
PDede: Partitioned, Deduplicated, Delta Branch Target Buffer
Niranjan Soundararajan

niranjan.k.soundararajan@intel.com
Processor Architecture Research Lab,

Intel Labs, India

Peter Braun
pvbraun@ucsc.edu

University of California, Santa Cruz
USA

Tanvir Ahmed Khan
takh@umich.edu

University of Michigan
USA

Baris Kasikci
barisk@umich.edu

University of Michigan
USA

Heiner Litz
hlitz@ucsc.edu

University of California, Santa Cruz
USA

Sreenivas Subramoney
sreenivas.subramoney@intel.com

Processor Architecture Research Lab,
Intel Labs, India

ABSTRACT
Due to large instruction footprints, contemporary data center ap-
plications suffer from frequent frontend stalls. Despite being a sig-
nificant contributor to these stalls, the Branch Target Buffer (BTB)
has received less attention compared to other frontend structures
such as the instruction cache. While prior works have looked at
enhancing the BTB through more efficient replacement policies
and prefetching policies, a thorough analysis into optimizing the
BTB’s storage efficiency is missing. In this work, we analyze BTB
accesses for a large number (100+) of frontend bound applications
to understand their branch target characteristics. This analysis,
provides three significant observations about the nature of branch
targets: (1) a significant number of branch instructions have the
same branch target, (2) a significant number of branch targets share
the same page address, and (3) a significant percentage of branch
instructions and their targets are located on the same page. Fur-
thermore, we observe that while applications’ address spaces are
sparsely populated, they exhibit spatial locality within and across
pages. We refer to these multi-page addresses as regions and we
show that applications traverse a significantly smaller number of
regions than pages. Based on these insights, we propose PDede,
an efficient re-design of the BTB micro-architecture that improves
storage efficiency by removing redundancy among branches and
their targets. PDede introduces three techniques, (a) BTB Partition-
ing, (b) Branch Target Deduplication, and (c) Delta Branch Target
Encoding to reduce BTB miss induced frontend stalls. We evaluate
PDede across 100+ applications, spanning several usage scenarios,
and show that it provides an average 14.4% (up to 76%) IPC speedup
by reducing BTB misses by 54.7% on average (and up to 99.8%).

CCS CONCEPTS
• Computer systems organization → Superscalar architec-
tures; Pipeline computing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480046

KEYWORDS
Superscalar cores, Branch Target Buffer, Performance

ACM Reference Format:
Niranjan Soundararajan, Peter Braun, Tanvir Ahmed Khan, Baris Kasikci,
Heiner Litz, and Sreenivas Subramoney. 2021. PDede: Partitioned, Dedu-
plicated, Delta Branch Target Buffer. In MICRO’21: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’21), October 18–22,
2021, Virtual Event, Greece. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3466752.3480046

1 INTRODUCTION
The CPU frontend bottleneck is a well-known performance prob-
lem across several usage scenarios including web-scale data center
applications[6, 16, 28, 39, 50]. Due to the large code footprints of
these applications, the size of the instruction working set often ex-
ceeds the microarchitectural resources of contemporary processors,
such as the instruction cache (Icache), the instruction translation
lookaside buffer (ITLB), the branch direction predictor, and the
branch target buffer (BTB). The inability of these components to
deliver instructions fast enough to the processor leads to frontend-
stalls, significantly reducing the overall instructions per cycle (IPC)
performance of a system. For instance, Google has reported that
23.5% of all CPU cycles are lost to frontend stalls for its Web search
binary [8].

Prior work [5, 7, 8, 16–18, 29, 31, 34–36, 39, 42, 43, 48, 49, 53, 58]
has observed the significance of the frontend bottleneck and pro-
posed instruction prefetching techniques to address it. By predicting
the control flow of applications and prefetching instructions into
the Icache, a steady flow of instructions can be provided to the CPU
pipeline even when the instruction working set exceeds processor
resources. While instruction prefetching is effective, it only ad-
dresses one aspect of the frontend challenge, namely Icache misses,
however, branch target buffer (BTB) misses significantly contribute
to frontend stalls as well. In particular, we find that the limited BTB
capacity leads to a significant number of BTB misses, resulting in
BTB-resteer events and pipeline flushes. Furthermore, until the BTB
miss is detected, the processor executes wrong path instructions,
potentially polluting the Icache and additional structures. Figure 1
shows a Top-Down analysis [57] of over 100 frontend-bound appli-
cations, identifying BTB induced resteers are the largest contributor
of frontend stalls accounting for over 40% of all frontend stall cy-
cles. In addition to Icache misses, which has been the focus of most
prior works, addressing the frontend latency bottleneck from BTB

https://doi.org/10.1145/3466752.3480046
https://doi.org/10.1145/3466752.3480046
https://doi.org/10.1145/3466752.3480046

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Soundararajan, Braun, Khan, Kasikci, Litz, and Subramoney

Frontend latency
BTB resteers

19.1

Frontend latency
others 7.3

Frontend
bandwidth

17.8

Backend bound

25.4

Bad speculation9.6

Retiring

20.8

Figure 1: Frontend stall and branch resteering for 100+ ap-
plications leveraging the Top-Down methodology [57] cap-
tured on Skylake-like core.

resteers hence warrants a detailed analysis. To understand the na-
ture of the BTB capacity problem, we perform a comprehensive
study across these 100+ frontend-bound applications. We find that
(1) frontend-bound applications with large code footprints, many
libraries, and high branch frequencies span only 6% unique pages
across all targets, in memory. (2) There exist 30% duplicate branch
targets among different branch instructions, and (3) the branch
program counter (PC) and the branch target are located in the same
page in over 60% of all cases.

Based on our findings, we study several microarchitectural tech-
niques to address the BTB capacity problem: (1) Branch Target Dedu-
plication stores a single branch target shared by multiple branches
only once to improve the storage efficiency of the BTB, translating
into an IPC gain of 1.6%. (2) BTB Partitioning breaks the BTB into
separate structures, each capturing different portions of the branch
target. While prior works [46] have explored partitioning, these
studies lack a comprehensive analysis of branches and their targets,
in particular, in the context of a modern aggressive OOO core. Our
work contributes by introducing an improved partitioning tech-
nique (regions and pages) and recognizes the impact of a partitioned
cache on the lookup latency by introducing and evaluating a two-
cycle lookup BTB. Our combined partitioning techniques result in
an additional 5.3% IPC improvement. Finally, we propose (3) Delta
Branch Target Encoding, a technique that further increases space
efficiency by optimizing branches whose PC and target reside in the
same page. For these branches, we derive the page and region ad-
dress from the PC and hence only need to store the page offset of the
target. This results in a significant reduction in the distinct number
of pages stored in the BTB, further improving storage efficiency and
providing an additional 2.5% IPC gain. With Delta Branch Target
Encoding, we observe that supporting both branches with targets in
the same page (referred to as same-page branches) and in a different
page (referred as different-page branches) leads to less efficient use
of the BTB storage. We propose and evaluate two different designs
that make better use of the available storage. In the first PDede-Multi
Target design, we opportunistically support multiple same-page
branches targets within a single BTB entry. This novel technique
dynamically packs multiple targets in the same BTB entry without
increasing the overhead for additional tags. On top of the prior
gains, packing multiple targets into a single entry provides an addi-
tional 2% IPC gain. In the second PDede-Multi Entry size design, we
support both same-page and different-page branches by providing

Pre-
decode

ICache
Instr.

Queue
Decoders

M
U

X

Micro-op
Queue

Memory
Subsystem

Micro-
op

cache

Branch
Direction
Predictor

Branch
Target

Buffer (BTB)

Branch Prediction Unit (BPU)

Re-steer pipeline on Wrong Target
from BTB for Direct Branches

Re-steer pipeline on Wrong Target
from BTB for Indirect Branches

In-order Retire

Tag
(12b)

Target
(57 b)

SRRIP
(3b)

Return
Address

Stack

Update BTB
(PC, Actual Target)

Conf
(2b)

PID
(1b)Branch

PC

Back-End
(RAT/ROB/
RS/LB/SB)

Instruction
Fetch

Increment for Non-Branch
and Not-Taken Branches

For Taken Branches, Next Instruction PC to Fetch = Branch Target

Branch Target

Figure 2: Pipeline describing theOOO corewe study.Modern
OOO cores incorporate a fetch-directed instruction prefetch-
ing (FDIP) [26] pipeline. On BTB misses/mispredictions,
resteering happen post decode for direct branches or post
execution for indirect branches.

variable-length entries in the BTB. This re-design of the BTB entries
provides an additional 5% IPC gains on top of the delta encoding
resulting mostly from re-distributing the BTB storage to support
additional PCs. We implement the microarchitectural modifications
proposed by PDede in our industry-class, in-house, cycle-accurate
simulator modeling the latest Intel Icelake processor [1] and study
PDede’s effectiveness of reducing BTB misses for a large number
(100+) of frontend bound applications. For all such applications, our
best performing design reduces BTB misses significantly (54.7% on
average and up to 99.8%) compared to a similar-size baseline BTB.
This results in a mean IPC speedup of 14.4% (up to 76%) across the
wide range of (100+) modern CPU applications. Additionally, to
provide similar mispredictions as the baseline BTB, PDede lowers
the storage requirements by 50% highlighting the effectiveness of
our changes.

2 BACKGROUND
Modern out-of-order (OOO) cores leverage superpipelining and
superscalar execution to process hundreds of instructions simulta-
neously. To achieve high utilization of these pipelines, the processor
frontend is required to deliver multiple instructions per cycle to the
back-end of the core.

One of the program characteristics limiting high pipeline utiliza-
tion is branch instructions that determine a program’s control flow.
Branches typically get classified into,

• Conditional, Direct Branches such as loops and forward
conditionals (if-then-else) that are executed based on a condi-
tion to determine the taken or not-taken branch direction.
The target address is encoded as part of the instruction.

• Unconditional, Direct Branches including function calls
and constructs like goto that jump to a different address in

PDede: Partitioned, Deduplicated, Delta Branch Target Buffer MICRO ’21, October 18–22, 2021, Virtual Event, Greece

the code. These branches are always taken and the target
address is encoded as part of the instruction.

• Unconditional, Indirect Branches including function calls
and jumps for which the target location is unknown at com-
pile time. These branches are also always taken.

Taken branches require the processor to fetch instructions start-
ing from the branch target instead of just fetching the next sequen-
tial instruction. If the branch target is unknown, pipelines need
to effectively stall, significantly reducing throughput [28, 40]. To
address this challenge, processors support a branch target buffer
(BTB) to predict the target address of all branch types discussed
above. Figure 2 shows a typical fetch-directed instruction prefetch-
ing (FDIP) [43] based OOO core as studied in this work. Every cycle,
the frontend reads instructions from the Icache, decodes them, and
forwards them to the functional units for execution. As seen in
Figure 2, decoding an instruction itself happens several cycles after
it enters the pipeline and, as such, branches need to be accurately
predicted well in advance to guarantee a steady flow of instructions.

If the BTB cannot provide the correct branch target, for direct
branches, the pipeline resteering only happens once the branch
target is decoded. For indirect branches, the resteering happens
only once the branch completes execution. Given that in modern
OOO cores where instructions potentially spend tens to hundreds
of cycles in the pipeline, BTB updates happen speculatively once
the target address is known. The BTB is implemented as a cache,
storing the most recent branch targets of taken branches in an
application. The BTB is searched using the branch PC where a
subset of the PC address bits are interpreted as the index selecting
one set from the BTB. Each BTB entry stores the branch target as
well as metadata for implementing a replacement policy (e.g., Static
Re-Reference Interval Prediction (SRRIP) [27]) and maintaining
counters that indicate the confidence in a target prediction. For the
BTB analysis, we assume an 8-way set associative BTB with 4096
entries resembling those used in recent BTB works [3]. The branch
PC used for accessing the BTB and the targets stored in the BTB
are virtual addresses. Branch targets are 57 bits wide, supporting
recent processors with 5-level paging [25]. BTB entries utilize a
restricted 12-bit tag to disambiguate branch PCs mapping to the
same cache set. Tags utilize less than 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑖𝑛𝑑𝑒𝑥 bits to reduce
storage overheads. Utilizing a smaller tag introduces the possibility
of multiple branches aliasing to the same entry, forcing a resteer
event, but it does not affect the correctness of instruction execution.
With a good hashing technique, as adopted in this work, such
resteering can be minimised. The per-entry confidence counters
are incremented on a successful target prediction and represent
a measure of the usefulness of a BTB entry, relevant for indirect
branches. In particular, as the BTB stores a single target address per
branch PC, it utilizes the confidence value to determine whether
an indirect target address is frequently used and hence valuable
or whether it should be replaced with a different target address.
Finally, the SRRIP bits capture a priority order in which entries of
a set can be replaced. They help implement the BTB’s replacement
policy, in case new branch PCs need to be inserted into the BTB.
The only control-flow changing instructions that do not consume
BTB entries are returns that are handled via the return address
stack (RAS). In Section 5.6, we also evaluate alternate baseline BTB

0

20

40

60

80

100

BP Browser Server Personal Overall

Pe
rc

en
ta

ge

Taken Branches among Total Dynamic
Branch Occurrences (56%)
Taken Branch PCs among Total Static
Branch PCs (67%)

Figure 3: Percentage of taken branches among all static
branch PCs and dynamic branch occurrences

0

20

40

60

80

100

BP Browser Server Personal Overall

Pe
rc

en
ta

ge

Conditional, Direct Unconditional, Direct
Unconditional, Indirect

Conditional, Direct

Unconditional, Direct

Unconditional, Indirect

Figure 4: Percentage of the total branches belonging to the
different branch types averaged per category.

configurations. While most of our analysis is on a single-level BTB,
we also evaluate PDede for multi-level BTBs in section 5.9. Our
observations and proposed optimizations are equally applicable for
other BTB organizations as well [10].

3 BTB ANALYSIS
To guide the BTB microarchitecture we propose in the next section,
we conduct a comprehensive analysis of 102 frontend-bound appli-
cations listed in Table 1. They are picked from an internal reposi-
tory consisting of thousands of real-world applications (including
open source and proprietary ones). The selected applications are
a representative set of widely used applications 1 showing a high
percentage of frontend stalls (refer section 1) with branch resteering
being a significant contributor.
1The exact listing of applications in the benchmark suite is anonymized due to the
private nature of the data.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Soundararajan, Braun, Khan, Kasikci, Litz, and Subramoney

0

1

2

3

4

5

6

7

0 10000 20000 30000

R
eg
io
n
s

Branches

(A)

(a) Region accesses over time. Regions dif-
fer by 65K pages in the address space. Typ-
ically, different libraries get dynamically
mapped across these regions.

0

100

200

300

400

500

0 10000 20000 30000

Pa
ge
s

Branches

(B)

(b) Page accesses over time. Compared to
regions, page accesses show less tempo-
ral locality, and more unique pages are ac-
cessed.

0

500

1000

1500

2000

2500

3000

3500

4000

0 10000 20000 30000

O
ff
se
ts

Branches

(C)

(c) Page offsets accessed over runtime.
There is very little locality to exploit.

Figure 5: Runtime plot from a web assembly application showing the region, page and offset span of the branch targets.

Category Description Count
Server Online transaction processing, Web traf-

fic processing, Cloud services, Microser-
vices

61

Browser HTML5-based, Javascript, JVM, Web as-
sembly, Games, Image-rendering

20

Business Produc-
tivity (BP)

File compression, Email, Presentations,
Spreadsheet, Document processing

11

Personal Email, Image editing, Games, Video play-
back/sharing

10

Table 1: Evaluated application categories

3.1 Frequency of Taken Branches
Only taken branches consume BTB entries since the fall-through
address for non-taken branches can be computed trivially. As a
result, BTB capacity is only an issue for applications whose branch
working set exceeds the size of the BTB and whose branches are
frequently taken. Figure 3 shows the percentage of taken branches
among all static branch PCs and dynamic branch instructions. As
shown, taken branches are responsible for more than 67% of all
static branch PCs and 56% of all dynamic branch executions. Conse-
quently, BTB capacity plays a critical role in determining frontend
performance. Given that Icaches capture only a limited portion of
the instruction footprint, for modern data center applications, a
highly effective BTB that captures the targets effectively can hide a
large portion of the Icache stalls by providing the target locations
that need to be fetched into Icache.

Observation: In frontend-bound applications, taken branches
constitute almost two-thirds of all branch occurrences.
Insight: Optimizing BTB storage space efficiency is required to
store more branch targets and improving performance.

3.2 Branch Type Classification
Prior work has proposed microarchitectural techniques focusing
on specific branch types [15]. In this section, we show that such
targeted techniques are not sufficient because data center applica-
tions execute a variety of branch types at runtime. We analyze three
common branch types introduced in §2. Figure 4 shows a break-
down of these different branch types among all taken branches

seen in the analyzed applications. While the distribution is skewed
towards conditional and unconditional direct branches, all three
branch types occur frequently enough and, therefore, need to be
considered when designing BTBs.

Observation: BTBs need to cope with a variety of branch
types including conditional, unconditional, direct, and indi-
rect branches.
Insight:A generic solution supporting all different branch types
is required.

3.3 Target Region and Page Partitioning
In emerging large code footprint workloads, utilizing many dynam-
ically mapped shared libraries, application code is spread sparsely
across several pages in the address space. Operating systems also
employ address space layout randomization [54] to spread out ap-
plication and library code in clusters across the address space for
security reasons. These address clusters could be separated by sev-
eral thousand pages. Typically, different static and dynamic libraries
get loaded across these different address clusters. Applications, pe-
riodically jump across these multi-page address clusters, which
we refer as regions. As such, there is good spatial and temporal
locality when applications execute in a specific region. Figure 5,
shows a runtime plot across branches for a web-assembly based
browser application [55]. As seen from Figure 5b, the application
executes instructions from 450 different pages. Some of these pages
are separated by >65K pages in the address space. However, when
focusing on regions as seen in Figure 5a, addresses exhibit signifi-
cant temporal and spatial locality. Our analysis, later, shows that
the number of regions are fewer than the pages by 100× which
we exploit for significant storage savings. Across all workloads, as
shown in Figure 6, we that each page can hold about 18 branch
targets while each region includes about 2200 branch targets.

This insight motivates us to split the target addresses into regions,
pages and offsets, thereby reducing the number of unique regions
and pages compared to the number of unique full addresses. When
examining the offset addresses within a page, as seen in Figure 5c,
we did not observe much spatial or temporal locality anymore as
the address utilization within a page is dense and used equally

PDede: Partitioned, Deduplicated, Delta Branch Target Buffer MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Figure 6: The average number of
targets seen per page and region
across the different applications.

Figure 7: Unique number of
branch targets, target page ad-
dresses, and target page offsets.

Figure 8: Distance in pages be-
tween the branchPC and its target

by different branch targets. As the three components exhibit sig-
nificantly different density and spatial locality, we can adjust the
number of entries that should be stored in the BTB for each of the
three components individually, providing high coverage at a small
storage footprint.

Observation: Target addresses can be decomposed into re-
gion, page, and offset, exhibiting significantly different density
and spatial locality.
Insight: Storing region, page, and offset address components
separately, enables improving the storage space efficiency of the
BTB. Based on this insight we propose BTB-Partitioning.

3.4 Branch Target Address Sharing
BTBs are indexed with the PC of a branch instruction to serve
the corresponding target address. There exists several high-level
programming constructs such as loops with multiple conditional
breaks or continue where the target is identical among several
branches. Figure 7 shows the number of unique branch target ad-
dresses, branch target regions, branch target page addresses as well
as branch target page offsets among all analyzed branches. The
number of unique targets is 67% of the total number of unique
branch PCs, indicating that 30% of the target addresses can be dedu-
plicated. As discussed in section 3.3, the deduplication opportunities
is further increased when partitioning the branch target into re-
gion, page, and page offset, yielding only 0.07%, 5% and 18% unique
entities, respectively. Based on these findings, we propose Branch
Target Deduplication in Section 4.2, a technique that stores every
target region and page only once to minimize BTB occupancy. This
technique eventually enables the BTB to support a larger number
of branch PCs since the storage required to track the respective
target addresses is significantly reduced. As shown in Section 3.3,
page offsets are dense, leaving little opportunity for deduplication.
As a result, PDede does not deduplicate page offsets and stores them
explicitly per branch.

Observation: Multiple branch targets share the same region
and page address bits.
Insight: Deduplicating BTB entries can further improve BTB
storage space-efficiency by re-using the same region and page

address bits among multiple branches. Based on this insight we
propose Branch Target Deduplication.

3.5 Page Sharing between Branch and Target
The most frequently executed branch instructions are often tight
inner loops. If these loops only contain a few instructions, it is
likely that the branch PC and the branch target reside within the
same page. We refer to these branches as same-page branches. On
the other hand, calls frequently redirect the control flow to an
instruction that is far away from the branch PC. These branches
which have their target in a different page are referred to as different-
page branches. Figure 8 analyzes the distance between the branch
PC and its target for the different branch types, showing that in
over 60% of the cases, the branch PC and target reside within the
same page. As a result, for a given branch, the target address can
be derived from its branch PC. Based on this finding, we propose
Delta Branch Target Encoding, a new technique that only stores the
page offset of the branch target in the BTB for same-page branches.
To improve the BTB storage efficiency, in section 4, we propose
two designs that can effectively utilize the overall BTB storage to
better pack same-page and different-page branches.

Observation: Branch PCs and branch targets are often lo-
cated on the same page.
Insight: Based on this insight, we propose Delta Branch Tar-
get Encoding to only store offsets for branches whose targets
are in same page.

4 PDEDE ARCHITECTURE
Based on our analysis in the previous section, we discuss the mi-
croarchitectural changes required to support the three techniques to
improve the space efficiency of BTBs. By increasing space efficiency,
we can increase the number of branches in the BTB while keeping
the overall storage capacity constant, thereby, improving the per-
formance of frontend-bound applications. A high-level depiction
of the architecture is shown in Figure 9.

4.1 BTB-Partitioning
As seen in Figure 2, the target address (57b) consumes most of the
storage in the BTB. Given that there exists a significant difference
in the spatial locality exhibited by regions, pages, and offsets, as

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Soundararajan, Braun, Khan, Kasikci, Litz, and Subramoney

shown in Section 3.3, PDede exploits this insight by storing the three
branch target components in different structures of differing sizes.
In contrast to the baseline BTB storing 4K entries, our design utilizes
1k entries for the Page-BTB and just 4 entries for the Region-BTB
and supports the 4K page offsets as is. BTB-partitioning, however,
introduces a new challenge. When implemented as separate struc-
tures, the Page-BTB and Region-BTB are both required to duplicate
tag and maintain other meta data for each branch PC. PDede elim-
inates the duplicate tag and meta data by introducing a level of
indirection, through a structure we refer to as the BTB-Monitor
(BTBM). More details about the BTB-Monitor are provided in the
next section.

4.2 Branch Target Deduplication
Deduplicating the region and page addresses as motivated in Sec-
tion 3.4 requires multiple branch PCs to refer to the same entry
in the Page and Region-BTBs. PDede achieves this via the BTB-
Monitor (BTBM), a structure that is indexed with the branch PC
address and that stores pointers to the Page-BTB and a Region-BTB
in each entry. The BTB-Monitor improves storage efficiency in two
ways. First, the indirection (which maps a branch PC to a Page-BTB
entry and an Region-BTB entry) allows multiple branch PCs to
point to the same page and region entries, enabling deduplication.
Second, since PDede maintains the tags in the BTB-Monitor, the
Page-BTB and the Region-BTB do not require tags nor duplicate
meta data. Page offsets are directly stored in the BTB-Monitor to
avoid any separate structure or level of indirection. This is because
page offsets do not exhibit locality and hence a relatively large (4K)
Offset-BTB would be required. Instead of storing a 12-bit pointer
into the Offset-BTB, the BTBM stores the 12-bit offset directly. We
perform an analysis of the required storage resources and overheads
in Section 4.4.3.

The BTBM lookup needs to be performed before accessing the
Page and Region-BTBs, which introduces a lookup latency chal-
lenge. Note that, the lookup in the Page and Region-BTBs is a simple
memory addressing operation that does not require an associative
lookup with tag matching as in conventional caches. Instead, tag
matching is only performed for the BTBM.We quantify the overall
BTB access latency when accessing the two structures sequentially
in section 5.4. Furthermore, we design and evaluate a new BTB
mechanism, that can hide most of the performance penalty of the
two-cycle BTB lookup. We explored an alternate multi-tag BTB
design option in which the Page and Region-BTBs are extended to
store tags so a single region or page entry can be re-used across
multiple branch PCs. We opted against this option as it suffers
from two disadvantages. First, multiple tags per entry increase the
tag overhead, and second, the number of tags statically limits the
number of branches that can have the same target.

4.3 Delta Branch Target Encoding
In Section 3.5, we showed that for over 60% of all the branches,
the branch PC and the branch target reside in the same page. Our
proposed delta branch target encoding scheme exploits this fact
by only storing the page offset of the branch target, omitting the
rest of the fields. To store only the target offset, and use the branch

PC to get the rest of the target, we add an additional delta-bit to
each entry of the BTBM identifying that the branch target is in
the same page as the branch PC. When a branch PC is looked-up
from the BTBM, the delta bit determines whether a) the branch
target is formed by concatenating the Region-BTB entry, Page-BTB
entry and offset, or b) the branch target is formed by concatenating
information from the branch PC with the offset from the BTBM.
This technique significantly reduces the number of distinct pages
and regions that need to be tracked in the BTBM. Furthermore,
since the offset information is available in the BTBM entry, it avoids
the need to lookup Region/Page-BTB lookup, eliminating the one
additional cycle latency for same-page branches. As we show later
in Figure 11b , opportunistically eliminating the extra cycle access
improves the performance gains that PDede can provide.

4.3.1 Optimizations enabled by Delta-Encoded BTB. Omitting the
page and region addresses for same-page branches reduces the
number of required entries in the Page- and Region-BTB, however,
it still wastes storage capacity by storing null pointers in the BTBM.
In the following, we explore two different techniques to eliminate
this storage overhead as well. In the first optimization, referred to as
PDede-Multi Target and shown in Figure 9B, we opportunistically
re-use the Region- and Page-BTB pointer fields in the BTBM to
store targets of other branches, under the following conditions.

• The two stored branches need to be same-page branches
• The branch PC of the second branch represents the next
taken branch after first branch in the instruction sequence.
In this case, the next taken branch follows the target of the
first branch.

To retrieve a target from the PDede-Multi Target we perform the
following operations. Every time an entry is read out from the
BTBM, we check for a valid next target and store it in a temporary
global 12-bit Next Target Offset register. To enable this, every BTBM
entry is extended with a valid bit (Next Target bit). If the next taken
PC misses in the BTBM, we use the offset from Next Target Offset
register to provide the target for this (next taken) PC. Note that,
the target might not always be correct but since the PC missed in
the BTBM and will resteer eventually, providing the target from
Next Target Offset register does not increase the resteers. This
technique has two advantages. Firstly, the technique optimizes for
same-page branches which, according to section 3.5, represent 60%
of all branches. Secondly, it is only invoked for the immediate taken
branch, following the PC, that misses in the BTBM. As such, there is
limited additional storage required per entry (only 1 bit per entry).
Figure 9 highlights these changes. There are several extensions to
this idea, in terms of adding simple tags to provide targets beyond
the next taken branch or having multiple Last BTBM set and way
registers to improve BTBM utilization, which we plan to explore
later.

We explore a second design alternative, referred to as PDede-
Multi Entry size, that restructures the BTB to support two different
entry sizes. In each set of the BTBM, half of the ways are reserved
for same-page branches and avoid the region and page pointer
fields. Only the other half include these page and region pointers.
We redistribute the storage savings to increase the total number
of BTBM entries. Such a static split of ways might not be optimal

PDede: Partitioned, Deduplicated, Delta Branch Target Buffer MICRO ’21, October 18–22, 2021, Virtual Event, Greece

<Region, Page>
from PC for same

page targets

PC (57b)

Region
(29b)

Region BTB

SRRIP
(3b)

Page Offset
(16b)

SRRIP
(3b)

Page BTB

Tag
(12b)

Page-BTB
Pointer

BTB-Monitor (BTBM)

Delta-
Bit

(1b)

Offset
(12b)

SRRIP
(3b)

PC >> 12
Target Page

(45b)

Region (29b) Page (16b)Target Address
In Different Page

PID
(1b)

Conf
(2b)

Page Pointer Offset Delta-Bit

Region-BTB
Pointer

Region Pointer

Offset (12b)

Target Page (45b) Offset (12b)

Region-BTB
Pointer

Page-BTB
Pointer

Next
Target

Bit (1b)

Next Target Offset (12b)

Reset
Region
Pointer

Page
Pointer

If (PC & Target in
same Page)

BTBM Miss

Target Page from
PC (45 b)

Next Target Offset (12b)

Target Address (57b)

If valid Last BTBM
set and way

Fill Page and
Region Pointers

in entry with
Target Offset

Make new
allocation

Set Next Target
bit

Reset Last BTBM
set and way

Record New
Last BTBM set

(10b), Last
BTB way (3b)

Bit set

Valid (1b)

Yes

Yes No

No
Make new
allocation

Rest of
BTBM fields

BTB-Monitor (BTBM)

Used to store Next Target
Offset (12b)

1

1

PC hits in BTBM

N Ways

Tag
(12b)

Page-BTB
Pointer

Delta-
Bit

(1b)

Offset
(12b)

SRRIP
(3b)

PID
(1b)

Conf
(2b)

Region-BTB
Pointer

Tag
(12b)

Offset
(12b)

SRRIP
(3b)

PID
(1b)

Conf
(2b)

N/2 Ways

N/2 Ways

Set 0

Set 1

Set M

Target Address
In Same Page

Target Address (57b)

BTB-Monitor (BTBM)

(A) (B)

(C)
ICache

Pre-
Decode

BTB
Branch Target available 1
cycle later when reading

Region BTB/ Page BTB

Branch
Target

(D)
Instruction Fetch

PDede-Default PDede-Multi Target

PDede-Multi Entry size

Reset
Last BTBM

set, Last
BTBM way

Figure 9: (A) PDede BTB Architecture with Region- and Page-BTBs emphasizing how the tables provide different portions of
the branch target. (B) PDede-Multi Target design which supports multiple targets in an entry when branches that have their
targets in the same page. Changes required are shown in yellow. (C) PDede-Multi Entry size design to support multiple entry
sizes in different ways of the same set in the BTBM. Branches with targets in different pages cannot allocate in entries that do
not have Region and Page Pointers. (D) PDede introduces a 1 cycle stall to provide branch targets for different-page branches.

HW Structure Element size (bits) Entry size Entries Size
Baseline BTB Target address(57), Tag(12), SRRIP(3), Confidence(2),

PID(1) 75 bits 4096, 8-way 37.5KB
BTBM-Default tag(12), Page-Pointer(10), Region-Pointer(2), Offset(12), SRRIP(3)

confidence(2), PID(1), delta(1) 43 bits 6144, 6-way 32.3 KB
BTBM-Multi-target tag(12), Page-Pointer(10), Region-Pointer(2), Offset(12), SRRIP(3)

confidence(2), PID(1), delta(1), Next target (1) 44 bits 6144, 6-way 33 KB
BTBM-Multi-entry size Support 2 entry sizes: Default & Default-(Region, Page Pointers, delta bit) 43 bits/30 bits 8192, 8-way 36.5 KB
Region-BTB Region(29), SRRIP(2) 31 bits 4, 4-way 0.02KB
Page-BTB Page offset(16), SRRIP(4) 20 bits 1024, 16-way 2.5KB
PDede-Default BTBM-Default, Region-BTB, Page-BTB 34.8KB
PDede-Multi Target BTBM-Multi target, Region-BTB, Page-BTB, Additional registers 35.5KB
PDede-Multi Entry size BTBM-Multi entry, Region-BTB, Page-BTB 39KB

Table 2: Storage Requirements of PDede and the Baseline BTB

across all applications but, as shown in Table 2, even if the appli-
cation only has targets in different pages, the number of suitable
entries match the baseline BTB and, therefore, at least provide the
baseline performance. Figure 9C shows the two different entry
types supported.

4.4 Putting it all Together
Figure 9A shows the overall microarchitecture for PDede. The BTBM
serves the incoming branch PC lookups and stores pointers to the
Region-BTB and Page-BTB. The BTBM maintains a 12-bit tag per

entry to disambiguate branch PCs with the same index. Each BTBM
entry also contains a 1 bit process ID (PID), 2 bits for SRRIP-based
replacement, 1 delta-bit and 2 bits for prediction confidence.

4.4.1 Lookup Operation. To perform a BTB lookup, the index bits
from the branch PC address are used to read entries from the corre-
sponding set from the BTBM. Next, the tag bits from the branch
PC are compared to the BTBM entries of the set and, if there is a
match, the Region and Page-BTB pointers as well as the offset and
the delta-bits are retrieved. If the delta bit is set, the branch PC is

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Soundararajan, Braun, Khan, Kasikci, Litz, and Subramoney

concatenated with the target offset, immediately returning the tar-
get without incurring the additional 1 cycle penalty. Furthermore,
in the case of PDede-Multi Target, if the Next Target Bit is set as
well, the region and page pointers are reinterpreted and stored into
the Next Target Offset register. If the next BTBM lookup misses, the
target for that PCwill be served from the Next Target Offset register,
otherwise the register is cleared. No additional tasks need to be
performed for the PDede-Multi Entry size implementation. If, on a
BTB lookup, the delta bit is not set, the page and region pointers
are used to lookup the corresponding entries from the Page-BTB
and Region-BTB. The region, page, and offset address bits are con-
catenated to form the target address. In this case, due to the two
sequential lookups in the BTBM and the Page-BTB, the total BTB
lookup latency is higher than the baseline BTB. In this work, we
conservatively assume an extra cycle to complete the read access
(since the cycle time is really decided by the most critical path in
the pipeline). Once the region pointer is know, the Region-BTB
access happens in parallel with the Page-BTB access.

4.4.2 Update/Allocation Operations. Once a branch has been de-
coded or executed, the correct target information is known. The
confidence counters in the BTBM are updated based on the cor-
rectness of the final target prediction.Note that for each update
operation, meta information (confidence counter, replacement bits)
in the BTBM, Region-BTB, and Page-BTB need to be updated. One
difference between PDede and the baseline BTB is that the alloca-
tion in the BTBM is only made if the allocations in the Region and
Page-BTBs have been successful, avoiding invalid entries in the
BTBM. Allocations in the Region-BTB and Page-BTB are SRRIP-
guided [27]. SRRIP is sufficient as an entry shared across multiple
often-occurring targets will always remain in the corresponding
table. These tables are indexed using the corresponding portion
from the target address (region and page) so as to detect if a par-
ticular region or page already exists in the table and allocation is
done only when needed. We do not do anything special to invali-
date the pointers in the BTB Monitor when entries in Page-BTB or
Region-BTB get replaced. The reason is that if the Region-BTB or
Page-BTB entry was popular it would not be replaced as it would
continuously be accessed by one of the entries pointing to it. But it
is possible for a BTBM entry to read an updated Page BTB entry
leading to the wrong target. Such cases were very rare (0.06%) and
hence we did not find the need to add the additional complexity
to clear the BTBM entries when page and region BTB entries get
replaced.

In the PDede-Multi Target design, if the branch that is allocated
has its target in the same page, then its BTBM set and way are
recorded in the Last BTBM set and Last BTBM way registers. When
the next taken branch, whose target is in the same page, is updated,
then using the Last BTBM set and way registers, the BTBM entry is
updated to hold a valid next target offset and next target bit is also
set. If the next taken branch is not a same-page branch, the Last
BTBM set and way registers are cleared. In the PDede-Multi Entry
size design, the only change is that allocations are restricted for
different-page branches as only half the ways, per set, are available.

4.4.3 Storage Requirements. Table 2 provides an architecturally
feasible PDede configuration whose size matches the baseline BTB
as close as possible to enable an ISO-storage comparison.

5 EVALUATION
We now evaluate the impact of PDede on BTB mispredictions per
kilo instructions (MPKI) and instructions per cycle (IPC) perfor-
mance via simulation. We break down the IPC performance gains
across the three proposed techniques and provide sensitivity stud-
ies to evaluate different BTB configurations and storage sizes. We
also study the latency impact of accessing the two BTB structures
sequentially.Finally, we also provide an iso-MPKI configuration and
show the significant storage reduction that PDede can enable.

5.1 Methodology
Our performance evaluation is done using our in-house cycle-
accurate execution driven simulatormodeling an x86 core clocked at
3.9 GHz. The simulator models pipeline latency based on functional
unit contention, resource back-pressure due to data dependencies,
a decoupled frontend, resteering due to branch misprediction and
accurate wrong path modeling. The microarchitectural parameters
are similar to the latest Intel Icelake processor [1] and we list the
relevant parameters in Table 3.

As the baseline BTB, we leverage the architecture described in
Section 2. We define BTB misses as follows. A BTB miss occurs if
either a) a branch PC does not have a valid entry in the BTB, of b)
if a branch PC is contained in the BTB, however, the target address
is incorrect. To evaluate, PDede we use the applications introduced

Core 6-wide OOO, 352-entry ROB, 32-entry fetch queue,
72-entry load buffer, 128-entry store buffer

Branch Predictor CBP-2016 [11] - 64 KB
Baseline/PDede
BTB

Refer Table 2

Uop cache 2.25K entries
L1 cache Private, 48KB, 64B line, 8 way, prefetchers on
L2 cache Private, 512KB, 64B line, 8 way, prefetchers on
LLC Shared, Inclusive, 2MB, 64B line, 16 way
Main Memory Dual channel DDR4-3200MHz

Table 3: Simulator Parameters

in Section 3. We leverage Simpoints [23] to identify the regions
of interest and run detailed simulations with 10M+ instructions
after warming up the memory sub-system and microarchitectural
structures using 100M+ instructions. While the MPKI reduction and
IPC gains presented below are normalized with the baseline, none
of the applications had low baseline MPKI as their performance are
bound by the BTB re-steering (refer Figure 1). Our simulator and
application performance estimation methodology is correlated to
within 5% error to real silicon in the market.

5.2 IPC and MPKI Performance of PDede
Figure 10a, 10b shows the performance benefits of PDede over the
baseline configuration, shown in Section 4.4.3, for three configu-
rations of PDede. Overall, PDede-Default improves IPC by 9.4% by
lowering the BTB MPKI by 35.4% across the 100+ applications. The
Server category containing large code footprint webscale applica-
tions shows the highest reduction in MPKI of 40.7% resulting in
IPC gains of 11.2%. The IPC gains are a direct result of reducing the
front-end stalls provided by the increased effective BTB capacity

PDede: Partitioned, Deduplicated, Delta Branch Target Buffer MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0

2

4

6

8

10

12

14

16

18

BP Browser Server Personal Overall

IP
C

 G
ai

n
s

(%
)

PDede-Default PDede-Multi target
PDede-Multi Entry

(a) IPC gains across the different categories
of applications

0

10

20

30

40

50

60

70

BP Browser Server Personal Overall

M
P

K
I R

ed
u

ct
io

n
 (

%
)

PDede-Default PDede-Multi target
PDede-Multi Entry

(b) BTB MPKI reduction across the different
categories

0

10

20

30

40

50

60

70

80

IP
C

 G
ai

n
s

(%
)

PDede-Multi target

PDede-Multi entry size

1.Javascript (Browser)

4.Data Analytics (Server)

3.Microservices (Server)

2.Imaging (Personal)

7. Animation(Browser)

90 applications see >5% gains in IPC

6. HTML5-Rendering(Browser)

5. OLTP (Server)

(c) Per-application IPC gains curve high-
lighting some of the applications. All appli-
cations gain more than 3%.

Figure 10: IPC and MPKI improvements provided by PDede

that reduces branch re-steering events. The overall MPKI reduction
is a direct result of PDede’s ability to track more branch PCs in the
BTBM. A 50% larger baseline BTB provides the same IPC gains ex-
cept for requiring an additional 37KB. PDede-Multi Target improves
upon PDede-Default with its ability to opportunistically store 2
targets in a single BTBM entry. The IPC gains increase to 11.4%
due to the 5% additional MPKI reduction provided by supporting
more targets in the same storage footprint. The PDede-Multi Entry
size, on the other hand, increases the IPC gains to 14.4% by storing
targets for twice the number of branches as baseline. All branch
types experience a decrease in MPKI including Indirect branches,
which have a much higher misprediction penalty, that show a 4%
decrease in mispredictions. Conditional direct branches see 74%
reduction while unconditional direct branches see 49% reduction
in MPKI.

Figure 10c shows the IPC gains for all of the 100+ evaluated
applications comparing the PDede-Multi Target and PDede-Multi
Entry size configurations. For clarity, we omit the PDede-Default
configuration. As can be seen, IPC gains range from 3% to 76%.
Figure 10c highlights specific applications such as Javascript static
analyzer, which benefits the most, seeing a 76% IPC gain resulting
from a 99.8% reduction in BTB MPKI. This BTB MPKI reduction
lowers the branch re-steering frontend stalls seen in this application
by 75% translating directly into IPC gains. Similar performance
improvements can be observed in the Imaging and Microservice
applications showing >18% IPC gains. On the other hand, in the
Animation application, the BTB MPKI is lowered only by 23% since
the hot code working set of the application is large, exceeding
PDede’s resources. The Animation application has a 2.3× larger
page footprint than the Javascript static analyzer and, hence, only
sees a limited IPC gain for existing BTB sizes.

PDede is well-equipped to handle the different requirements of
the diverse applications we analyze in this paper. For instance, in
the Data Analytics application, which has a high percentage of
branches whose targets occur in the same page as the branch PC
(90%), the BTBM provides the targets. Not only does it benefit from
limited front-end stalls but we also observe that this workload gains
more with PDede-Multi Target as multiple targets in the same page
can be packed better in this design than PDede-Multi Entry size. In
the Microservices and the OLTP applications, on the other hand,

the branch PCs and their corresponding targets frequently span
different pages (only 50% of branch PC and targets are in same
page in these applications), yet the Region and Page-BTBs combine
effectively to capture the targets. Even in PDede-Multi Entry size,
where only half the entries can support targets across different
pages, there are enough entries available to support the varying
dynamic requirements across the different branch types to result in
the MPKI reduction. The HTML5-rendering application highlights
the benefit of region and page deduplication. This application ex-
hibits an average of > 15 branch targets for each page and > 2𝐾
per region maximizing the efficiency of the Page and Region BTBs.

Going forward, for the next sections, we use PDede-Multi Entry
size to study the sensitivity to the different parameters.

5.3 Sensitivity to design observations
To quantify the impact of the main observations on which PDede is
architected on, Figure 11a shows the IPC gains obtained by each
optimization technique. Deduplicating targets (which are 67% of
branch PCs) alone is not very effective and provides only 1.6%
IPC gains. Once the targets are split into regions and pages, and
individually deduplicated, the gains are much more significant
(5.3%). This is in line with what was observed in Figure 7. Finally,
adding delta branch encoding to the two techniques increases IPC
by an additional 2.5%. Further, the multi-target and multi-entry size
optimizations, enabled by our delta branch encoding, improve the
IPC gains significantly by a further 2% and 5% respectively.

Component Access Time
(ns)

Access Time
(ns)

1 RW port 6 RW ports
Baseline BTB 0.24 0.72
BTBM 0.21 0.55
Page-BTB(PBTB) 0.09 0.16
PDede (BTBM+PBTB) 0.3 0.71

Table 4: Access Latency comparison at 22nm. For PDede, ac-
cess latency shown for default cacti parameters.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Soundararajan, Braun, Khan, Kasikci, Litz, and Subramoney

0

4

8

12

16

IP
C

 G
a

in
s

(%
)

Dedup + Partition + Delta
Encode + Delta Optimization

Dedup + Partition + Delta
Encode

Dedup + Partition

Dedup

PDede-Multi Target

PDede-Multi Entry size

4.5%

5.3%

1.6%

5.3%

1.6%

7.5%

(a) Contributions from the different observa-
tions that together helped architect PDede

0

2

4

6

8

10

12

14

16

18

Fetch Q size = 8 Fetch Q size = 32 Fetch Q size = 128

IP
C

 G
ai

n
s

(%
)

(b) IPC gainswhenBTB stalls for every taken
branch and across different fetch queue sizes

0

2

4

6

8

10

12

2.3KB 4.6 KB 7.1 KB 9.5 KB 12 KB 14 KB

IP
C

 G
ai

n
s

(%
)

(c) IPC gains in a 2 level BTB organization
with the Level1 BTB rearchitected based on
PDede. The gains are shown for different
sizes of Level0 BTB.

Figure 11: PDede IPC contributions and sensitivity in different configurations

5.4 PDede access latency
Using Cacti7 [56], we studied the access latency of the baseline BTB
and PDede at 22nm in Table 4. The critical path for PDede access
is the BTBM access followed by an access to the Page-BTB. 22nm
is the most recent technology supported by Cacti7. We highlight
two different configurations, one utilizing 1 read-write (RW) port
and another with 6 RW ports. Note that even a 1-RW design can
support multiple BTB accesses per cycle when leveraging a banked
design while the 6 port design matches the pipeline width. As seen,
PDede has higher access latency than the baseline BTB only when
sequentially accessing the Page-BTB. Otherwise, the access latency
of the BTBM is lesser than the baseline BTB’s access latency. Hence,
PDede, only incurs a 1 cycle penalty to provide the branch target
when accessing the page and region BTBs is required. We also
evaluated the impact when the BTB access for every taken branch
take two cycles, irrespective of whether it requires an access to the
Region-BTB and Page-BTB or not. This configuration lowers the
overall IPC gains from 14.4% to 13.4%. In a decoupled frontend [26,
44], delaying the BTB lookup by one cycle is not exposed to later
pipeline stages. The additional cycle renders it more challenging
for the frontend to run-ahead, however, since typical basic blocks
involve a few instructions, the branch predictor can proceed quickly
enough to predict future branches. Figure 11b shows the IPC impact
when varying the fetch queue size. As expected, the gains are lower
at smaller fetch queue size (12.7%) which increases as the fetch
queue becomes larger (15.4% when fetch queue has 128 entries). In
a FDIP pipeline, the fetch queue controls how far ahead the branch
predictor and BTB (at high accuracy) can fetch and hence the IPC
gains scale accordingly.

5.5 PDede performance with Perfect Branch
Direction Predictor

To analyze the interactions between the branch direction predictor
and the BTB, we studied the effectiveness of PDede with a perfect
branch direction predictor improving the overall IPC gains over
the baseline from 14.4% to 15.2%.

5.6 Impact of Indirect Branches
Modern cores incorporate an Indirect Target TAGE (ITTAGE) [45]
predictor to predict the target of indirect branches. The storage
requirements of ITTAGE (64KB) is quite high, although indirect
branches only represent 10% of total dynamic branches. We evalu-
ate PDede and the baseline BTB system with an additional 64-KB
ITTAGE. For both designs, indirect branch targets are not allocated
in the BTB. PDede provides a 13.9% IPC gain over the baseline
BTB. IPC improvements are lower than in the configuration with-
out ITTAGE, as the indirect branch MPKI reduction provided by
PDede does not apply in this case. Also, the baseline BTB now has
additional entries available for storing direct branches.

5.7 Impact of Storing Return Instructions
The RAS is common in most modern architectures as it can store the
targets of return instructions with perfect accuracy. Nevertheless,
to reduce storage costs and, for simplicity, architectures may opt
to omit the RAS and instead store return targets in the BTB. We
see a 13.7% IPC gain for PDede over the baseline BTB when storing
return targets in the BTB. Note that our sizing analysis performed
in Section 3 does not include return targets and hence Page and
Offset-BTBs may be sized non-optimally for this configuration.

5.8 Sensitivity at larger BTB Sizes
In Figure 12b, we highlight the IPC gains provided by PDede at
larger BTB sizes. These gains primarily stem from PDede’s ability
to track more PCs in the BTBM (6K additional PCs tracked in Con-
figB compared to baseline) and both the Region and Page-BTBs
not having to scale up much to support the additional targets. We
continue scaling the BTB size to 16K entries (150KB), and PDede
still provides a 3.3% IPC improvement across 100+ applications at
iso-storage. The IPC gains are lower as the active footprint of sev-
eral applications start to fit in this size. Nevertheless, for the JITed
server applications with large footprints, IPC gains of 6% are still
significant. To be iso-MPKI, with the 150KB baseline BTB, PDede
only requires 87 KB. This results in 42% lower storage resulting in
area and energy savings, and as workload footprint sizes are con-
tinuing to increase [28], PDede will continue to provide significant
benefits.

PDede: Partitioned, Deduplicated, Delta Branch Target Buffer MICRO ’21, October 18–22, 2021, Virtual Event, Greece

0%

2%

4%

6%

8%

10%

12%

14%

16%

Shotgun (37KB) Shotgun (45KB) PDede (37KB)

IP
C

 G
ai

n
s

(%
)

uBTB: 3K entries
cBTB: 512 entries
Prefetch Buffer:128 entries

uBTB: 4K entries
cBTB: 512 entries
Prefetch Buffer:128 entries

(a) IPC comparison with state-of-art BTB de-
sign from Shotgun [35]

0

2

4

6

8

10

12

14

16

18

20

Default Config
(37.5 KB)

Config A (47 KB) Config B (56 KB)

IP
C

 G
ai

n
s

(%
)

Baseline: 5K entries
PDede (entries) - BTBM:10K,
Region-BTB:4,Page-BTB:1K

Baseline BTB:6K entries
PDede (entries) - BTBM:12K,
Region-BTB:4,Page-BTB:1K

(b) PDede IPC gains as the BTB storage bud-
get is scaled.

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

Config A Config B Config C

St
o

ra
ge

 S
av

in
gs

 (
%

)

St
o

ra
ge

 R
eq

u
ir

ed
 (

K
B

)

~50% reduction in storage

Config A: BTBM:6K,
Region-BTB:4,
Page-BTB:256

Config B: BTBM:4K,
Region-BTB:4,
Page-BTB:1K

Config C: BTBM:4K,
Region-BTB:8,
Page-BTB:512

(c) Iso-MPKI PDede configurations

Figure 12: PDede IPC sensitivity at larger sizes, in future cores and storage savings possible at Iso-MPKI

5.9 Sensitivity for 2-level BTB designs
In Figure 11c, we study PDede in a 2-level BTB configuration [22].
We study a baseline configuration with Level0 BTB at multiple
sizes providing predictions at 1 cycle latency along with a 4K-entry
Level1 BTB providing predictions at 2 cycles. In this setup, PDede is
used to optimize only the Level1 BTB and yet it provides significant
IPC gains. Further, as the Level1 BTB size grows, as shown in
Figure 12b, PDede will continue to remain efficient and provide
significant IPC benefits over the conventional BTB organization.

5.10 Comparison to state-of-art BTBs
In Figure 12a, we show that the state of art BTB design, Shotgun [35],
brings only about 2.7% IPC speedup over the baseline BTB stud-
ied in this work (4K-entries at 37.5KB). As seen, Shotgun gives
only about 0.8% IPC gains over the baseline, at iso-storage, which
increases to about 2.7% at 45KB. Note that we did not model the
Return Instruction Buffer (RIB) and instead use the RSB to pro-
vide target address for returns similar to baseline. Prefetching the
conditionals following the return was modelled similar to what
was done in [35]. Several factors contribute to Shotgun’s lower
gains. These include the need to capture targets of all taken/not
taken conditional branches in CBTB, which lower its hit rate. The
baseline BTB is PC-indexed and therefore only needs to capture
taken branches in it. Further, the prefetching is only triggered when
a prior unconditional branch hits in the uBTB and only the con-
ditional branches within a certain offset from the unconditional
branch are prefetched. Prefetching into ICache, on top of FDIP[26],
also pollutes the ICache entries due to the high speculation in the
front-end.

Confluence [29] and SN4L [5] operate at the cache line granular-
ity and store the branch information in the cache line as meta-data.
For RISC-ISAs, given the fixed instruction length, simple bit vectors
suffice to capture the meta-data. For the x64 CISC ISA, there is a
need to store branch offsets which is much harder to accommo-
date. SN4L estimates that it would require at least an additional
65KB metadata, virtualized, for a 2K-entry BTB. For Confluence,
the meta-data that needs to be stored is much larger (960KB). This
is discussed in Section V-D of SN4L paper. The high storage costs
make these techniques harder to adopt. On the other hand, PDede
provides all its gains at iso-storage.

PDede can definitely complement Confluence, Shotgun, and
other BTB prefetching techniques to hold more branches in the
BTB and in turn reduce the prefetching needed.

5.11 PDede with Deeper Future Pipelines
Modern OOO cores continue to increase in their pipeline width
and depth to extract more single-thread performance. A side-effect
of this growth is the performance penalty of BTB mispredictions
increases as the pipeline stages between when the BTB prediction
is given and when the actual branch target is available increases.
Therefore, lowering the BTBMPKI will only becomemore critical in
future cores. To study this impact, we scale the pipeline parameters
listed in Table 3 by 1.5x and 2x of their current size to reflect future
cores. The IPC gains from PDede BTB increases to 16.8% in the
1.5x Icelake-like core which increases further to 20.1% in the 2x
Icelake-like core.

5.12 Iso-MPKI PDede Storage Savings
While the prior sections studied the performance impact of iso-
storage PDede configuration in different scenarios, storage savings
are equally important both from cost and energy savings perspec-
tive. As such, in Figure 12c, we also studied the smallest size PDede
BTB that is iso-MPKI with the baseline BTB. The smallest PDede
configuration requires only 19KB, resulting in 49% storage savings
over the baseline.

6 RELATEDWORK
Significant effort has gone in to studying the frontend bottleneck
and proposing techniques to lower its impact [5, 7, 8, 17, 18, 29–
32, 39, 42]. By predicting the control flow of applications and
prefetching instructions into the Icache and BTB, a steady flow
of instructions can be provided. PDede is complementary to these
works. Recent papers from Samsung and IBM [2, 22] have shown
the significant investments made in BTB storage emphasizing the
importance of lowering BTB resteers. Also, as shown in Figure 12b,
PDede still gives good performance gains at larger BTB sizes.

Seznec [46] proposed the page pointer table, which has also been
used by Garza [19], to improve the storage efficiency of the BTB
via partitioning. While the proposed technique is related, PDede im-
proves over the page pointer table by splitting the page address into

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Soundararajan, Braun, Khan, Kasikci, Litz, and Subramoney

regions and page offsets and deduplicating the individual structures
to help lower the storage costs. PDede introduces Delta Encoding of
branch targets to further improve storage efficiency. Delta Encod-
ing enables PDede-Multi Target to opportunistically store multiple
targets in the same entry which has not been explored till now.
Further, it allows the entries to be sized differently, bringing in sig-
nificant IPC benefits via the PDede-Multi Entry size design. Lastly,
for a thorough evaluation, PDede takes the performance implica-
tion of accessing multiple structures into account. Our analysis and
newly introduced techniques improve the performance by an ad-
ditional 7.5% over implementations that only support partitioning
(Figure 11a).

Several works have looked to enhance the efficiency of the BTB
by applying different replacement policies. These works [9, 41]
investigate different BTB allocation strategies for different branch
types. GHRP [3] was introduced to improve the BTB replacement
policy which is again orthogonal to our work and can be combined
with PDede. Several proposals [15, 20, 33, 37, 38, 51] aim to reduce
misspredictions for indirect branches. PDede contributes over these
works by tackling all branch types while showing a MPKI reduction
for indirect branches as well. The Phantom-BTB [10] increases
effective BTB capacity by adding a virtual second level BTB in the
L2 cache, prefetching branch metadata into the BTB to mitigate
the added latency. This solution still leverages a dedicated BTB
component whose storage efficiency can be improved with PDede.

Several prior studies on caches have exploited data redundancy
to lower the storage requirements either by deduplicating [12–
14, 24, 47, 52] the data or by proposing efficient compression [4, 21].
Such compression techniques are infeasible for BTBs which need
to provide fast lookups whereas PDede has been optimized for
performance.

7 CONCLUSION
In this paper we present PDede, the Partitioned, Deduplicated, Delta
Branch Target Buffer. PDede proposes three novel techniques to
increase the space-efficiency of BTBs leading to significant perfor-
mance gains for frontend-bound applications. Our Delta-branch
target encoding is novel and allows us to store multiple targets
in a single entry and we evaluate the impact of supporting differ-
ent entry sizes. In an iso-storage configuration, PDede shows an
average BTB MPKI reduction of 54.7% and an average IPC improve-
ment of 14.4% over the baseline BTB. Alternately, PDede achieves
iso-MPKI at 49% lower storage than baseline. We believe that our
analysis provides insights that eases future research on this topic to
develop better branch target buffers increasing the efficiency and
throughput of contemporary microprocessors.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful feedback
and suggestions. This work was supported by the Intel Corpora-
tion, the NSF grants #1823559 and #2010810, and the Applications
Driving Architectures (ADA) Research Center, a JUMP Center co-
sponsored by SRC and DARPA. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES
[1] 2019. Icelake. https://www.anandtech.com/show/14514/examining-intels-ice-

lake-microarchitecture-and-sunny-cove/.
[2] N. Adiga, J. Bonanno, A. Collura, M. Heizmann, B. R. Prasky, and A. Saporito. 2020.

The IBM z15 High Frequency Mainframe Branch Predictor Industrial Product. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 27–39.

[3] Samira Mirbagher Ajorpaz, Elba Garza, Sangam Jindal, and Daniel A Jiménez.
2018. Exploring predictive replacement policies for instruction cache and branch
target buffer. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 519–532.

[4] A. R. Alameldeen and D. A. Wood. 2004. Adaptive cache compression for high-
performance processors. In Proceedings. 31st Annual International Symposium on
Computer Architecture, 2004. 212–223.

[5] Ali Ansari, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2020. Divide and
Conquer Frontend Bottleneck. In Proceedings of the 47th Annual International
Symposium on Computer Architecture (ISCA).

[6] Grant Ayers, Jung Ho Ahn, Christos Kozyrakis, and Parthasarathy Ranganathan.
2018. Memory hierarchy for web search. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 643–656.

[7] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.
2020. Classifying Memory Access Patterns for Prefetching. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 513–526.

[8] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2019. AsmDB: understanding and mitigat-
ing front-end stalls in warehouse-scale computers. In Proceedings of the 46th
International Symposium on Computer Architecture. 462–473.

[9] Brian K. Bray and M. J. Flynn. 1991. Strategies for branch target buffers. In
Proceedings of the 24th annual international symposium on Microarchitecture -
MICRO 24. ACM Press, Albuquerque, New Mexico, Puerto Rico, 42–50. https:
//doi.org/10.1145/123465.123473

[10] Ioana Burcea and Andreas Moshovos. 2009. Phantom-BTB: a virtualized branch
target buffer design. Acm Sigplan Notices 44, 3 (2009), 313–324.

[11] CBP-5. 2016. Championship Branch Prediction (CBP-5). https://www.jilp.org/
cbp2016/.

[12] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu Chen, Haiyang Pan, and Yun-
gang Bao. 2014. CMD: Classification-based memory deduplication through page
access characteristics. ACM SIGPLAN Notices 49, 7 (2014), 65–76.

[13] David Cheriton, Amin Firoozshahian, Alex Solomatnikov, John P. Stevenson, and
Omid Azizi. 2012. HICAMP: architectural support for efficient concurrency-safe
shared structured data access. ACM SIGPLAN Notices 47, 4 (March 2012), 287–300.
https://doi.org/10.1145/2248487.2151007

[14] Timothy E Denehy and Windsor W Hsu. 2003. Duplicate Management for
Reference Data. Research Report RJ10305, IBM (2003), 15.

[15] M. Farooq, L. Chen, and L. Kurian. 2010. Value Based BTB Indexing for indirect
jump prediction. In 2010 IEEE 16th International Symposium on High Performance
Computer Architecture (HPCA). IEEE Computer Society, Los Alamitos, CA, USA.
https://doi.org/10.1109/HPCA.2010.5416659

[16] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. Acm sigplan notices 47, 4 (2012),
37–48.

[17] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proactive instruction
fetch. In International Symposium on Microarchitecture.

[18] Michael Ferdman, Thomas F Wenisch, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2008. Temporal instruction fetch streaming. In International
Symposium on Microarchitecture.

[19] E. Garza, S. Mirbagher-Ajorpaz, T. A. Khan, and D. A. Jiménez. 2019. Bit-level
Perceptron Prediction for Indirect Branches. In 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA). 27–38.

[20] E. Garza, S. Mirbagher-Ajorpaz, T. A. Khan, and D. A. Jiménez. 2019. Bit-level
Perceptron Prediction for Indirect Branches. In 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA). 27–38.

[21] Amin Ghasemazar, Prashant Nair, and Mieszko Lis. 2020. Thesaurus: Efficient
Cache Compression via Dynamic Clustering. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 527–540.

[22] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez, T. Nakra, P.
Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and A. Ghiya. 2020. Evolution of
the Samsung Exynos CPU Microarchitecture. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 40–51.

[23] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. SimPoint 3.0:
Faster and More Flexible Program Phase Analysis. Journal of Instruction Level
Parallelism (2005), 1–28.

https://doi.org/10.1145/123465.123473
https://doi.org/10.1145/123465.123473
https://www.jilp.org/cbp2016/
https://www.jilp.org/cbp2016/
https://doi.org/10.1145/2248487.2151007
https://doi.org/10.1109/HPCA.2010.5416659

PDede: Partitioned, Deduplicated, Delta Branch Target Buffer MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[24] Bo Hong and Demyn Plantenberg. 2004. Duplicate Data Elimination in a SAN
File System. MSST 2004 (2004), 14.

[25] Intel. 2017. 5-Level Paging and 5-Level EPT. Technical Report. Intel.
[26] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo. 5555. Rebasing Instruction Prefetching:

An Industry Perspective. IEEE Computer Architecture Letters 01 (oct 5555), 1–1.
https://doi.org/10.1109/LCA.2020.3035068

[27] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. 2010. High
Performance Cache Replacement Using Re-Reference Interval Prediction (RRIP).
In Proceedings of the 37th Annual International Symposium on Computer Architec-
ture (Saint-Malo, France) (ISCA ’10). Association for Computing Machinery, New
York, NY, USA, 60–71. https://doi.org/10.1145/1815961.1815971

[28] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. 158–169.

[29] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: unified in-
struction supply for scale-out servers. In Proceedings of the 48th International
Symposium on Microarchitecture. 166–177.

[30] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundarara-
jan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam,
Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-Guided BTB Prefetching for
Data Center Applications. In 54th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[31] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner
Litz, and Baris Kasikci. 2020. I-SPY: Context-Driven Conditional Instruction
Prefetching with Coalescing. In 2020 53rd Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 146–159.

[32] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles
Pokam, Heiner Litz, and Baris Kasikci. 2021. Ripple: Profile-Guided Instruction
Cache Replacement for Data Center Applications. In Proceedings of the 48th
International Symposium on Computer Architecture (ISCA 2021).

[33] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. Cohn. 2009. Virtual
Program Counter (VPC) Prediction: Very Low Cost Indirect Branch Prediction
Using Conditional Branch Prediction Hardware. IEEE Trans. Comput. 58, 9 (2009),
1153–1170.

[34] Aasheesh Kolli, Ali Saidi, and Thomas F Wenisch. 2013. RDIP: return-address-
stack directed instruction prefetching. In 2013 46th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). IEEE, 260–271.

[35] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting through the
front-end bottleneck with shotgun. ACM SIGPLAN Notices 53, 2 (2018), 30–42.

[36] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. 2017.
Boomerang: A metadata-free architecture for control flow delivery. In 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 493–504.

[37] Tao Li, Ravi Bhargava, and Lizy Kurian John. 2002. Rehashable BTB: an adap-
tive branch target buffer to improve the target predictability of Java code. In
International Conference on High-Performance Computing. Springer, 597–608.

[38] Tao Li, Ravi Bhargava, and Lizy Kurian John. 2005. Adapting branch-target
buffer to improve the target predictability of java code. ACM Transactions on
Architecture and Code Optimization (TACO) 2, 2 (2005), 109–130.

[39] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur Kocber-
ber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer, and
Babak Falsafi. 2012. Scale-out processors. ACM SIGARCH Computer Architecture
News 40, 3 (June 2012), 500–511. https://doi.org/10.1145/2366231.2337217

[40] A. Perais, R. Sheikh, L. Yen, M. McIlvaine, and R. D. Clancy. 2019. Elastic In-
struction Fetching. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE Computer Society, Los Alamitos, CA, USA,
478–490. https://doi.org/10.1109/HPCA.2019.00059

[41] Chris H Perleberg and Alan Jay Smith. 1993. Branch target buffer design and
optimization. IEEE transactions on computers 42, 4 (1993), 396–412.

[42] A. Ramirez, O.J. Santana, J.L. Larriba-Pey, and M. Valero. 2002. Fetching instruc-
tion streams. In 35th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2002. (MICRO-35). Proceedings. 371–382. https://doi.org/10.1109/MICRO.
2002.1176264 ISSN: 1072-4451.

[43] Glenn Reinman, Brad Calder, and Todd Austin. 1999. Fetch directed instruction
prefetching. InMICRO-32. Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture. IEEE, 16–27.

[44] Glenn Reinman, Brad Calder, and Todd Austin. 2001. Optimizations Enabled
by a Decoupled Front-End Architecture. IEEE Trans. Comput. 50, 4 (April 2001),
338–355. https://doi.org/10.1109/12.919279

[45] André Seznec. 2011. A 64-Kbytes ITTAGE indirect branch predictor. In JILP.
https://hal.inria.fr/hal-00639041

[46] S. Seznec. 1996. Don’t Use the Page Number, but a Pointer to It. In 23rd Annual
International Symposium on Computer Architecture. IEEE Computer Society, Los
Alamitos, CA, USA, 104. https://doi.org/10.1145/232973.232985

[47] Dimitrios Skarlatos, Nam Sung Kim, and Josep Torrellas. 2017. Pageforge: a
near-memory content-aware page-merging architecture. In Proceedings of the

50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
50 ’17). Association for Computing Machinery, New York, NY, USA, 302–314.
https://doi.org/10.1145/3123939.3124540

[48] Lawrence Spracklen, Yuan Chou, and Santosh G Abraham. 2005. Effective instruc-
tion prefetching in chip multiprocessors for modern commercial applications. In
International Symposium on High-Performance Computer Architecture.

[49] Viji Srinivasan, Edward S Davidson, Gary S Tyson, Mark J Charney, and Thomas R
Puzak. 2001. Branch history guided instruction prefetching. In International
Symposium on High-Performance Computer Architecture.

[50] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch. 2019. Softsku:
Optimizing server architectures for microservice diversity@ scale. In Proceedings
of the 46th International Symposium on Computer Architecture. 513–526.

[51] D-CD Tang, Ann Marie Grizzaffi Maynard, and Lizy Kurian John. 1999. Con-
trasting branch characteristics and branch predictor performance of C++ and C
programs. In 1999 IEEE International Performance, Computing and Communica-
tions Conference (Cat. No. 99CH36305). IEEE, 275–283.

[52] Yingying Tian, Samira M. Khan, Daniel A. Jiménez, and Gabriel H. Loh. 2014.
Last-Level Cache Deduplication. In Proceedings of the 28th ACM International
Conference on Supercomputing (Munich, Germany) (ICS ’14). Association for
Computing Machinery, New York, NY, USA, 53–62. https://doi.org/10.1145/
2597652.2597655

[53] Alexander V. Veidenbaum. 1997. Instruction cache prefetching using multilevel
branch prediction. In High Performance Computing (Lecture Notes in Computer
Science), Constantine Polychronopoulos, Kazuki Joe, Keijiro Araki, and Makoto
Amamiya (Eds.). Springer, Berlin, Heidelberg, 51–70. https://doi.org/10.1007/
BFb0024203

[54] Wikipedia contributors. 2018. ASLR. https://en.wikipedia.org/wiki/Address_
space_layout_randomization.

[55] Wikipedia contributors. 2018. WebAssembly. https://en.wikipedia.org/wiki/
WebAssembly.

[56] S. J. E. Wilton and N. P. Jouppi. 1996. CACTI: an enhanced cache access and
cycle time model. IEEE Journal of Solid-State Circuits 31, 5 (1996), 677–688.
https://doi.org/10.1109/4.509850

[57] Ahmad Yasin. 2014. A top-down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 35–44.

[58] Yi Zhang, Steve Haga, and Rajeev Barua. 2002. Execution history guided instruc-
tion prefetching. In Proceedings of the 16th international conference on Supercom-
puting (ICS ’02). Association for Computing Machinery, New York, NY, USA,
199–208. https://doi.org/10.1145/514191.514220

https://doi.org/10.1109/LCA.2020.3035068
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/2366231.2337217
https://doi.org/10.1109/HPCA.2019.00059
https://doi.org/10.1109/MICRO.2002.1176264
https://doi.org/10.1109/MICRO.2002.1176264
https://doi.org/10.1109/12.919279
https://hal.inria.fr/hal-00639041
https://doi.org/10.1145/232973.232985
https://doi.org/10.1145/3123939.3124540
https://doi.org/10.1145/2597652.2597655
https://doi.org/10.1145/2597652.2597655
https://doi.org/10.1007/BFb0024203
https://doi.org/10.1007/BFb0024203
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/WebAssembly
https://en.wikipedia.org/wiki/WebAssembly
https://doi.org/10.1109/4.509850
https://doi.org/10.1145/514191.514220

	Abstract
	1 Introduction
	2 Background
	3 BTB Analysis
	3.1 Frequency of Taken Branches
	3.2 Branch Type Classification
	3.3 Target Region and Page Partitioning
	3.4 Branch Target Address Sharing
	3.5 Page Sharing between Branch and Target

	4 PDede Architecture
	4.1 BTB-Partitioning
	4.2 Branch Target Deduplication
	4.3 Delta Branch Target Encoding
	4.4 Putting it all Together

	5 Evaluation
	5.1 Methodology
	5.2 IPC and MPKI Performance of PDede
	5.3 Sensitivity to design observations
	5.4 PDede access latency
	5.5 PDede performance with Perfect Branch Direction Predictor
	5.6 Impact of Indirect Branches
	5.7 Impact of Storing Return Instructions
	5.8 Sensitivity at larger BTB Sizes
	5.9 Sensitivity for 2-level BTB designs
	5.10 Comparison to state-of-art BTBs
	5.11 PDede with Deeper Future Pipelines
	5.12 Iso-MPKI PDede Storage Savings

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

