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Abstract— Non-volatile memory (NVM) technologies suffer
from limited write endurance. To address this challenge, we pro-
pose Predict and Write (PNW), a K/V-store that uses a clustering-
based machine learning approach to extend the lifetime of
NVMs. PNW decreases the number of bit flips for PUT/UPDATE
operations by determining the best memory location an updated
value should be written to. PNW leverages the indirection level
of K/V-stores to freely choose the target memory location for any
given write based on its value. PNW organizes NVM addresses
in a dynamic address pool clustered by the similarity of the
data values they refer to. We show that, by choosing the right
target memory location for a given PUT/UPDATE operation, the
number of total bit flips and cache lines can be reduced by up
to 85% and 56% over the state of the art.

Index Terms—hybrid DRAM-NVM, write endurance, K-means
clustering, bit flips

I. INTRODUCTION

In recent years, there has been a growing interest in Non-
Volatile Memory (NVM)—such as Phase-Change Memory
(PCM)—due to their unique characteristics, including non-
volatility, high density, high scalability, and byte addressabil-
ity. However, these emerging NVMs also pose a number of
challenges: They have limited write endurance and asymmet-
ric read/write access properties, requiring special treatment
when deployed in large scale computing systems [1]. While
DRAM’s write endurance (the number of writes that can
be applied to a block of storage media before it becomes
unreliable) is on the order of 1015 writes, NVM technologies,
such as PCM, can be written only up to 108–109 times [2].

The limited endurance of PCM means that cells can only
be written a limited number of times before they “wear
out”. Some recent technologies, such as Intel’s Optane DIMM
[3], aim to increase the endurance of NVMs significantly.
However, unlike other non-volatile technologies such as flash,
PCM cells are written on the byte of cache line granularity
instead of the page granularity leading to uneven wear-out
even on the sub page-level. To ensure failure-atomicity for the
data structures stored in NVMs, software schemes, such as
logging [4] and shadowing [5], are used. This causes extra
overheads in terms of write amplification due to writing log
entries or creating additional copies of the data [6]. Even in
modern NVM devices, such as Intel’s 3DXPoint—where it
is claimed that performance is unaffected by the number of
modified words in a cache line—it is beneficial to reduce

the number of write operations, to improve endurance and
retention.

There exists many proposals to increase the write endurance
of NVM storage. One promising approach is the Read-Before-
Write (RBW) technique, in which the content of an old
memory block is read before it is overwritten with the new
data. This technique replaces each NVM write operation with
a more efficient read-modify-write operation. Reading before
writing allows comparing the bits of the old and new data,
updating only the bits that differ. Other proposed methods,
such as [6], [7], overcome the limitations of NVMs by
designing data structures that decrease write amplification.

However, prior methods are either (1) application-agnostic
without the ability to leverage the write and data patterns of
applications, or (2) specialized solutions that are built for the
write and data patterns of specific applications. Particularly,
application-agnostic solutions such as FNW [8] and NVM data
structures [6], [7], do not leverage the write and data patterns
of the application and miss the opportunity to judiciously place
writes on memory locations that would minimize bit flips.
On the other hand, specialized solutions such as [9], try to
minimize the number of bit flips via fixed bit masks that target
specific predefined workloads. This renders these solutions
limited to predefined applications limiting performance for
applications with dynamically changing write patterns.

In this paper, we propose Predict and Write (PNW), an
NVM-based K/V store that uses a dynamic approach to
minimize bit flips adapting to new applications and dynamic
workload changes. PNW decreases both the number of NVM
line writes as well as the number of NVM word writes (see
section VI-A).

We leverage machine learning (ML) to continuously learn
a model that reflects the existing write patterns of a given
workload. The model learns to cluster memory locations in
NVM enabling the placement of future writes to locations
that minimize the amount of bit flips. Furthermore, by pe-
riodically retraining the ML model, it adapts dynamically to
a changing workload without the need for user intervention.
It is worth noting that unlike the previous methods, which
are based on the RBW technique, PNW does not depend
on NVM hardware modifications. This is because we do not
require using hardware-based read-modify-write operations
before write operations as we can avoid writing similar data
at a larger granularity (e.g. a cache line). However, future



TABLE I: Comparison of memory technologies [10], [11]

Category Read Latency Write Latency Write Endurance
HDD 5ms 5ms ≥ 1015

DRAM 50 ∼ 60ns 50 ∼ 60ns ≥ 1016

PCM 50 ∼ 70ns 120 ∼ 150ns 108 ∼ 109

ReRAM 10ns 50ns 1011

SLC Flash 25µs 500µs 104 ∼ 105

STT-RAM 10 ∼ 35ns 50ns ≥ 1015

work on combining PNW with custom hardware support could
further reduce the number bit flips at the bit or byte level.

Our design consists of a ML model, a hash index, a
table for storing metadata named the dynamic address pool
and a data zone to store the actual data or K/V pairs (see
section V-A). We also show in the evaluation section that
the performance benefits obtained from the ML technique
significantly outweigh its overhead in terms of space cost and
time. This is the case even when the ML models are running on
CPUs without using specialized hardware. Future extensions
of our proposal to use methods that process the ML model
on specialized hardware such as accelerators and TPUs would
further improve the efficiency of our approach [12].

II. BACKGROUND

A. Non-Volatile Memory Technologies

Emerging Non-Volatile Memory (NVM) technologies, such
as Phase-Change Random Access Memory (PCRAM, PRAM,
or PCM) and Resistive Memory (ReRAM), provides fast
persistent storage, significantly outperforming traditional Disk
and Flash technologies. Table I shows the performance charac-
teristics of some prevalent memory technologies. While NVM
provides similar read latency to DRAM, its write latency is
higher than DRAM and thus, minimizing write operations be-
comes critical for designing software systems on top of NVMs.
For this work, we assume a hybrid memory architecture, where
both DRAM and PCM exist on the same main memory level,
managed under a single physical address space [13]. Although
PNW can support other memory architectures, it is designed
to work on hybrid memory systems, in which case NVM acts
as a fast persistent memory directly connected to the memory
bus.

A PCM write operation demands significantly more current
and power than a read operation. This property is of great
importance in systems like mobile systems, even requiring
them to support “iterative writing” of data units of smaller
sizes than memory words to limit the instantaneous current.
For example, in [14] and [15], the write modes of ×2, ×4,
and ×8 are supported instead of faster modes like ×16. As
another example, in [16], the serial writing of even one bit at
a time is supported. Integrating NVMs into existing computer
systems requires to develop new NVM-friendly data structures
[17] that focus on special properties such as reducing write
amplification [7], or being lock-free [18], [19]. For instance,
the techniques proposed in [7], [20], [21] target the reduction
of write amplification, leading to the reduction of bit flips.

However, these methods lead to the increase in wear-out cost
mostly because of overlooking the reduction of bit flips at the
expense of the reduction of write amplification. We show in
Section VI that this problem can also lead to the increase in
the number of written cache lines compared to PNW, which
focuses on minimizing bit flips.

III. RELATED WORK

Although recent methods have been able to address write
endurance by reducing the number of bit flips through the
RBW technique and specialized NVM data structures, they
leav out significant opportunities for reducing additional bit
flips: (1) application-agnostic methods that do not leverage the
write and data patterns including RBW based techniques [8],
[22], [23] and NVM-based structures that aim to reduce
write amplification [6], [7] miss the opportunity of using
existing patterns in the stored data to minimize bit flips.
Specifically, writes are generally updated in place, whereas
our proposed technique determines the target memory location
based on the written data values (2) specialized methods that
are designed for specific workloads, such as Captopril [9],
decrease the number of bit flips via fixed bit masks. These
methods only work on specific workloads and suffer from
significant overheads. In particular, the bit-masks are storage
space intensive themselves and, furthermore, as the bit masks
are determined once, the approach cannot adapt to changing
workloads.

In [23], the authors propose DCW to find common patterns
and then compress data to reduce the number of bit flips in
SCM. Like FNW, DCW replaces a write operation with an
RBW process. MinShift [22] proposes a method to reduce
the total number of updated bits to SCMs. The main idea of
this method is that if the hamming distance falls between two
specific bounds, the new data is rotated to change the hamming
distance. Captopril [9] is another method that reduces the
total number of bit flips by masking specific hot locations
that are flipped more than others. However, as we will see in
section VI, this method suffers from relatively high overhead.
More importantly, it is specialized and would only work on a
predefined application.

Finally, there is a group of techniques that find the similarity
between items through Locality Sensitive Hashing (LSH)
[24], [25]. In this technique, each item is transformed to
a hash fingerprint (usually using minhash), and later, LSH
is applied to it. Since LSH does not preserve the bit-wise
similarity among items, it cannot be efficiently used for bit-
wise similarity clustering, which is the main purpose of PNW.

IV. PREDICT AND WRITE

Whenever there is a need for updating memory in-place,
the number of bit flips depends on the hamming distance
between the old data—currently in the memory location—
and the new data, which is going to overwrite the memory
location. PNW reduces bit flips by avoiding in-place updates
and, instead, finding a new memory location for each write
that would minimize the hamming distance. By placing the



TABLE II: An example of a PCM with 6 elements

Cluster Index Content

1 0 ’0’, ’0’, ’0’, ’0’, ’0’, ’1’, ’1’, ’1’
1 ’0’, ’0’, ’0’, ’0’, ’1’, ’0’, ’1’, ’1’

2 2 ’0’, ’0’, ’1’, ’0’, ’1’, ’1’, ’0’, ’0’
3 ’0’, ’0’, ’1’, ’1’, ’1’, ’1’, ’0’, ’0’

3 4 ’1’, ’1’, ’0’, ’1’, ’0’, ’0’, ’0’, ’0’
5 ’0’, ’1’, ’1’, ’1’, ’0’, ’0’, ’0’, ’0’

Fig. 1: An example of a memory content that is going to be
replaced by a new item with close hamming distance in PNW.

write operation in the right memory location that minimizes
the hamming distance between the old and the new data,
the number of bit flips can be significantly reduced. While
promising for reducing bit flips, this technique introduces
several challenges. First, it requires an indirection layer to
map a logical value to its current physical location. As the
write unit size of NVMs is a byte, storing these mappings on
the byte level introduces a significant overhead. Second, the
technique requires computing the hamming distance between
the new (to-be-written) data and all the available physical data
locations. Computing the similarity between all locations is
prohibitive.

The first challenge is addressed by leveraging a K/V store
that already implements an indirection layer to map keys
to values. To address the second challenge (finding the
right memory location for a write operation to minimize the
hamming distance), we introduce a machine learning approach
based on k-means clustering.

The intuition behind our clustering approach is that we
cluster similar memory locations in terms of the bit patterns of
their contents. Using this clustering, we can quickly retrieve
a new memory location for a PUT operation such that the
hamming distance between the new to-be-written data and the
old memory location where it will be written is minimized.
We do not need to perform k-means clustering for each
PUT/DELETE operation; instead, it is sufficient to perform
clustering periodically. We evaluate the training frequency and
its effect on reducing bit flips in Section VI-F.

To illustrate our approach, consider a storage system that is
using a PCM as its persistent memory with a capacity of six
equal sized (8 words) entries, managed by a free-list which we
refer to as the dynamic-address-pool (Table II). Now, suppose
that we have two PUT operations that write the following new
data items, d1: [’0’, ’0’, ’0’, ’0’, ’1’, ’1’, ’1’, ’1’] and d2: [’1’,
’1’, ’1’, ’1’, ’0’, ’0’, ’0’, ’0’].

In a regular system, where updates are applied in place,
there exists only one option to write the data and hence
the reduction of bit flips with techniques such as FNW is
limited. PNW, on the other hand, determines the best memory
location to write the new data by computing the minimum

(a) Proposed architecture for small keys

(b) Proposed architecture for large keys

Fig. 2: An example of procedures which serve K/V PUT and
DELETE operations for a) small and b) large keys.

hamming distance between the new data and existing free
memory locations maintained in the dynamic-address-pool.
Computing all hamming distances grows in complexity with
the number of entries in the dynamic-address-pool and hence
becomes intractable. To overcome this problem, PNW groups
the entries in the dynamic-address-pool into clusters according
to their hamming distance.

For instance, we can group the elements from the example
in Table II into three clusters where indexes 0 and 1 form
cluster 1, indexes 2 and 3 form cluster 2, and indexes 4 and 5
form cluster 3. Now, if we receive the same new items d1 and
d2, we direct them to clusters that are closest to them, which
are clusters 1 and 3, respectively. These items are grouped
together because the K-means model assigns data points to a
cluster such that the sum of the squared distance between the
data points and the cluster’s centroid (arithmetic mean of all
the data points that belong to that cluster) is at the minimum.
In this example, the centroids for the first, second, and third
clusters would be [0. 0. 0. 0. 0.5 0.5 1. 1. ], [0. 0. 1. 0.5
1. 1. 0. 0. ], and [0.5 1. 0.5 1. 0. 0. 0. 0. ], respectively.
Because the variations within clusters are minimal, the data
points are homogeneous (similar) within the same cluster. In
this scenario, wherever we decide to write the items within
their corresponding clusters, we will end up writing only 1
bit for each item, without any extra flag bits. This is a simple
example of how PNW works.

It is worth noting that PNW reduces the number of writes
in two ways: (1) the first way is by writing new items in-
place to replace a similar old value in terms of hamming
distance. This leads to PNW decreasing NVM word writes
(i.e., the number of modified words in a cache line.) (2) In the
second way, PNW decreases the number of NVM line writes,
respectively cache lines needed to be written per item. For



Fig. 3: PCA variance ratio according to the number of principal
components.

example, suppose that the page size in our system is 4KB as
shown in Figure. 1. In this scenario, if the items are similar to
each other in terms of the hamming distance, fewer number of
cache lines are needed to fulfill the request (suppose each part
in Figure. 1 is a cache line). This enables PNW to decrease
NVM word writes in addition to NVM line writes.

V. KEY-VALUE STORE DESIGN

In this section, we present the design of our K/V store
utilizing the Predict-and-Write technique. We first describe the
ML model and then discuss the capabilities supported by our
proposed K/V store.

A. Overview and system model

Our design consists of a ML model, a hash index, a table for
storing available (free) NVM addresses dynamic address pool,
and the K/V data zone to store the K-V pairs. In Figure. 2,
we show a K/V store on a DRAM-NVM hybrid memory
layout using our PNW method. Our data store implementation
supports K/V operations including GET, PUT, and DELETE.

1) Machine Learning Model: Our proposed machine learn-
ing method learns the existing data distribution among real-
world workloads to decrease the bit flips in write operations.
We utilize an unsupervised ML model that is able to cluster
data elements into a number of clusters based on their simi-
larity. In particular, we leverage K-means clustering to cluster
the available data on PCM. The size of the buckets (the unit
of the value size) can vary ranging from a word size to the
size of a page or even the size of a document depending on
the system.

In our system, each memory location is encoded as a vector
of bits, each of which is used as a feature/dimension. The
entire data zone can be encoded as a 2D tensor (that is, an array
of vectors) of shape (n, m), where the first axis (n) represents
the samples (old data) and the second axis (m) represents the
features. Because the size of the buckets can be very large
(thousands of bits), it can lead to a problem referred to as the
“curse of dimensionality”, which increases the training time
and space complexity of the model significantly.

Fig. 4: Sum of Square Error graph to find the optimal K.

Addressing the Curse of Dimensionality To tackle the
curse of dimensionality problem, we use Principal Component
Analysis (PCA) on the data sets used in this paper reducing
the number of dimensions before training the model. Although
PCA is applicable to all data sets, it is especially useful for
the ones with a very large number of features. Projecting data
to a lower dimensional subspace is very common in different
areas such as meteorology, image processing, and genomics
analysis, especially before K-means clustering is applied [26]–
[29]. The main basis of PCA-based dimension reduction is to
keep only the principle components (features) which explain
the most variance in the original data [30]. Figure. 3 shows
the PCA variance ratio according to the number of principal
components for MNIST, which is one of the data sets we
use in our tests. In this example, we only keep the first 1000
principal components (features) because they are enough to
represent more than 80% of the variance in the data.

Determining the Number of Clusters Another important
decision that needs to be made before training the model is
to determine the number of clusters (K). There are a number
of ways to determine the optimal value for K [31]. In this
work, we use one of the most common techniques called the
“elbow method” [32]–[34]. The elbow method is expressed as
the following Sum of Squared Error (SSE) [33]:

SSE(X,Π) =

K∑
i=1

∑
xj∈Ci

‖xj −mi‖22 (1)

where ‖.‖2 denotes the Euclidean (L2) norm,
mi= 1

|Ci|
∑

xj∈Ci
xj is the centroid of cluster Ci

where the cardinality is |Ci|, Π={C1, C2, ..., CK}, and
X={x1, ..., xi, ..., xN} (N is the feature vector).

In this method, the value for SSE is calculated as we
increase the number of clusters. To determine the optimal
number of clusters, we identify a sharp decrease known as
the “elbow” or “knee”, which suggests the optimal value for K
[33]–[35]. Figure. 4 shows an example of choosing the optimal
K by seeing the significant decrease in the SSE graph, which
is in K = 5 (the data set is MNIST).



Fig. 5: Dynamic Address Pool.

The ML model is constructed on DRAM as it does not
need to be persistent and can be reconstructed after a crash.
By constructing the model on DRAM, we take advantage of
both DRAM’s high write endurance and DRAM’s high speed.
Another advantage of our proposed method is that this model
can be replaced by any customized learning model.

2) Dynamic address pool: The dynamic address pool is a
table that contains a number of entries, equal to the number
of clusters in the ML model (Figure. 5). Each entry in the
dynamic address pool contains a free-list of the available
memory locations that belong to the same cluster, as it is
learned by the ML model.

Initialization. The first step of initialization is creating a K-
means clustering model based on the number of clusters we
want to have, and then training the model on all the available
data in the NVM storage called the data zone (Algorithm 1).
The next step is to label data items in each memory location
(line 3). Finally, we add the available addresses on the data
zone to their corresponding entry in the dynamic address pool
(lines 4 and 5). Now, when a PUT request is received by
the system, the ML model finds its label, and based on that
label, the dynamic address pool returns one address from
corresponding cluster. We maintain a flag for each address in
the dynamic address pool to indicate whether it is available.
We also remove memory addresses out of the dynamic address
pool when they are allocated to a K/V pair and reinsert them
afterwards to ameliorate the cost of keeping a flag per address
in terms of lookup time.

It is worth noting that the storage overhead of the dynamic
address pool is proportional to the number of pointers that are
stored per value. As a result, for large values, the size of the
table does not grow significantly. For small values, however,
the number of addresses that needs to be stored per value
can grow substantially. To limit the table size, we set a fixed
number of entries in the table, so the size of the table cannot
not grow to more than a specific maximum threshold. In this
way, the table is used by adding addresses in and removing
them from the table until the number of available addresses
goes under a minimum threshold, called the load factor, which
is described in details in section. V-C.

Algorithm 1: Initialization
// n clusters: number of clusters
// D’ and A: content and addresses of
the data zone

// DAP: Dynamic Address Pool
// N: len(D’)

1: model = KMeans(n clusters)
2: model.train(D’)
3: labels = model.labels
4: for (i:=0, i<N, i++)
5: DAP[labels[i]].append(A(i))

3) Hash index: Indexing is critical in designing K/V stores.
Our hash index component maps each key to the memory
location that contains its value in the NVM data zone. To build
indexes that support K/V operations, there exists a variety of
choices ranging from B+-Tree to LSM trees to hashmaps.
The operational efficiency of each indexing structure varies
from one implementation to another and hence the optimal
implementation is application specific. For the existing im-
plementation, we choose hash indexing, however, it can be
replaced with any other indexing data structure. The only
requirement of the indexing structure is that it can map logical
keys to arbitrary physical memory addresses.

We have two choices to store the indexing structure:
• If we place the indexing structure into PCM (Figure 2b),

there is no need to rebuild it during the recovery from
a crash. However, it also introduces extra writes to the
NVM because of the write amplification problem induced
by indexing data structures such as B+Trees and hash
indexing. It is a good design choice when the size of
the keys are large because in that case the wear-out
cost of the hash index is negligible. However, for small
keys, it represents a problem which we mitigate by
leveraging data structures such as NVM-friendly hashing
indexes [20].

• Another design choice is to build the indexing structure
on DRAM (Figure 2a). This architecture is particularly
beneficial when the size of the keys are small. In this
case, we do not pay any cost for the extra bit flipping
that is caused by the write amplification of the indexing
structures. Nonetheless, we need to build the whole data
structure from scratch during recovery after a crash.

In the evaluation, we build and persist a write-friendly hash
index in PCM as introduced in [20]. We perform the tests
based on this design to explore the worst case scenario of
putting the hash index on PCM in terms of extra bit flips
introduced by write amplification. Also, for every entry in
the hash index, there is a flag bit that shows whether the
corresponding key is available or not. In particular, whenever
we receive a delete request, we can reset its corresponding bit
in the hash index to reflect that the corresponding index does
not exist anymore instead of deleting it. We can do the same
procedure for deleting a K/V pair from the data zone.



B. Supported K/V Operations

1) PUT Operation: PUT and UPDATE operations are
executed as follows. As shown in Figure 2, when our system
receives a write request such as PUT, the model is queried to
determine the cluster that is closest to the value-to-be-written
in terms of their hamming distance. Then, a memory address
is returned from that cluster by using the dynamic address
pool. Then, the K/V pair is written into the returned address,
which is in the K/V zone on NVM. Finally, the newly-added
index entry is added to the hash index (step 3).

Algorithm 2 illustrates the pseudo-code of the write opera-
tion under the PNW scheme (Figure 2). The first step of PNW
is to find its label, which is equal to its corresponding entry in
dynamic address pool, using the ML model (line 1). Next, we
select one of the available addresses from the corresponding
entry in the dynamic address pool, and write the data to the
address (lines 2 and 3). Next, we need to remove the selected
address (A) from the cluster’s free-list in the dynamic address
pool (line 4). Finally, only the bits (in the buffer D) that are
different than the data in PCM (D’) are actually updated (lines
5 and 6). We also need to update the hash index at the end to
enable finding the value for future lookups (line 7).

2) DELETE operation: Algorithm 3 illustrates PNW’s
delete operation (also see Figure 2). The delete procedure is
accomplished by the following steps. In step 1, to find the
item in the K/V data zone, the delete request is directed to the
hash index, and then the associated entry is deleted from the
K/V data zone by resetting the associated flag bit (lines 1 and
2). In this step, the delete operation is completed; however, to
make the system more efficient, we recycle the recently freed
address back to the dynamic address pool by finding the label
of the deleted data (line 3), and then adding the freed address
to the corresponding entry in the dynamic address pool (line
4). In this way, the address can be used again in the future,
and the model is re-trained less frequently.

3) UPDATE Operations: An update operation can be im-
plemented in two different ways:
• If we care about the write endurance more than latency,

the update operation consists of the delete operation plus
the PUT operation in order to prevent bit flipping as much

Algorithm 2: Write operation
// D’ and D: old and new (key,value)
// DAP: Dynamic Address Pool
Write (D: (key,value)){

1: E = model.predict(D); //predict the
entry

2: A = DAP.get(E);//get the address
3: D’= Read(A); //old (key,value)
4: DAP.remove(A) //remove the address

from DAP
5: for each bit in {D} and {D’}
6: if they differ, update memory bit
7: HI.put(D, A) //update the hash index}

Algorithm 3: DELETE operation
// D’: old key
// DAP: Dynamic Address Pool
// HI: Hash Index
Delete (D’: key){

1: A = HI.get(D’); //get the address
2: Reset-Flag-Bit(A);//delete
3: E = model.predict(Read(A)); //predict

the entry
4: DAP.update(A:address, E:entry);//add

the address back to DAP}

as possible. It means that the item that has to be updated
is first deleted from NVM (delete operation), and then its
new place is found by in a dynamic address pool (PUT
operation) using the model. It is worth noting that we can
do the DELETE-PUT process asynchronously to mitigate
the latency problem. In other words, the system can retain
synchronous updates to K/V items and the hash index in
NVM, and for the dynamic address pool in DRAM, it
can be asynchronously updated through the model in the
background to hide the extra latency.

• On the other hand, if the application cares about latency
more than the other factors, especially wear-leveling, the
request just needs to go through the hash index to find
its place in the K/V data zone and then update the item
in place without any further changes since it does not
affect the dynamic address pool. In this way, we sacrifice
wear-leveling to achieve lower latency.

In our system and evaluations, we follow the first approach
as our main goal is to increase write endurance. However,
it turns out—as we present in experimental evaluations—that
minimizing bit flips is also good for performance alleviating
the trade-off between write endurance and latency.

4) GET Operation: Read operations in our system are
straight-forward as they do not lead to changing any data
structures. Specifically, a get request goes through the hash
index to find its corresponding value from the K/V data zone,
and then the read value is returned.

C. Additional design considerations

It is possible that all the available addresses of a cluster
(called cluster C) are utilized. In this case, if the model sends
a request that requires a new address from cluster C, the
dynamic address pool will not be able to serve this request
because there are no more addresses available in that cluster.
To avoid this problem, we define a load factor for the K/V data
zone on the NVM. Setting the load factor to x percent, means
that when x percent of the available addresses in the K/V
data zone are used, the K/V data zone needs to be extended.
To add new memory addresses to the data zone, we need to
train a new model. It is worth noting that, unlike traditional
methods, we do not need to move or change anything in the
hash table on NVM because they still have valid information.



The only things that need to be changed are the model and
dynamic address pool, which are both located on DRAM. So,
our method to expand the size of a cluster does not impose
any extra writes to the NVM.

The main reason behind defining the load factor is to prevent
latency spikes or stalls in the system. The load factor is similar
in principle to the load factors that are used in hashing schemes
as a way to monitor the space utilization of the system to
prevent hash collisions. In other words, the load factor is going
to warn us that the system will need to be retrained in the near
future. So, before this happens, we can re-train a new model,
by adding some new memory locations to the K/V data zone,
in the background while the system is running. Then, we can
switch to the new model and table before the previous model
gets stuck. In this case, we can hide the re-training latency
and the system works without disruptions due to retraining.
We have done some tests in the next section to figure out the
best time to start training a new model before the old one is
full to keep the system working smoothly. PNW supports any
size of key/values from 32-bit word size to the page sizes of
4KB to the size of a document. Thereby, the way in which
data elements are provided to the models depends on the K/V
pair size. For instance, small (e.g. 64 bit) data elements can
be directly passed to the model, while for large data element
(e.g. 4KB) we first apply dimensionality reduction using PCA
before passing the data to the model.

VI. EVALUATION

A. Methodology

In this section, we evaluate our proposed method using
different metrics focusing on the reduction in writes and bit
flips. We leverage a collection of real and synthetic data sets.
Since only insert and delete requests cause mutating the state
of the NVM, we insert n items into the K/V store followed by
deleting 0.5n items (except for section VI-F). Also, we do not
make any assumption about the access pattern within or across
clusters. So, we simply apply the K-means clustering (from the
scikit-learn library) based on the available memory locations
on PCM. We compare PNW with both RBW solutions and
K/V stores. For the former, we compare with the writes on
the storage component of PNW, which is the data zone.

We compare our results against other methods described
in Section III, such as FNW [8], DCW [36], Captopril [9]
and MinShift [22]. For synthetic data sets, our sample K/V
store system has at least 10M buckets. When there are 10M
buckets, for instance, we first warm-up K/V stores with 10M
key/values. This means that we store some items as “old data”
before starting our tests. The data type and distributes of these
items differ depending on the test. “old data” is used for the
initial training of the ML model.

To compare PNW’s results with other methods, we tune
their parameters in such a way that they achieve their best
performance. For example, we allow MinShift to shift n times,
where n is the size of the item instead of the size of the word,
which means it always results in its best performance in terms
of the number of bit flips [22]. With respect to Captopril, we

also considered its best case, which happens when the blocks
are partitioned into n = 16 segments [9].

Unless we mention otherwise, we execute the K/V op-
erations with randomly selected key/values from the same
generator. As real NVM DIMMs are not available for us yet,
we emulate NVM using DRAM similar to prior works [37]–
[40]. We assume an access latency of the latest 3D-XPoint of
600ns [41], [42].

The experiments are executed on an Intel Core i7 processor
running at 2.2 GHz with 2 cores (4 logical cores), each of
which has 256KB L2 Cache and 4MB L3 Cache using 8
GB of RAM, running macOS Catalina (version 10.15.4). The
reason that we run the tests on a local computer without any
GPU support is to get a sense of how our methods work
on an ordinary system without any unique capabilities. We
test our proposed method using various data sets, which can
be categorized as real-world textual and numerical data, real-
world multimedia data including image and video data sets,
and finally, hard-to-cluster synthetic data sets. In the following
subsections, we show the results of the tests on these data sets
and analyze them.

B. Real-world textual and numerical data sets

The first data set is called Amazon Access Samples Data
Set [43], [44], containing 30K log entries. Although this data
set has 20K attributes, in this test, only less than 10% of
them are used for each sample. For this test, we first have
set aside 5K buckets as the “old data” on the NVM memory
and then warmed up the system by writing 5K items from
the data set into our buckets. Then, we replaced this “old
data” with new incoming data from the same data set (the
remaining 25K items). Figure. 6a illustrates that when there
are one or two clusters, the number of written bits in our
method is more than FNW. Nevertheless, when the number of
clusters is more than 2, we start to get better results until we
reach between 15%(compared to CAP16) to 70%(compared
to the conventional method) improvements compared to the
other methods when the number of clusters is 30.

The next real-world data set, i.e., 3D Road Network Data
Set [45], [46], contains information of road networks in North
Jutland, Denmark (covering a region of 185 x 135 km2). We
used the same setup as above for this data set containing
434874 entries. In this test, we chose 100K buckets as “old
memory” and warmed up the system by 100K entries from
the 3D Road Network Data Set. The results are shown in
Figure. 6b. When the number of clusters is big enough (here k
= 14), PNW starts to outperform all the other methods in terms
of the number of bit flips until it gets its highest performance
when k=30 (between 10% to 63% improvements compared to
the other methods).

Finally, the last real-world data set is one of the collections
of a database called DocWord, which consists of five text
collections in the form of “bags-of-words”. This collection,
which is called PubMed abstracts [44], consists of 730 million
words in total. For doing the tests, we first created 100M
buckets as the “old data” storing data from the PubMed data
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Fig. 6: The average number of actual bit updates per writing 512 bits as well as the latency of prediction per item in PNW
for the real-world textual and numerical data sets (a-b), multimedia data sets (c-d), and synthetic data sets (e-f).

set. Then, we wrote the new incoming data items from the
same data set on the previous data items stored on the buckets
and kept track of the number of the updated bits per 512 bits.

C. Real-world multimedia data sets

In the first set of tests, we have used some video data
sets to see what happens if a system, for instance, a CCTV
recorder, uses an NVM media as its persistence memory. We
have used two video data sets: 1) The Sherbrooke video data
set [47], representing a two-minute-long video (with resolution
800x600). 2) A Traffic Surveillance video [48], collected from
seven intersections in the Danish cities of Aalborg and Viborg,
containing 21 five-minute sequences of two cameras including
RGB and thermal data. The resolution of both cameras is
640x480 pixels, and the frame rate is fixed at 20 fps. In this
test, we just used one sequence of RGB camera called “day
sequence 2”.

For the first data set (Sherbrooke), we stored the first 30
seconds of this video as the old data, and for the second
one (Seq2), we stored the first one minute of the video as
the old data and used the remaining of the video as the new
data. The results are shown in Figure. 6c and 6d, respectively.
These figures show that our method outperforms the other ones
in both data sets. For the first data set (Sherbrooke), PNW
improves the other methods between 14% to 60% and for the
second one (Seq2), we outperforms the other ones between
21% to 67%.

The next data set is one of the most widely used data sets for
machine learning research, and especially for computer vision
algorithms, i.e., CIFAR-10 data set [49]. This data set is a
subset of the 80 million tiny images data set and consists of
60,000 32x32 color images, grouped into ten different classes.
Similar to the previous experiments, we first set aside 10K of
these images as the old data to fill out the 10K buckets we
created as our NVM system. Then, the new incoming data
items are written in place of the old ones one by one.

D. Hard-to-cluster synthetic data sets

In this section, we are going to observe the behavior of PNW
on some synthetic data sets that do not follow any specific data
distribution. The reason of doing these tests is to discover the
limitations of our ML-based method and analyze them to give
the readers a clearer view of the possible applications of PNW.
To perform these tests, we start with a synthetic data set that
shows a clear pattern and then test two more data distributions
that are completely different in terms of their data pattern.

For the synthetic data sets, we used 32-bit keys and values.
We also generated two types of integer data (normal and
uniformly distributed), ranging from 0 to 232. For random
integers, we generated them via a pseudo-random number
generator. For the normal data set, we generated a synthetic
data set of 100M unique values sampled from a normal
distribution with µ = 231 and σ= 228 to test our method. In all
synthetic data set tests, the confidence interval was less than
103 for 95% confidence level.

First, we show the results of the first synthetic data set,
following a regular pattern. Figure. 6e shows the results for
different number of clusters ranging from k=1 to k=30 for
normal distribution. We have compared the performance of
PNW to the other ones in terms of the number of bits
updated/written per 512 bits. In this figure, we observe that
when we pick k=1, the result for PNW is not different from
DCW since both do the same thing if there is no clustering.
Our approach enhances the results of DCW and FNW more
than 40% and 25%, respectively, when the number of clusters
is more than 10. It also outperforms MinShift and Captopril
more than 15% and 10%, respectively. Also, the delay is
almost 5µs to 6µs most of the time.

In the second experiment, we did the same, but for a
different data distribution, i.e. uniform random distribution,
to learn more about the behavior of our method. Data sets
like this one are highly random, and as a result, difficult to



Fig. 7: End-to-end write latency comparison for various data
sets.

learn using an ML model. The results are depicted in Figure. 6f
showing that although our method has succeeded in improving
the results for DCW, MinShift, and the conventional method
by almost 15%, 5%, and 60%, respectively, it lags behind
FNW and CAP16 for this data set as expected for the random
data set.

In some of the previous results, there are anomalies where
the number of bit flips suddenly jumps while increasing the
number of clusters. Such anomalies are due to the unpre-
dictability of ML-based methods. However, we expect that
such anomalies would be normalized during extended opera-
tion.

E. End-to-end write latency

In the following, we are going to measure the write latency,
which includes the time spent on 1) predicting a cluster
number, 2) finding an empty bucket within the dynamic
address pool, and 3) writing the key/value on NVM. We do
this test to measure the overhead of our method.

In Figure. 7, we show the write latency comparisons for
various data sets. In this test, we use the normal and uni-
form data distributions, Amazon Access Samples, 3D Road
Network, CIFAR, and the day sequence 2 traffic surveillance
video. For our method, we had to train the model based on
the old data, filling out the dynamic address pool, and then
writing the new data. The write latency is calculated based on
the number of cache lines that are written per item. In this
test, we observe that each method that updates fewer bits has
a higher chance of having a lower write latency because it has
to update fewer cache lines than the others.

Figure. 7 shows the normalized time of the write operation
required by different methods. As illustrated in this figure,
our proposed method, when the number of clusters is enough,
can outperform the others even though it has to perform two
additional steps. The reason is that our method performs fewer
write operations than the other ones, and it makes up the time
it spends on the extra steps. However, for the uniform data
distribution, we could not do the same since PNW is not able

Fig. 8: The impact of choosing the number of clusters (K) on
the average write latency for the PubMed abstracts data set.

Fig. 9: The average number of written cache lines for each
request.

to find a clear pattern among the data items to make up the
extra steps.

Figure. 8 compares the average write latency for different
number of clusters (K) on the PubMed abstract data set. In this
test, to see the impact of K on latency, we invoke insert and
delete operations on the system in a 1:1 ratio. Note that the
value of K does not affect the lookup request latency because
in the lookup, the request does not go through the model or
the dynamic address pool. This test shows that by increasing
K, latency decreases because all the items within a cluster
become more similar (in terms of hamming distance). So, the
new items can be written by replacing old ones with a fewer
number of cache line writes, which leads to decreasing latency.

In the next test, we compare PNW with recent K/V stores
to see its performance in terms of the number of written
cache lines. Like the previous test, since only insert and delete
requests cause writes to NVMs, we first insert n items into the
system and then delete 0.5n items. FP-Tree [21] is a hybrid
SCM-DRAM persistent B+-Tree method that we implement
and compared PNW with. The second persistent K/V store that
we compare PNW with is NoveLSM [7], which is a persistent
LSM-based K/V storage system. It is designed to exploit non-
volatile memories in an attempt to provide low latency and



Fig. 10: The performance change by converting the workload
from MNIST into Fashion-MNIST over time.

high throughput to applications. We also implement a hashing
scheme that is designed for NVMs called Path hashing [20].
It is worth noting that for this test, we implement PNW as
shown in Figure. 2a.

Figure. 9 shows the average number of written cache lines
for each request. The number of written cache lines per request
in FPTree and NoveLSM is higher than others because they
modify more items to process a request. Although the number
of written lines in path hashing is fewer than the others,
its written lines are higher than PNW because: 1) It incurs
more writes when re-hashing to handle conflicts, and 2) like
other methods, it is not “memory-aware”. PNW has the fewest
written cache lines mostly because it can save some cache
lines per request because of replacing the old items by similar
new items. We also observe that for some data sets the average
number of written cache lines is higher for all methods because
of the larger item size.

F. Training overhead

To see how rapidly can our method adapt to changing work-
loads, we conduct the last experiment to track the behavior
of our method while changing the workload. You can see the
results in Figure. 10. In this test, we use two data sets from the
Keras library, i.e., MNIST database of handwritten digits and
Fashion-MNIST database of fashion articles, each of which
contains 60,000 28x28 gray scale images, along with a test
set of 10,000 images. For this test, we did the follows steps:
• Phase 1: we stored 28K images from the MNIST data

set as the old data. After training the model and creating
the dynamic address pool, we started streaming 27K
images from the same data set (MNIST) as the new data
into the system to overwrite the old data. As we can
see in Figure. 10, there is no noticeable change in the
performance of the system in the first 27K frames. Even
at the end of this stage, where the old data is almost
completely replaced with the new one, we still do not
see any substantial change in the performance.

• Phase 2: we send a mixture of items from two different
data sets, i.e., Fashion-MNIST and MNIST, at the ratio
of 2 to 1. We shuffled 15K of MNIST images with 30K
of Fashion-MNIST and then sent them to the system as
the new incoming data. As it is obvious in the figure,
the performance is affected immediately (the number of
updated bits increases) since two-third of the incoming
data are entirely different from the previous ones and as
a result have a larger hamming distance.

• Phase 3: In this phase, we sent 12K images only from
the second data set, i.e., Fashion-MNIST. The number
of updated bits fluctuated less since the old data contains
the items mostly from Fashion-MNIST, and the incoming
data is also from the same one too.

• Phase 4: In this phase, we continued sending 28K images
from the second data set (Fashion-MNIST) with one
difference: we re-trained our model on the old data, which
contains the images from the Fashion-MNIST data set
now. As you can see in the figure, the results got better
and fluctuated less.

As a result, we have seen that, depending on the application
and the workload, we do not always have to re-train the model
rapidly, and we can use the same model for a certain amount
of time before it needs to be re-trained. This allows us to do
the retraining in the background lazily and update the model
periodically.

PNW is designed to enable re-training in the background
while the current model is serving requests. However, to set
the load factor to its correct value, PNW needs to know when
to start re-training the model before the old one becomes
inefficient, i.e. the system’s performance decreases in terms
of the number of bit flips. This is of great importance because
we might not want to give all the available resources to the
model since the system needs to serve the requests without
any problem while the new model is being re-trained. We
performed additional experiments to evaluate the costs for re-
training a new model using different number of the available
cores (Figure. 11). These experiments are performed on the
traffic surveillance [48] and the Sherbrooke video data sets
[47].

In this test (Figure. 11), we calculate the time needed for
re-training the model for 2, 4, 8, and 16 clusters. In each case,
we did the test on two different modes: 1) running the model
on a single core; and 2) running the model on all 4 cores. As
we can see from the results, as the value of k and the sample
size increases, the model needs more time to be re-trained.
For instance, for training a model with k=16 clusters on more
than 8000 samples/frames (Figure. 11d), we need almost 20
and 13 seconds if we use one and 4 cores, respectively. This
can give us an idea of setting the load factor in a way that we
have enough time to finish re-training the new model before
the old model becomes inefficient. So, if we have more than
one core available for us in the system to train the model,
multi-core processing is worth it when the sample size is big
enough.



(a) Seq 2 (b) Seq 4 (c) Seq 8 (d) Seq 16

(e) Sher 2 (f) Sher 4 (g) Sher 8 (h) Sher 16

Fig. 11: PNW’s average model training time for different data sets using single core versus multi-core processing.

G. Wear-leveling

Aside from decreasing the number of writes, wear-leveling
is equally important to extend the lifetime of PCM. The reason
is that some blocks of PCM may receive a much higher
number of writes than the other blocks, and as a result, wear
out sooner [2], [50]. Therefore, to observe the performance of
PNW in terms of the distribution of the maximum number of
bit flips and the wear-leveling of PCM, we conduct two more
tests. In these tests, we run PNW in two different modes, i.e.
for k =5 and k = 30 clusters, on the combination of MNIST
and Fashion-MNIST data sets. Like the previous test, we first
warm up the data zone with 28K items from the combination
of both data sets. Then, we stream 112K writes from the same
data sets to the system. During the test, we also perform delete
actions to make space for incoming writes. In other words,
each word in the data zone is updated 4 times on average.

Figure. 12 shows the maximum number of times the ad-
dresses in the data zone are written as a cumulative distribution
function (CDF). In other words, this figure illustrates the
estimation of the likelihood to observe an address in the data
zone of PCM that is written less than or equal to a specific
number of times. For example, as we can see in Figure. 12a,
the estimated likelihood to observe an address in the PCM
data zone to be written less than or equal to 5 (P (X ≤ 5))
is 85% (Figure. 12a) and 86% (Figure. 12b) when we have
k = 5 and k = 30 clusters, respectively. We also observe that
more than 99% of the addresses in the data zone experience
no more than 10 writes for k = 5 and 15 writes for k = 30.
This results show that, regardless of the number of clusters,
PNW distributes write activities across the whole PCM chip.

Finally, we analyze the wear-leveling of memory bits as
CDFs. Figure. 13 illustrates the estimation of the likelihood
to observe a memory bit in the data zone of PCM that is
written less than or equal to a specific number of times. For
instance, we observe that while the estimated likelihood of a
memory bit being written less than or equal to 4 times is 74%
for k=5 clusters (Figure. 13a), this likelihood rises to 98%
when k=30 (Figure. 13b). This important observation shows
an interesting fact about PNW: By increasing the number of

(a) k = 5 (b) k = 30

Fig. 12: The maximum update addresses as CDFs by applying
PNW with a) k=5 and b) k=30 clusters.

(a) k = 5 (b) k = 30

Fig. 13: Wear-leveling as CDFs by applying PNW with a) k=5
and b) k=30 clusters.

clusters, bit flips are distributed more evenly across the whole
data zone of the PCM chip, and as a result, the lifetime of
PCM is extended more. The reason behind this is that when
the number of clusters increases, the items within the clusters
become more similar to each other. Therefore, regardless of
the number of clusters, PNW evenly distributes writes not only
in the address level but also in the bit level.

VII. CONCLUSION

In this paper, we improve the write bandwidth, write energy,
write latency, and write endurance of NVMs through Predict
and Write (PNW), a K/V store that uses a clustering-based
approach to extend the lifetime of NVMs using machine
learning. We examined the performance of our proposed
approach with others in terms of different factors such as the
number of writes and the latency for various workloads, on
both synthetic and real-world data, with different distributions
of data. The results show that our method outperform existing



solutions and that the benefit of using a ML model outweigh
its overhead. Based on the results, by choosing the right target
memory location for a given PUT/UPDATE operation, PNW
has succeeded in reducing the number of total bit flips and
cache lines over the state of the art.
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