,” in International Symposium on Microarchitecture,
2013.

[73] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: unified instruction supply
for scale-out servers,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015, pp. 166–177.

[74] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead block prediction for
last-level caches,” in 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 2010, pp. 175–186.

[75] T. A. Khan, N. Brown, A. Sriraman, N. K. Soundararajan, R. Kumar, J. Devietti,
S. Subramoney, G. A. Pokam, H. Litz, and B. Kasikci, “Twig: Profile-guided btb
prefetching for data center applications,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 816–829.

[76] T. A. Khan, I. Neal, G. Pokam, B. Mozafari, and B. Kasikci, “Dmon: Efficient
detection and correction of data locality problems using selective profiling,” in
15th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 21), 2021, pp. 163–181.

[77] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci, “I-spy:
Context-driven conditional instruction prefetching with coalescing,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2020, pp. 146–159.

[78] T. A. Khan, D. Zhang, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci,
“Ripple: Profile-guided instruction cache replacement for data center applica-
tions,” in Proceedings (to appear) of the 48th International Symposium on Computer
Architecture (ISCA), ser. ISCA 2021, Jun. 2021.

[79] T. A. Khan, Y. Zhao, G. Pokam, B. Mozafari, and B. Kasikci, “Huron: hybrid
false sharing detection and repair,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2019, pp.
453–468.

[80] M. Kharbutli and Y. Solihin, “Counter-based cache replacement algorithms,” in
2005 International Conference on Computer Design. IEEE, 2005, pp. 61–68.

[81] R. Kobayashi, Y. Yamada, H. Ando, and T. Shimada, “A cost-effective branch
target buffer with a two-level table organization,” in Proceedings of the 2nd
International Symposium of Low-Power and High-Speed Chips (COOL Chips II),
1999.

[82] A. Kolli, A. Saidi, and T. F. Wenisch, “Rdip: return-address-stack directed in-
struction prefetching,” in 2013 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2013, pp. 260–271.

[83] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-end bottleneck
with shotgun,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 30–42, 2018.

[84] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A metadata-free
architecture for control flow delivery,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2017, pp. 493–504.

[85] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” in International Symposium on Code Generation and
Optimization, 2004. CGO 2004. IEEE, 2004, pp. 75–86.

[86] R. Lavaee, J. Criswell, and C. Ding, “Codestitcher: inter-procedural basic block
layout optimization,” in Proceedings of the 28th International Conference on
Compiler Construction, 2019, pp. 65–75.

[87] Lee and Smith, “Branch prediction strategies and branch target buffer design,”
Computer, vol. 17, no. 1, pp. 6–22, 1984.

[88] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim, “On
the existence of a spectrum of policies that subsumes the least recently used
(lru) and least frequently used (lfu) policies,” in Proceedings of the 1999 ACM

SIGMETRICS international conference on Measurement and modeling of computer
systems, 1999, pp. 134–143.

[89] D. X. Li, R. Ashok, and R. Hundt, “Lightweight feedback-directed cross-module
optimization,” in Proceedings of the 8th annual IEEE/ACM international sympo-
sium on Code generation and optimization, 2010, pp. 53–61.

[90] L. Li, D. Tong, Z. Xie, J. Lu, and X. Cheng, “Optimal bypass monitor for high
performance last-level caches,” in Proceedings of the 21st international conference
on Parallel architectures and compilation techniques, 2012, pp. 315–324.

[91] H. Litz, G. Ayers, and P. Ranganathan, “CRISP: critical slice prefetching,”
in ASPLOS ’22: 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Lausanne, Switzerland,
28 February 2022 - 4 March 2022, B. Falsafi, M. Ferdman, S. Lu, and
T. F. Wenisch, Eds. ACM, 2022, pp. 300–313. [Online]. Available: https:
//doi.org/10.1145/3503222.3507745

[92] E. Z. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn, “An imitation
learning approach for cache replacement,” arXiv preprint arXiv:2006.16239, 2020.

[93] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new approach for
eliminating dead blocks and increasing cache efficiency,” in 2008 41st IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2008, pp. 222–233.

[94] C.-K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney, “Ispike: a post-link opti-
mizer for the intel/spl reg/itanium/spl reg/architecture,” in International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004, pp.
15–26.

[95] C.-K. Luk and T. C. Mowry, “Cooperative prefetching: Compiler and hardware
support for effective instruction prefetching in modern processors,” in Interna-
tional Symposium on Microarchitecture, 1998.

[96] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation techniques for
storage hierarchies,” IBM Systems journal, vol. 9, no. 2, pp. 78–117, 1970.

[97] C. Mazumdar, P. Mitra, and A. Basu, “Dead page and dead block predictors:
Cleaning tlbs and caches together,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2021, pp. 507–519.

[98] P. Michaud, “Some mathematical facts about optimal cache replacement,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 13, no. 4, pp.
1–19, 2016.

[99] P. Michaud, “Pips: Prefetching instructions with probabilistic scouts,” in The 1st
Instruction Prefetching Championship, 2020.

[100] A. A. Moreira, G. Ottoni, and F. M. Quintão Pereira, “Vespa: static profiling for
binary optimization,” Proceedings of the ACM on Programming Languages, vol. 5,
no. OOPSLA, pp. 1–28, 2021.

[101] T. Nakamura, T. Koizumi, Y. Degawa, H. Irie, S. Sakai, and R. Shioya, “D-jolt:
Distant jolt prefetcher.”

[102] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k page replacement algorithm
for database disk buffering,” Acm Sigmod Record, vol. 22, no. 2, pp. 297–306, 1993.

[103] G. Ottoni, “Hhvm jit: A profile-guided, region-based compiler for php and hack,”
in Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2018, pp. 151–165.

[104] G. Ottoni and B. Liu, “Hhvm jump-start: Boosting both warmup and steady-
state performance at scale,” in 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, pp. 340–350.

[105] G. Ottoni and B. Maher, “Optimizing function placement for large-scale data-
center applications,” in 2017 IEEE/ACM International Symposium on Code Gener-
ation and Optimization (CGO). IEEE, 2017, pp. 233–244.

[106] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: a practical binary optimizer
for data centers and beyond,” in 2019 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 2019, pp. 2–14.

[107] M. Panchenko, R. Auler, L. Sakka, and G. Ottoni, “Lightning bolt: powerful,
fast, and scalable binary optimization,” in Proceedings of the 30th ACM SIGPLAN
International Conference on Compiler Construction, 2021, pp. 119–130.

[108] R. Panda, P. V. Gratz, and D. A. Jiménez, “B-fetch: Branch prediction directed
prefetching for in-order processors,” IEEE Computer Architecture Letters, vol. 11,
no. 2, pp. 41–44, 2011.

[109] A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja, C. Abernathy,
J. Koppanalil, T. Ringe, A. Tummala et al., “The arm neoverse n1 platform:
Building blocks for the next-gen cloud-to-edge infrastructure soc,” IEEE Micro,
vol. 40, no. 2, pp. 53–62, 2020.

[110] C. H. Perleberg and A. J. Smith, “Branch target buffer design and optimization,”
IEEE transactions on computers, vol. 42, no. 4, pp. 396–412, 1993.

[111] L. L. Peterson, “Architectural and compiler support for effective instruction
prefetching: a cooperative approach,” ACM Transactions on Computer Systems,
2001.

[112] E. Petrank and D. Rawitz, “The hardness of cache conscious data placement,” in
POPL, 2002.

[113] K. Pettis and R. C. Hansen, “Profile guided code positioning,” in Proceedings
of the ACM SIGPLAN 1990 conference on Programming language design and
implementation, 1990, pp. 16–27.

[114] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tůma, M. Studener,
L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger, and W. Binder, “Renais-
sance: Benchmarking suite for parallel applications on the jvm,” in Programming

https://doi.org/10.1145/3503222.3507745
https://doi.org/10.1145/3503222.3507745

Language Design and Implementation, 2019.
[115] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion

policies for high performance caching,” ACM SIGARCH Computer Architecture
News, vol. 35, no. 2, pp. 381–391, 2007.

[116] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for mlp-aware
cache replacement,” in 33rd International Symposium on Computer Architecture
(ISCA’06). IEEE, 2006, pp. 167–178.

[117] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn, J. Larriba-Pey, P. G. Lowney,
andM. Valero, “Code layout optimizations for transaction processingworkloads,”
ACM SIGARCH Computer Architecture News, 2001.

[118] G. Reinman, T. Austin, and B. Calder, “A scalable front-end architecture for fast
instruction delivery,” ACM SIGARCH Computer Architecture News, vol. 27, no. 2,
pp. 234–245, 1999.

[119] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction prefetching,” in
MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium
on Microarchitecture. IEEE, 1999, pp. 16–27.

[120] A. Ros and A. Jimborean, “The entangling instruction prefetcher,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 84–87, 2020.

[121] A. Ros and A. Jimborean, “A cost-effective entangling prefetcher for instruc-
tions,” in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 99–111.

[122] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: a low latency approach
to high bandwidth instruction fetching,” in Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO 29. IEEE,
1996, pp. 24–34.

[123] J. Rupley, “Samsung exynos m3 processor,” IEEE Hot Chips, vol. 30, 2018.
[124] D. Seal, ARM architecture reference manual. Pearson Education, 2001.
[125] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-address

filter: A unified mechanism to address both cache pollution and thrashing,”
in 2012 21st International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 2012, pp. 355–366.

[126] A. Seznec, “Tage-sc-l branch predictors,” in JILP-Championship Branch Prediction,
2014.

[127] A. Seznec, “The fnl+ mma instruction cache prefetcher,” in IPC-1-First Instruction
Prefetching Championship, 2020.

[128] S. Seznec, “Don’t use the page number, but a pointer to it,” in 23rd Annual
International Symposium on Computer Architecture (ISCA’96). IEEE, 1996, pp.
104–104.

[129] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to the cache
replacement problem,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 413–425.

[130] Y. Smaragdakis, S. Kaplan, and P. Wilson, “Eelru: simple and effective adaptive
page replacement,” ACM SIGMETRICS Performance Evaluation Review, vol. 27,
no. 1, pp. 122–133, 1999.

[131] A. J. Smith, “Sequential program prefetching in memory hierarchies,” Computer,
no. 12, pp. 7–21, 1978.

[132] N. K. Soundararajan, P. Braun, T. A. Khan, B. Kasikci, H. Litz, and S. Subramoney,
“Pdede: Partitioned, deduplicated, delta branch target buffer,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, 2021, pp. 779–
791.

[133] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimizing server archi-
tectures for microservice diversity@ scale,” in Proceedings of the 46th Interna-
tional Symposium on Computer Architecture, 2019, pp. 513–526.

[134] R. Subramanian, Y. Smaragdakis, and G. H. Loh, “Adaptive caches: Effective shap-
ing of cache behavior to workloads,” in 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). IEEE, 2006, pp. 385–396.

[135] D. Suggs, M. Subramony, and D. Bouvier, “The amd “zen 2” processor,” IEEE
Micro, vol. 40, no. 2, pp. 45–52, 2020.

[136] M. Takagi and K. Hiraki, “Inter-reference gap distribution replacement: an
improved replacement algorithm for set-associative caches,” in Proceedings of
the 18th annual international conference on Supercomputing, 2004, pp. 20–30.

[137] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for reuse prediction,”
in 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–12.

[138] G. Vavouliotis, L. Alvarez, B. Grot, D. Jiménez, and M. Casas, “Morrigan: A
composite instruction tlb prefetcher,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 1138–1153.

[139] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos, “Temporal
streams in commercial server applications,” in 2008 IEEE International Symposium
on Workload Characterization. IEEE, 2008, pp. 99–108.

[140] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos, “Practical
off-chip meta-data for temporal memory streaming,” in 2009 IEEE 15th Interna-
tional Symposium on High Performance Computer Architecture. IEEE, 2009, pp.
79–90.

[141] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsafi,
“Temporal streaming of shared memory,” in 32nd International Symposium on
Computer Architecture (ISCA’05). IEEE, 2005, pp. 222–233.

[142] Wikipedia contributors, “Drupal — Wikipedia, the free encyclopedia,” https:
//en.wikipedia.org/w/index.php?title=Drupal&oldid=989582664, 2020, [Online;
accessed 23-November-2020].

[143] Wikipedia contributors, “Mediawiki — Wikipedia, the free encyclopedia,” https:
//en.wikipedia.org/w/index.php?title=MediaWiki&oldid=989993176, 2020, [On-
line; accessed 23-November-2020].

[144] Wikipedia contributors, “Wordpress — Wikipedia, the free encyclopedia,” https:
//en.wikipedia.org/w/index.php?title=WordPress&oldid=977243718, 2020, [On-
line; accessed 23-November-2020].

[145] Wikipedia contributors, “Cross-validation (statistics) — Wikipedia, the free
encyclopedia,” https://en.wikipedia.org/w/index.php?title=Cross-validation_
(statistics)&oldid=1055904460, 2021, [Online; accessed 24-November-2021].

[146] Wikipedia contributors, “Mysql — Wikipedia, the free encyclopedia,” https:
//en.wikipedia.org/w/index.php?title=MySQL&oldid=1054628857, 2021, [Online;
accessed 19-November-2021].

[147] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr, and J. Emer,
“Ship: Signature-based hit predictor for high performance caching,” in Proceed-
ings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
2011, pp. 430–441.

[148] T.-Y. Yeh and Y. N. Patt, “A comprehensive instruction fetch mechanism for a
processor supporting speculative execution,” ACM SIGMICRO Newsletter, vol. 23,
no. 1-2, pp. 129–139, 1992.

[149] J. Zhou and K. A. Ross, “Buffering databse operations for enhanced instruction
cache performance,” in International conference on Management of data, 2004.

[150] Y. Zhou, X. Dong, A. L. Cox, and S. Dwarkadas, “On the impact of instruc-
tion address translation overhead,” in 2019 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2019, pp. 106–116.

[151] G. Zuo, J. Ma, A. Quinn, P. Bhatotia, P. Fonseca, and B. Kasikci, “Execution
reconstruction: Harnessing failure reoccurrences for failure reproduction,” in
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, 2021, p. 1155–1170.

https://en.wikipedia.org/w/index.php?title=Drupal&oldid=989582664
https://en.wikipedia.org/w/index.php?title=Drupal&oldid=989582664
https://en.wikipedia.org/w/index.php?title=MediaWiki&oldid=989993176
https://en.wikipedia.org/w/index.php?title=MediaWiki&oldid=989993176
https://en.wikipedia.org/w/index.php?title=WordPress&oldid=977243718
https://en.wikipedia.org/w/index.php?title=WordPress&oldid=977243718
https://en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=1055904460
https://en.wikipedia.org/w/index.php?title=Cross-validation_(statistics)&oldid=1055904460
https://en.wikipedia.org/w/index.php?title=MySQL&oldid=1054628857
https://en.wikipedia.org/w/index.php?title=MySQL&oldid=1054628857

	Abstract
	1 Introduction
	2 Understanding the Challenges of BTB Replacement
	2.1 Experimental methodology
	2.2 Why is the BTB replacement policy important?
	2.3 Why do prior replacement policies fall short?
	2.4 How do we redesign BTB replacement?
	2.5 Which entries are worth inserting into the BTB?

	3 Design of Thermometer
	3.1 Profile Collection
	3.2 Measuring the Branch Temperature
	3.3 Hint Injection
	3.4 Microarchitectural Modifications

	4 Evaluation
	4.1 Methodology
	4.2 Performance analysis
	4.3 Sensitivity analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

