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Abstract. Flash based solid state drives (SSDs) have established them-
selves as a higher-performance alternative to hard disk drives in cloud
and mobile environments. Nevertheless, SSDs remain a performance bot-
tleneck of computer systems due to their high I/O access latency. A com-
mon approach for improving the access latency is prefetching. Prefetch-
ing predicts future block accesses and preloads them into main memory
ahead of time. In this paper, we discuss the challenges of prefetching in
SSDs, explain why prior approaches fail to achieve high accuracy, and
present a neural network based prefetching approach that significantly
outperforms the state-of the-art. To achieve high performance, we ad-
dress the challenges of prefetching in very large sparse address spaces,
as well as prefetching in a timely manner by predicting ahead of time.
We collect I/O trace files from several real-world applications running on
cloud servers and show that our proposed approach consistently outper-
forms the existing stride prefetchers by up to 800× and prior prefetching
approaches based on Markov chains by up to 8×. Furthermore, we pro-
pose an address mapping learning technique to demonstrate the applica-
bility of our approach to previously unseen SSD workloads and perform
a hyperparameter sensitivity study.
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1 Introduction

Solid state drives (SSDs) have become the primary storage device technology for
mobile devices and high-performance servers. SSDs have replaced the spinning
disks (HDDs) for many applications in cloud services due to their higher I/O
performance [47], lower failure rate [37], and better endurance [34]. Nevertheless,
although SSDs deliver significantly higher speeds than HDDs, SSDs still remain
a performance bottleneck of computing systems [24], as processors and DRAM
technologies support three orders of magnitude lower access latency. Two com-
mon approaches to hide the high access latency of storage devices are caching
and prefetching. Caching utilizes less dense but faster types of memory to store
frequently used data items, filtering out many accesses of the slow SSDs. Exam-
ples include Linux’s page cache [12] and filesystem caches [43]. Prefetching [9]
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approaches read data from SSDs in advance, in order to serve the later demand
accesses from the cache with low latency. Prefetching can be implemented either
in software, e.g., within operating system [29, 35] or within the SSD itself [48].

Existing prefetching mechanisms [39, 38] are limited by the computational
complexity and difficulty of correctly predicting future I/O accesses. For in-
stance, the read-ahead prefetcher [15, 26] is limited to prefetching the next data
item within a file to accelerate sequential accesses. More advanced prefetchers
[17, 5] that can learn complex I/O access patterns have been dismissed because
of their computational cost. Recently, storage vendors, including Samsung, have
proposed SmartSSDs [33, 14], adding computational capabilities to SSDs. These
devices offer new opportunities as they enable offloading of prefetching to hard-
ware, removing the burden from the host CPU. While this approach addresses
the compute overhead of prefetching, predicting future I/O accesses accurately
remains a challenge. Real-world applications not only perform sequential ac-
cesses, but also exhibit complex workload patterns [7]. Applications are fre-
quently used by multiple users simultaneously, performing independent tasks,
resulting in a mix of sequential and random I/O requests which are difficult to
model and challenging to predict. Furthermore, in existing systems, I/O accesses
need to traverse a deeply layered software stack, transforming the easy to pre-
dict accesses on the application side into seemingly random accesses on the SSD
level. Predicting future memory accesses from multiple interleaved I/O access
streams on the SSD device layer hence represents a challenging problem.

Modern SSDs and operating systems offer a wide range of telemetry data for
analysis. Utilizing I/O access tracing in hardware and software enables the col-
lection of large, clean, and automatically labeled datasets that can fuel powerful
machine learning models. In this work, we leverage Long Short-Term Memory
(LSTM) [19] based sequence-to-sequence neural networks to learn spatial I/O
access patterns of applications from block level I/O traces collected from a di-
verse set of data center applications. LSTMs are capable of capturing long-term
dependencies in data and can address sequences of different lengths. LSTMs in-
tegrate model training and representation learning together, without requiring
additional domain knowledge, enabling the discovery of unseen patterns in the
data to improve generalization capability of a model. In this work, we leverage
LSTMs to deliver the following contributions. First, our model provides high
accuracy even in the presence of complex interleaved I/O streams. Second, it
addresses the challenge of timeliness by predicting multiple I/O accesses ahead
of time. Third, to cope with the dynamic behavior of applications and to im-
prove the reusability of our model, we propose an address mapping learning
(AML) technique enabling our model to predict different types of workloads. To
demonstrate the practicality of our approach, we build a simulator enabling us
to measure timeliness in addition to prediction accuracy. We utilize I/O traces to
train the neural network models offline and predict future logical block addresses
(LBAs) at runtime using the simulator. To reduce address space, we take the l1
norm between a pair of consecutive memory accesses as input to the model in
addition to the requested I/O size. This enables the model to also predict the
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size of the incoming I/O request, representing the amount of data blocks to be
prefetched ahead of time. We show that our approach enables predicting LBAs
sufficiently far ahead to compensate for the read latency of accessing flash as well
as for the inference latency of our model. We present an analysis of the impact of
predicting N steps ahead into the future and evaluate the impact of cache size on
the performance of our prefetcher. We compare our work with three baselines, a
naive approach that only prefetches the most frequently accessed LBAs, a stride
prefetcher [23], and the Markov chain based prefetcher [11, 26, 48], showing an
improvement of up to 800× over the stride prefetcher and up to 8× over the
Markov chain prefetcher.

2 Background

2.1 Flash Device Architecture

NAND flash drives or SSDs are non-volatile memory devices storing individ-
ual bits on floating gate transistors. Floating gate transistors are arranged in
large bit cell arrays increasing not only the storage capacity, but also the ac-
cess latency. Furthermore, flash cells suffer from limited endurance and frequent
bit errors, which are exacerbated by transistor scaling and the introduction of
techniques such as multi-level cells [31]. To ensure data integrity, multiple reads
using different reference voltages need to be performed, and the controller needs
to perform error detection and correction as part of each read, further increas-
ing the read latency. As a result, the I/O access latency of SSDs (∼100µs) is
three orders of magnitude higher than the latency of reading DRAM (∼100ns).
Hence, a mechanism that prefetches the data into DRAM provides significant
performance gains.

2.2 Prefetching

Prefetching in storage systems is the process of preloading data from a slow
storage device into faster memory, generally DRAM, to decrease the overall
read latency. Accurate and timely prefetching can effectively reduce the perfor-
mance gap between different levels of memory [30]. There are three important
metrics used to compare prefetchers including coverage, accuracy, and timeliness
of prefetchers [23]. Coverage is the ratio of the number of SSD reads that can be
prefetched to the total number of SSD reads. Accuracy is the ratio of number
of data blocks being prefetched to the number of prefetched data blocks that
were actually requested by the application. Timeliness requires data blocks to
be prefetched sufficiently ahead of time so that the data is present in DRAM
whenever the read request is performed by the application. If the prefetched data
blocks are not available when they are needed, the application is required to stall,
rendering prefetching ineffective. Furthermore, if the data is prefetched too early,
it may not be available anymore when it is actually needed, due to the eviction
from the capacity-limited cache. Inaccurate prefetches that read in unneeded
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Fig. 1. Demonstration of prefetching at time, t

data are harmful as they waste I/O bandwidth and DRAM capacity. If prefetch-
ing is performed too conservatively, coverage is low and the overall performance
gains are limited. Hence, the ideal prefetcher has high coverage, high accuracy,
and executes prefetching timely so that the data is fetched exactly when it is
needed. A basic prefetching mechanism is shown in Fig. 1. The SSD prefetcher
(P) is responsible for predicting candidate data blocks (C) to prefetch from the
SSD (S) into a fast cache (DRAM) buffer (B) of size s. The cache eviction policy
(E) is responsible for evicting the data blocks from B in order to make space
for new incoming data. In this example, at time t, P determines candidates x1,
x2, x3, and x4 for prefetching, but the actual data requested at time t is x1, x2,
and x3. Here, x1 was prefetched too early while x4 was inaccurately prefetched,
resulting in cache miss in both the cases. Candidates x2 and x3, however, were
present in the cache when requested, and hence, result in cache hit.

2.3 Neural Network based Prefetching

While most work on I/O prefetching has focused on conventional techniques,
some prior works have explored using machine learning techniques. Hashemi [18]
used neural network based sequence models for prefetching DRAM accesses. The
models proposed in this work, however, cannot be applied to our problem as
prefetching I/O accesses differs significantly from prefetching DRAM accesses.
First, I/O accesses do not contain instruction information to enable stream dis-
ambiguation, second, I/O accesses do not have a fixed size like DRAM accesses,
third, I/O accesses and DRAM accesses interact differently with the OS, and
fourth, I/O prefetching models need to account for timeliness. A second line of
work utilized Markov chains [11] for prefetching data from SSDs [26, 48]. We
compare our approach with these prior works in Section 6, confirming prior ob-
servations that Markov chain based prefetchers perform poorly on real world
applications where the I/O streams are more complex [44].

3 Problem Statement

We assume a digital system that consists of the following components. A flash
based digital storage device (SSD) that provides high capacity but low perfor-
mance, and a high access latency. A central processing unit (CPU) that can
process data at orders of magnitude faster than the SSD. In addition, the sys-
tem is comprised of a cache (usually DRAM) that is placed in between the CPU
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and the SSD. The CPU can access data with low latency from the cache, how-
ever, the cache capacity is orders of magnitude smaller than the SSD capacity.
Reads access a specific logical block address (LBA) and are generally more per-
formance critical than writes, as future operations depend on the data supplied
by the reads, which is why this work focuses on reads. The goal we aim to
achieve is to accurately predict future LBAs so that they can be prefetched into
the cache, enabling low latency accesses by the CPU. In addition to the LBA,
we also need to predict the size of the I/O, as prefetching only parts of an I/O
access is useless. Thus, an efficient prefetching mechanism requires optimizing
three metrics, particularly, the coverage, accuracy, and timeliness.

Coverage or recall refers to the ratio of future memory accesses that are
attempted to be prefetched. Prefetching of an LBA is accurate if the same
LBA is subsequently accessed by a demand read. Accuracy is hence defined
as the ratio of accurate prefetches to executed prefetches. A prefetch is timely
if it is executed sufficiently ahead of time of the demand read. In particular,
Tcand + Tread < PA ∗ Tarrival must hold, where Tcand represents the time to
compute a prefetch candidate, Tread represents the time to perform a read from
the SSD, Tarrival represents the inter arrival time between demand reads, and
PA represents prefetch-ahead, which is the number of accesses we need to predict
into the future. Executing prefetches too early is generally of a lesser concern as
prefetches can be stored for a finite time in the cache. As a result, the time that
a prefetch can be executed too early is bounded only by the cache capacity.

Storage accesses to an LBA are generally handled by the operating system.
User applications, however, generally communicate with the storage devices by
reading and writing files. Consequently, the filesystem layer within the OS needs
to map file accesses to LBA accesses before they can be submitted to the storage
device. Furthermore, to improve performance, the OS maintains several caching
layers in the filesystem and logical block layer, aiming to filter out a significant
fraction of all application accesses. The result of this architecture is that even a
seemingly easy to predict operation on the application layer, such as reading a
file sequentially, may result in a very hard to predict access patterns on the LBA
level, as perceived by the SSD. Finally, the storage device is generally accessed
by different application threads simultaneously, resulting in multiple interleaved
I/O streams that are indistinguishable by the SSD. In summary, the existing
storage stack architecture renders predicting future I/O accesses a challenging
problem. Predictive models need to be able to separate multiplexed I/O streams
and then predict future LBAs from within the hard to predict sequences. In
addition, they need to provide information on the number of data blocks to
prefetch, starting from the initial predicted LBA.

4 Proposed Prefetching Technique

Learning SSD storage accesses for prefetching is a challenging task for the follow-
ing reasons. As SSDs are increasing their storage capacity to 16TB and beyond,
drives are now supporting billions of logical block addresses. As prefetching is
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only successful if every bit of the logical block address is predicted accurately,
models are required to predict which LBA to prefetch with perfect accuracy
within a very large LBA space. This space is often sparse, as the operating sys-
tem allocates blocks within the filesystem layer, and hence, even sequential data
within files may be mapped to arbitrary LBAs within the SSD. Furthermore, as
prefetches need to be timely, predicting only the next LBA and the requested I/O
size is not sufficient, and it is required to predict several accesses into the future.
Finally, to support dynamically changing workloads, we evaluate our proposed
address mapping learning technique to determine whether prefetching models
can learn generalized patterns within complex I/O access patterns.

4.1 Data Preparation for Reducing the Output Label Space

We preprocess the input dataset to address the problem of large logical block
address space. The number of unique memory addresses within an SSD is typi-
cally of the order of billions, rendering a separate class for each memory address
impractical. To reduce the address space, we take the l1 norm of each pair of
consecutive LBAs (LBA delta). For example, if consecutive I/O accesses starting
from LBA 10000 are requested as 10001, 10003 and 100006, the corresponding
LBA deltas were recorded as 1, 2, and 3, respectively. This significantly reduces
the number of classes that our model needs to predict. We identify the top 1000
frequently occurring LBA deltas and assign each one of them to a class in de-
creasing order of frequency. All remaining LBA deltas are assigned to a separate
class representing a “no prefetch” operation, thus limiting the number of classes
for model to predict to 1001. The reason for choosing LBA deltas over actual
addresses is to increase the coverage of LBA deltas in the data. For example,
for Microsoft Research Cambridge traces [27] (MSR 1), the top 1000 most fre-
quently occurring LBAs covered only 2.77% of all the LBA accesses, whereas
the top 1000 most frequently occurring LBA deltas covered 91.66% of all LBA
accesses. The coverage of top 1000 frequent LBA deltas for the datasets used
in this study ranged between 54% and 92%, as seen in Table 1. Expanding the
number of classes to beyond 1000 is possible with more computational power,
however, for our datasets, we chose 1000, as it provides a considerable coverage
for LBAs and is a sufficiently large size to prove the practicality of our approach.

The requested I/O sizes for the analyzed real world applications ranged from
4KB to several MBs with up to 10,000 different I/O sizes for an individual
application. In order to reduce the number of possible target I/O size values,
we round off each observed I/O size to the nearest number that is a power of 2,
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2n, and use n as an I/O size class. This reduces the number of possible target
I/O sizes for most applications to 16 while still supporting requests of size up to
64MB. A limitation of this approach is that, in the worst case, roughly twice as
many as required 4KB blocks may be prefetched from the SSD.

4.2 Model Architecture

We designed our proposed neural network model to predict both the I/O size
and LBA deltas at the same time. The model has two separate input layers, one
for I/O size and one for LBA delta, where each input layer is an embedding layer
[49] consisting of 500 neurons. The inputs to the model are categorical, one-hot,
representation of the two features, LBA deltas and I/O size, each being fed to a
separate embedding layer. The model has two hidden LSTM layers, where each
LSTM layer has 500 hidden nodes. The outputs of the two embedding layers
are first concatenated and then fed to the shared LSTM layers. The final output
layer is split into two branches, where each branch is a dense layer consisting
of softmax [32] nodes. The number of neurons in the LBA delta output layer
is 1001, representing top 1000 LBA deltas and a “no prefetch” LBA delta, and
the number of neurons in the I/O size output layer ranged between 12 and 20,
depending on the I/O sizes present in each dataset. The model architecture is
shown in Figure 2. The number of neurons in each of the first three layers of the
model was set to 500 to ensure a good representation of input features, and we
used a dropout [16] of 0.2 to prevent overfitting of the model. Having an initial
embedding layer facilitates better representation of the input features and helps
the subsequent LSTM layers to learn effectively from sequential data.

4.3 Timeliness

As discussed in Section 3, a prediction from the prefetcher is timely only if the
following equation holds: Tcand + Tread < PA ∗ Tdemand. We empirically deter-
mined Tcand to be 734µs by measuring the inference latency of our model. We
measured the latency of accessing an Intel P3600 NVMe based SSD using the
flexible I/O tester (FIO) [6] to be 300µs on average under 80% workload. For the
traces that we examined, the average time between two successive I/O requests
ranged between 800µs and 1200µs, and the minimum time was 10µs. As a result,
a good PA value is in the range of 5 > PA > 100. We evaluate a range of PA
values and its impact on prediction accuracy in Section 6. Predicting further
ahead in the future typically reduces the accuracy due to the increased uncer-
tainty. We find that, in order to increase the accuracy in case of a high PA value,
training the model with longer history of sequences can improve performance.

4.4 Address Mapping Learning

Different workloads show similar I/O access patterns due to shared design pat-
terns and commonly used data structures. For instance, array-based data struc-
tures used by applications generally entail sequential I/O access patterns. Fur-
thermore, as most applications leverage the same underlying filesystem, it is
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likely that I/O accesses show common patterns. An ideal prefetcher would be
trained once, on a varied set of applications, providing high performance even
for previously unseen applications. Such a prefetcher is also likely to be more
robust with respect to dynamically changing data inputs or code changes to the
original application. To test the idea that applications share common patterns
that can be learned, we train the model on traces from one dataset (source) and
evaluate the performance of the prefetcher on another dataset (recipient). The
mapping of addresses to labels is done by sorting the frequency distribution of
LBA deltas from both the source and recipient traces and assigning them labels
in decreasing order of frequency of occurrences. We call the process of extracting
the LBA deltas, training the model on source dataset, and using the model to
predict LBA deltas and I/O sizes for the recipient dataset as Address Mapping
Learning (AML) and present the block diagram of this process in Fig. 3.

5 Methodology and Experimental Setup

5.1 Model Training

For our experiments, we used a total of 10 block-level I/O traces from three
different sources running applications in live production servers. The datasets
included traces describing enterprise storage traffic in commercial office virtual
desktop infrastructure (VDI) [27], as well as traces from live production servers
at Microsoft SNIA [22] and Microsoft Research Cambridge [36]. We did not use
any synthetic benchmarks, as used in previous work [26, 48], as those traces do
not accurately represent the complexity and interleaved patterns exhibited in
real applications. The utilized trace files are open-source and can be obtained
online [2, 1, 22]. Table 1 provides information about the datasets used in this
study. From the table, we see that the coverage of top 1000 LBA deltas is con-
sistently higher than direct memory addresses (offset), and hence it was selected
as one of the features for training the model. The datasets also contained other
information such as the I/O size, response time, filename, file location, etc. In
this work, we only used the timestamp, offset (LBA), and I/O size as features.
We trained our model using Google’s Tensorflow [3] library on a Intel Xeon server
with 8 CPU cores running at 1.7GHz containing 96GB of DRAM. The server also
had 4 NVIDIA Tesla 2080TI GPUs for training the model. We split the dataset
into training and test set, where the training set contained the first 70% of the
I/O accesses, and the test set contained the last 30% of the I/O accesses. The
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Table 1. Dataset Description

Trace Source Dataset Name
Represented

Name
Num obs

Coverage
Offset
(%)

Coverage
LBA Delta

(%)

VDI 2016022315.csv VDI 1 5226120 58.76 66.96

VDI 2016030817.csv VDI 2 4443487 63.94 70.08

VDI 2016030819.csv VDI 3 2902328 68.94 69.8

VDI 2016031115.csv VDI 4 2408227 68.65 72.35

MSR proj 3.csv MSR 1 2244642 2.77 91.66

MSR mds 0.csv MSR 2 1211034 63.46 76.94

MSR src1 1.csv MSR 3 45746222 28.6 77.7

MSR usr 1.csv MSR 4 45283980 2.64 82.12

Microsoft buildserver-2.csv MS 1 1600430 2.77 28.84

Microsoft buildserver-7.csv MS 2 1714151 8.97 55.49

sequence of LBA deltas, ordered by timestamps, is fed to the model for training.
For all the experiments, we trained our model using Adam optimizer [46] with
a cross-entropy loss function, and a learning rate of 10−3 for up to 1000 epochs,
and stopped model training if there was no improvement in validation loss, with
validation loss not decreasing by at least 10−5 for five consecutive epochs.

5.2 Prefetcher Simulation Environment

To enable the comparison of our prefetcher against prior baselines, evaluating
only recall and precision is not sufficient. As motivated before, analyzing the
prefetcher’s timeliness is required to evaluate the end-to-end performance gains
of prefetching, as even the most accurate prefetcher will not improve the per-
formance if it lacks timeliness. As shown in Section 4.3, in order to compensate
for the model’s prediction latency and the latency to perform a read from the
SSD, it is required to generate predictions ahead of time (PA). We evaluate the
end-to-end performance as follows. As we iterate through the test dataset, the
evaluation models continuously generate prefetch candidate predictions that are
inserted into the cache.

Every I/O access is checked against the cache to see if the LBA is present,
where the access is recorded as a hit, otherwise it is recorded as a miss. We
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Fig. 4. Block diagram of the evaluation process using our simulator
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utilize the Least Recently Used (LRU) [42] eviction policy for our experiments.
The architecture of the simulator is presented in Fig. 4. We choose variable cache
sizes of LBAs for the stride, Markov-based, and our proposed prefetcher, and
run experiments to provide a comparative study in Section 6.

5.3 Baselines

We compare our proposed prefetcher to three baselines. The first, naive prefetch-
er, baseline always predicts the most common delta of a trace. The second base-
line implements a Markov chain predictor [26, 48]. This method treats each LBA
access as a state and predicts the next LBA based on the previous state by com-
puting a probability distribution over the probabilities of transition from one
state to another. The third baseline is a stride prefetcher which is commonly
used in software and hardware systems. The stride prefetcher concurrently ob-
serves 128 I/O access streams. Each access is mapped to a stream based on hash-
ing the most significant bits of the LBA. For each stream, the stride prefetcher
tracks the last three I/O accesses. If the difference between the three I/O ac-
cesses match, the prefetcher detects a stride and prefetches the next access. Note
that the stride prefetcher’s results are optimistic, as it only prefetches one access
ahead of time and does not compensate for timeliness. In the next section, we
evaluate our proposed prefetcher in terms of prediction accuracy, timeliness, and
capability to generalize to different workloads.

6 Results

6.1 Prefetcher Accuracy, Precision and Recall

Table 2 shows the comparative performance of our neural network based pre-
fetcher against the three chosen baselines. The table lists the dataset name,
number of samples in the dataset, and the accuracy for the three chosen baselines,
Naive prefetcher, Stride prefetcher, and Markov chain based prefetcher. For our
approach, we provide the accuracy, precision, and recall results. For each sample,
our prefetcher predicts both LBA and I/O size in increments of 4KB blocks, as
the minimum block size for a drive operation in SSD is typically of 4KB size
[33]. We only count the actual blocks that are correctly prefetched. For each
data sample, we prefetch only the top predicted LBA and I/O size using the
prediction with the highest confidence. We used a batch size of 64, look back
of 64, and predict-ahead of 64 in this experiment. Each prefetcher has a cache
size of 1000 for this experiment. In the next section, we present a more detailed
analysis of the impact of cache size on the performances of the prefetchers.

As shown in Table 2, our proposed prefetcher consistently outperforms all
three baselines delivering up to 11× improvement over the stride prefetcher using
Microsoft SNIA traces with the same cache size. For VDI traces, our proposed
prefetcher achieves the highest accuracy, providing 800× improvement over the
stride prefetcher. Our prefetcher also achieved the highest precision and recall
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Table 2. Performance comparison of Our proposed prefetcher against baselines

Dataset
Name

No. Samples
Naive

Prefetcher
Stride

Prefetcher
Markov

Prefetcher
Our

(Accuracy)
Our

(Precision)
Our

(Recall)

VDI 1 5226120 0.17 0.01 0.09 0.73 0.76 0.71

VDI 2 4443487 0.21 0.01 0.07 0.59 0.75 0.49

VDI 3 2902328 0.19 0.02 0.12 0.66 0.73 0.57

VDI 4 2408227 0.21 0.05 0.09 0.73 0.77 0.69

MSR 1 2244642 0.14 0.01 0.21 0.41 0.66 0.31

MSR 2 1211034 0.09 0.21 0.17 0.49 0.65 0.33

MSR 3 45746222 0.12 0.001 0.16 0.79 0.89 0.46

MSR 4 45283980 0.33 0.007 0.15 0.53 0.66 0.38

MS 1 1600430 0.27 0.02 0.25 0.63 0.79 0.53

MS 2 1714151 0.41 0.003 0.07 0.77 0.83 0.61

compared to the baselines. The Markov chain based prefetcher performed con-
siderably worse compared to our prefetcher, with the accuracy ranging between
7% and 25%, performing even worse than the Naive prefetcher in several cases.

6.2 Impact of Cache Size, Look-Back, and Predict-Ahead

In this section, we present an analysis of the impact of look back, predict-ahead,
and cache size on our proposed prefetcher’s performance. In order to ensure the
availability of data in the cache when the data block is requested, we trained
the model to predict N steps ahead for varying values of N , and evaluated the
performance of the prefetcher. Higher values of N typically resulted in lower
accuracy due to the increased uncertainty in predicting further ahead in the
future, while improving timeliness. To improve our prefetcher’s predict-ahead
performance, we found that it is necessary to increase the look back size for
increasing values of PA, where, as described in Section 4.3, good values for PA
are in the range of 5 < PA < 100. Low values (< 5) of PA result in cache misses
as the data cannot be fetched soon enough, whereas higher values of PA (> 100)
result in untimely predictions as the data gets evicted before requested. Table 3
shows the performance of our prefetcher for different values of PA showing the
accuracy of predicting the LBA and I/O size, as well as the cache hit ratio (Net
Hit ratio). We measured accuracy as the actual number of 4KB data blocks that
were correctly prefetched for three different values of PA, 32, 64, and 128.

In general, the accuracy of predictions decreases as we predict further ahead,
producing the worst performance when predicting 128 samples ahead. For MS
SNIA traces, the performance was comparable for PA equal to 32 and 64, and
the accuracy degraded significantly for PA=128, whereas for VDI and MSR
Cambridge traces, the performance degradation was gradual. These results show
that our approach is successful in prefetching SSD accesses, as PA equal to 32 or
64 is generally sufficient to ensure timeliness in real-world settings. Nevertheless,
to support upcoming storage devices that support even higher request ratios,
reducing the inference latency and predicting even further ahead will be required.
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Table 3. Impact of different predict values on our prefetcher performance

Dataset
Predict Ahead = 32 Predict Ahead = 64 Predict Ahead = 128

Accuracy
(LBA)

Accuracy
(Size)

Net Hit
ratio

Accuracy
(LBA)

Accuracy
(Size)

Net Hit
Ratio

Accuracy
(LBA)

Accuracy
(Size)

Net Hit
Ratio

VDI 1 0.72 0.65 0.71 0.69 0.65 0.73 0.42 0.6 0.33

VDI 2 0.76 0.51 0.58 0.64 0.51 0.59 0.41 0.42 0.29

VDI 3 0.73 0.88 0.69 0.48 0.88 0.66 0.42 0.67 0.37

VDI 4 0.71 0.66 0.71 0.71 0.66 0.73 0.32 0.34 0.31

MSR 1 0.65 0.49 0.41 0.65 0.49 0.41 0.34 0.19 0.29

MSR 2 0.59 0.69 0.49 0.59 0.69 0.49 0.19 0.61 0.33

MSR 3 0.95 0.67 0.66 0.91 0.61 0.79 0.13 0.61 0.19

MSR 4 0.59 0.77 0.51 0.49 0.77 0.53 0.49 0.47 0.28

MS 1 0.93 0.67 0.61 0.93 0.52 0.63 0.62 0.52 0.49

MS 1 0.89 0.71 0.73 0.88 0.69 0.77 0.57 0.69 0.47

Table 4. Impact of cache size on the accuracy of our and two baseline prefetchers

Dataset
Name

Cache Size = 10 Cache Size = 100 Cache Size = 1000
Markov

Prefetcher
Stride

Prefetcher
Our

Prefetcher
Markov

Prefetcher
Stride

Prefetcher
Our

Prefetcher
Markov

Prefetcher
Stride

Prefetcher
Our

Prefetcher

VDI 1 0.05 0.001 0.68 0.05 0.001 0.69 0.09 0.011 0.73

VDI 2 0.05 0.0001 0.55 0.05 0.0001 0.55 0.07 0.0015 0.59

VDI 3 0.04 0.0001 0.64 0.04 0.0001 0.64 0.12 0.0014 0.66

VDI 4 0.01 0.006 0.7 0.01 0.006 0.71 0.09 0.005 0.73

MSR 1 0.12 0.00005 0.39 0.12 0.00005 0.39 0.21 0.0011 0.41

MSR 2 0.09 0.1 0.41 0.09 0.1 0.41 0.17 0.21 0.49

MSR 3 0.07 0.0002 0.75 0.07 0.0002 0.76 0.16 0.001 0.79

MSR 4 0.06 0.0005 0.51 0.06 0.0005 0.51 0.15 0.007 0.53

MS 1 0.16 0.004 0.57 0.16 0.004 0.57 0.25 0.02 0.63

MS 1 0.02 0.0003 0.71 0.02 0.0003 0.71 0.07 0.003 0.77

Table 4 presents the impact of varying cache size on our prefetcher’s perfor-
mance. The table shows the accuracy of our approach compared to the Markov
and Stride prefetchers for cache sizes of 10, 100, and 1000 LBAs, respectively.
From the table, we can see that our prefetcher consistently outperforms the base-
lines for each cache size, and the performance improvement using VDI traces is
as high as 800× over the Stride prefetcher, and 8× over the Markov prefetcher.
While the baselines show marginal improvements using larger cache sizes, our
prefetcher benefits significantly from a larger cache size. This suggests that while
our prefetcher provides high accuracy and coverage, its timeliness can still be im-
proved. For a large cache, prefetched blocks remain in the cache for a longer time
and hence, prefetching exactly at the time when the LBA is requested is less im-
portant. Achieving perfect timeliness would require adjusting PA dynamically,
as the inter-arrival time between requests varies at runtime.

6.3 Evaluation of Address Mapping Learning

In this section, we evaluate whether our prefetcher can learn common patterns
among workloads to predict accesses for previously unseen workloads. In the
previous sections, we obtained the training and test datasets from different por-
tions of the same workload and the trace file. In this section, we define two types
of dataset sources. Similar sources are those where the training and test data
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Table 5. Performance of Address Mapping Learning (AML)

Similar Source Dissimilar Source

Source Trace MSR 3 MSR 1 MS 1 VDI 1 VDI 3 MSR 3 MS 1 VDI 4

Recipient Trace MSR 2 MSR 4 MS 2 VDI 2 VDI 4 VDI 3 VDI 1 MSR 2

Accuracy on Source Trace 0.95 0.63 0.93 0.75 0.87 0.92 0.92 0.82

Acuracy on Recipient Trace 0.59 0.59 0.87 0.72 0.75 0.75 0.75 0.72

AML Accuracy 0.37 0.39 0.84 0.52 0.47 0.31 0.22 0.35

are from the same application, however, with different data inputs, different ex-
ecution times, and only small run time modifications in applications. Dissimilar
sources are those where the training and test data are from completely differ-
ent applications. Table 5 shows the prediction accuracy for different types of
sources. We show the accuracy of the model when it is trained and tested on
similar source traces, and also when it is trained and tested on the dissimilar
source traces. In Table 5, for our proposed AML technique, the model is trained
on the source trace and tested on the recipient trace. For instance, when train-
ing on MS 1 and evaluating on MS 2 trace files, the accuracy of our address
mapping approach is 84% which is only 3% less than training and evaluating
both on MS 2 (fourth column). The overall effectiveness of AML depends on
the frequency distribution of LBA deltas in the two datasets. The results in
Table 5 show that our approach can be applied to diverse workloads, as long
as they share some similar characteristics. This increases the practicality of our
approach, as we can train specific models for various workloads, and expect at
least a moderate increase in performance for other workloads.

7 Related Work

Machine learning techniques have been applied to the prefetching problem in
multiple domains such as web caching [4] and memory prefetching [18, 50]. While
previous work also utilized neural networks for determining prefetch candidates,
they operate on very different datasets, as DRAM accesses differ significantly
from I/O accesses. For instance, I/O accesses are not tagged with the source
instruction for stream disambiguation, I/O accesses do not have a fixed size
[41] and, in contrast to I/O, memory accesses are not intercepted by the OS.
Prior work on SSD prefetching utilized algorithmic approaches, typically using
a data-range-table to detect usable strides and memory access streams [23].
Several variations of stride prefetchers have been proposed [25, 20] taking into
account the spatial locality [20], feedback [40], and context [8]. However, as we
showed in this work, algorithm based prefetchers do not perform well on real
world applications due to their limited ability to learn complex patterns. The
only prior research we are aware of that applies machine learning for prefetching
in SSDs is based on Markov chains [48, 26], which we used as a baseline in this
work. Finally, machine learning techniques have been applied to improve SSDs
in other ways, for instance, by optimizing garbage collection [45], for predicting
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device failures [37, 21], for improving SSD virtualization [13], for managing SSDs
in large clusters [28], and for improving the quality of service of SSDs [10]. These
prior works are orthogonal to our work.

8 Conclusion

In this paper, we showed how to leverage neural network models to predict
future storage I/O accesses to improve SSD performance via prefetching. We
addressed several challenges such as the large and sparse logical block address
space, ensuring timeliness of prefetching, predicting both the address and size of
I/O accesses, as well as the challenge of training predictive models that can gen-
eralize across different workloads. We achieved generalization across workloads
by leveraging a large set of real world cloud application traces. We compared the
performance of our prefetcher to existing techniques and used an in-house sim-
ulator developed to test the accuracy, coverage, and timeliness of our proposed
prefetcher. Our proposed model outperforms prior approaches such as the stride
prefetcher by up to 800× and Markov chain based prefetcher by up to 8×.
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