
On Achieving High Message Rates

Holger Fröning Mondrian Nüssle Heiner Litz Christian Leber Ulrich Brüning

Institute of Computer Engineering

University of Heidelberg

Mannheim, Germany

{holger.froening, mondrian.nuessle, heiner.litz, christian.leber, ulrich.bruening}@ziti.uni-heidelberg.de

Abstract— Computer systems continue to increase in

parallelism in all areas. Stagnating single thread performance

as well as power constraints prevent a reversal of this trend; on

the contrary, current projections show that the trend towards

parallelism will accelerate. In cluster computing, scalability,

and therefore the degree of parallelism, is limited by the

network interconnect and more specifically by the message

rate it provides. We designed an interconnection network

specifically for high message rates. Among other things, it

reduces the burden on the software stack by relying on

communication engines that perform a large fraction of the

send and receive functionality in hardware. It also supports

multi-core environments very efficiently through hardware-

level virtualization of the communication engines. We provide

details on the overall architecture, the thin software stack,

performance results for a set of MPI-based benchmarks, and

an in-depth analysis of how application performance depends

on the message rate. We vary the message rate by software and

hardware techniques, and measure the application-level

impact of different message rates. We are also using this

analysis to extrapolate performance for technologies with

wider data paths and higher line rates.

Keywords- computer communications, high performance

networking, performance analysis, performance prediction

I. INTRODUCTION

Over the past years, there has been an increasing demand
for more powerful computing systems. The TOP500 list [1]
reveals that the vast majority of high performance computing
systems are based on clusters, certainly due to their excellent
price/performance ratio. Such clusters rely on commodity
parts for computing, memory and enclosure, however, for
highest performance they use specialized interconnection
networks like Infiniband. Unlike clusters, Massively Parallel
Processors (MPPs) make more use of specialized parts,
which significantly increase performance but also cost.

The overarching goal of the EXTOLL project is to fill the
gap between clusters and MPPs, specifically with a system
that combines the performance of an MPP with the cost-
effectiveness of a cluster. Workload analysis has determined
that the message rate is one key characteristic that needs to
be optimized to achieve this goal. In this paper, we will
present a set of techniques utilized within the EXTOLL
design, which enable high message rates, and show how
applications can benefit from this improvement.

The message rate is defined as the number of messages
that can be injected into a network from a host per second.

Thus, it describes the achievable bandwidth for small
message sizes. Latency is of paramount importance for
round-trip communication patterns; however, for
unidirectional transfers its impact is negligible. For such
push-style communication patterns, the message rate is much
more significant. Not only do MPI applications benefit from
high message rates, PGAS-style applications also express
fine-grained communication patterns, which benefit a lot
from high message rates [2].

Taking into account that the increasing degree of
parallelism [3] [4] also leads to an increased number of
communication partners, communication pattern
characteristics will shift to higher message counts with
smaller payloads. Thus, the peak bandwidth is not the only
metric that is crucial for the overall performance; instead, an
increasing amount of attention must be paid to the
performance of smaller messages. To conclude, the
performance of small transfers should not only be
characterized using the start-up latency, but also using the
message rate.

The message rate performance particularly depends on
the network interface controller, which needs to be optimized
for high efficiency in order to yield high message rates. The
theoretical upper bound of the message rate is the link’s peak
bandwidth divided by message size; a more practical upper
bound is the link’s sustained bandwidth that takes into
account the network protocol overhead. While we have
presented details of the communication units for small [5]
and large data transfers [6] in previous work, this work
extends previous publications by providing the following
contributions:

1. An analysis of the impact of different message rates
to communication-centric applications and
workloads.

2. Details of the optimized and lean interface between
EXTOLL’s communication units and the
corresponding software layers.

3. The first comprehensive disclosure of performance
results based on prototype hardware in a standard
cluster environment.

4. A methodology to characterize an application’s
dependency on message rate, also allowing
predicting application-level performance for future
technologies.

The remainder of this work is structured as follows: in
the next section, we provide an analysis of sustained message
rates. In the following two sections, we will introduce the

hardware and software architecture in detail. In section 5,
performance results for the current prototype are reported.
Section 6 is dedicated to the performance analysis for other
technologies like ASICs. In section 7, we present related
work, while the last section concludes.

II. ON ACHIEVING HIGH MESSAGE RATES

Theoretically, the effective bandwidth of a network can
be translated into a message rate (MR) for a given packet
size. Practically, this is only true for large packets where the
overhead of packet passing is marginal compared to the
packet size. For small payloads, more effects become visible
and limit the message rate. The following components
contribute to the sustained message rate:

1. Network protocol overhead including framing,

headers, CRC, etc
2. Message passing protocol overhead including tags,

source identification, etc
3. Packet-to-packet gaps caused by network interface
4. Packet-to-packet gaps caused by switching units
5. Software overhead for sending and receiving
The following Table I provides some numbers for two

popular interconnection networks (10 Gigabit Ethernet and
Infiniband QDR) and for EXTOLL, together with the
sustained message rates achieved in our experiments. All
message rates are reported in millions of messages per
second.

TABLE I. ANALYSIS OF SUSTAINED MESSAGE RATE

Network 10GE
1
 IB-QDR

2
 EXTOLL

3

Net Speed 10 Gbps 32 Gbps 5 Gpbs

Theoretical peak

message rate (8B
payload)

156.3 500.0 78.0

Network protocol

overhead
82 B 38 B 32 B

MPI protocol overhead 24 B 10 B 16 B

Packet-to-Packet gap
of switching units

NA NA 8 B

Packet-to-Packet gap

of network interface
NA NA 0 B

Overhead total (as
appropriate)

114 B
(w/o gaps)

56 B
(w/o gaps)

64 B
(total)

Sustained Message

Rate

0.66

(0.42%)

6.67

(1.33%)

9.73

(12.4%)

Calculated overhead

derived from sustained

MR

416.67 B 599.70 B 64.14 B

For theoretical peak message rate the assumed minimum

payload is 8 bytes. Sustained message rate is the peak
measure rate achieved with multiple communication pairs,
also reported as percentage of theoretical peak.

1 Intel 82598EB 10GE controller, no switch. 2x AMD Opteron

2380 (4 cores, 2.5GHz) per node, Open-MPI 1.4.2
2 Mellanox MT26428 with MTS3600 switch, 1x Intel Xeon E5645

(6 cores, 2.4GHz) per node, MVAPICH 1.2.0
3 EXTOLL R1, 2x AMD Opteron 2380 (4 cores, 2.5GHz) per

node, Open-MPI 1.4.2

We report detailed numbers in Table I for our EXTOLL
network prototype, but best to our knowledge such numbers
are not published from typical network vendors. Note that
the table does not include numbers for software overhead, as
due to overlap between software and hardware processing
these numbers cannot be determined with sufficient
accuracy. While the overheads for network and MPI protocol
are similar for all three network types, the ratios of sustained
vs. theoretical message rates differ significantly. The last row
presents the corresponding calculated overhead in bytes
derived from the sustained message rate. This overhead
attributes to several potential sources: protocols, network
interface, switching units and software overhead.

EXTOLL’s calculated overhead matches closely the total
overhead from the network interface and switching units
(64.14B vs. 64B), validating our calculation, but also
showing that our software overhead is minimal. On the other
hand, the two other networks show a huge difference
between the calculated overhead and analyzed overhead.
Although we had to omit numbers for gaps caused by
network interfaces and switching units, the difference is too
big to attribute it only to these hardware units. We assume
that these networks suffer from huge software overheads.
Thus, our network design is very competitive compared to
existing solutions and therefore allows analyzing the impact
of message rate at application level.

III. AN ARCHITECTURE FOR HIGH MESSAGE RATES

In brief, EXTOLL’s main characteristics are support for
multi-core environments by hardware-level virtualization,
communication engines for very low overhead and a
minimized memory footprint. Figure 1 shows a top-level
block diagram of the EXTOLL architecture, integrating the
host interface, network interface and switching units. The
host interface is based on HyperTransport (HT), but could be
replaced by PCIe logic (which in fact in another design is
being done). The on-chip network HTAX closely matches
the HT protocol, but overcomes some shortcomings with
regard to the limited amount of source tags and the
addressing scheme.

The second large block implements the different modules
needed for message handling, i.e. to inject messages into the
network and receive messages from the network. The two
major communication units are the Virtualized Engine for
Low Overhead (VELO), supporting programmed I/O (PIO)
for small transfers, and the Remote Memory Access (RMA)
unit that, uses DMA to handle large messages. The two
supporting units are the Address Translation Unit (ATU) and
the control & status register file.

The last block implements a complete network switch. It
includes a crossbar-based switch, six ports towards the
network side and three ports towards the message handling
modules on the host side, allowing handling requests,
responses and completions independently.

A. Switching Resources Integrated into Network Interface

The EXTOLL prototype can run any direct topology with
a maximum node degree of six. The routing hardware is not
limited to a certain strategy, like dimension order routing,

nor to a specific topology. For smaller networks, for instance
different variants from fully interconnected to hypercube and
tori are available. Larger configuration will most probably
use a 3D torus configuration, though, based on the available
number of links.

Figure 1. Top-level architecture

The integrated switch implements a variant of Virtual
Output Queuing (VOQ) on the switch level to reduce Head-
of-line (HOL) blocking and employs cut-through switching.
Multiple virtual channels are used for deadlock avoidance. In
particular in-order delivery of packets and reliable packet
transmission significantly simplifies the protocol design in
MPI layers, allowing for very low software overhead as can
be seen in Table I.

B. Support for Small Data Transfers

As the network is designed particularly for ultra-low
latencies and high message rates, EXTOLL includes a
special hardware unit named VELO that provides optimized
transmission for small messages. It offers a highly efficient
hardware and software interface to minimize the overhead
for sending and receiving such messages. Using VELO,
messages are injected into the network using PIO to reduce
the injection latency as much as possible. Details of this
scheme, as well as for the general architecture of VELO can
also be found in [5]. Here, we extend this work with details
of the software part and its impact on application-level
performance.

velo_ret_t velo_send(velo_connection_t* handle,

 uint32_t len, uint64_t* buf, uint8_t tag)

{

 uint64_t* dest= calc_address (handle, tag, len);

 for (i=0; i < (len>>3); i ++)

 *dest++ = *buf++;

 return VELO_RET_SUCCESS;

}

For VELO, a single write operation into the memory-
mapped I/O (MMIO) space is sufficient to send a message.
For additional optimization, some of the message header
information is encoded in the address to access VELO. This
implementation saves space in the data section of the I/O

transaction. The code snippet above helps to illustrate the
software part of issuing a message to VELO.

As one can see, there are only two simple steps required
to inject the message: First, calculate the target address of the
store instruction, and second, copy the message to the device.
A simple loop can be used here. The write-combining feature
of modern CPUs is employed to aggregate the data of one
message into a single host-to-interface transaction. An
exception mechanism exists in hardware to address the case
in which a transaction is split by the CPU, for example
caused by an interrupt that occurs in the middle of a
transaction. Access to VELO is done directly from user-
space. Each process has distinct mappings, so hardware can
immediately determine if the process is actually authorized
to send messages.

The VELO hardware unit is a completely pipelined
structure controlled by a number of finite state machines. So
no (relatively) slow microcode or even embedded processing
resource is involved in sending or receiving data. Another
fact that has important consequences on performance is the
amount and the location of context or state information for
the hardware. VELO is stateless in the sense that each
transaction is performed as a whole and no state must be
saved for one message to proceed. As a corollary, there is no
context information stored in main memory and no caching
of such information is necessary. Thus, VELO is able to
provide high performance independent of the actual access
pattern by different processes, a very important fact in
today’s multi- or many-core systems.

On the receive side, messages are written directly to main
memory using a single ring-buffer per receiving process.
Each process allocates its own receive buffer, and any source
can store messages to this ring-buffer. User-level processes
waiting for messages can poll certain memory locations
within this ring buffer for new arrivals. This can be done in a
coherent way, so polling is done on cache copies. Updates in
the ring buffers invalidate the now outdated copies,
enforcing the subsequent access to fetch the most recent
value from main memory.

The simplest flavor of a receive function is shown in the
code snippet below. After determining the address to poll,
the function waits for a new message to arrive. It
subsequently copies the data to the application buffer,
increments the internal read pointer and resets the header
word to zero to prepare for the next time this slot will be
used. The first quad word of a message in the VELO receive
buffer is guaranteed to non-zero, identifying a valid packet.

velo_ret_t velo_recv_wait(velo_port_t* handle,

 uint32_t len, uint64_t* buf)

{

 volatile uint64_t* s = handle->header;

 while (*(s) == 0l) { /* busy wait*/ };

 memcpy (buf, (void*) handle->msg, len);

 _velo_recv_inc_rp (handle);

 handle->header = 0l;

 return VELO_RET_SUCCESS;

}

For the VELO transport, the order is maintained by
utilizing the hardware’s underlying flow-control principles,
i.e. EXTOLL’s flow-control in the network and

NIC NetworkHost Interface

Hyper-

Transport

IP Core

HTAX

XBar

ATU

VELO

C&S

Registerfile

RMA

Network

XBar

Net-

work-

port

Link-

port

Link-

port

Link-

port

Link-

port

Link-

port

Link-

port

Net-

work-

port

Net-

work-

port

HyperTransport’s flow-control for the host side. In extreme
cases, this can lead to stalling CPU cores due to missing
credits, which are needed to inject messages. To solve this
problem a programmable watchdog is provided which
prevents system crashes in such a case. On the software side,
the problem can be avoided by using a higher-level flow-
control. The actual hardware implementation has been
improved from the implementation described in [5] in such a
way. Also, we increased both frequency and data path width.

C. Support for Bulk Data Transfers

Larger transfers are efficiently supported using the RMA
unit. The RMA unit offers Put/Get based primitives. There is
a hardware-based Address Translation Unit (ATU), which
secures memory accesses from user-space. Registration and
deregistration of pages is very fast and only limited by the
time for a system call and the lookup of the virtual to
physical translation by the kernel itself [6].

RMA allows for complete CPU-offloading, which is
crucial for high overlap between computation and
communication. Processors only have to post RMA
command descriptors to the hardware using PIO. The
complete data transmission, however, is executed by
integrated DMA engines.

An interesting feature that has been used for the MPI
implementation (see below) is the notification framework;
allowing notifying processes at the sending, responding or
completing side of a Put resp. Get operations. Obviously
notifications for responses are only applicable to Get
operations. Each process has exactly one notification queue,
in which the hardware stores all incoming notifications for
this process regardless of their type. These queues share
many similarities with VELO receive queues.

IV. SOFTWARE STACK

The software stack of the EXTOLL prototype is divided
into the user-space part and the Linux kernel part. The actual
process of sending and receiving messages is completely
done in user-space. There are two low-level API libraries,
one for VELO and one for RMA. Functions for a user-
application to request hardware access, set-up memory-
mappings and allocate receive queues are provided. For
VELO, there are different flavors of send() and receive()
functions available. A VELO context provides a single
receive ring-buffer to the application, to which all messages
destined to this application are written to by the hardware.
For efficiency reasons, and to avoid stalling of the sending
CPU-cores, a credit-based flow-control scheme has been
implemented [7]. Measurements show that the performance
is not significantly impacted by this additional software
protocol.

On the RMA side, there are functions to register and de-
register memory regions. One set of functions allows the user
application to post arbitrary commands like put or get
requests to the hardware. Another set of functions manages
the notification queue, into which the hardware writes
notifications to inform software about completed operations.

A. Supporting MPI

There exist several popular open source choices for the
MPI implementations. We chose OpenMPI, mainly because
the component-oriented architecture is well understood and
formed a clean interface to the EXTOLL lower-level
software. Within OpenMPI, there are again several interfaces
available that can be used to implement support for a
transport method. We chose the Message Transfer Layer
(MTL) interface for EXTOLL. This interface is actually quite
simple and encompasses only a small number of functions,
for instance initialization and finalization functions, blocking
and non-blocking send functions, and a callback-oriented
progress function. A number of other functions for example
to cancel or test requests are also available. Compared to
other interfaces, in particular the Bit Transfer Layer (BTL),
the downside of the MTL component is that MPI matching
semantics have to be implemented. On the other hand, this
allows optimizing matching semantics for our network
design.

Figure 2. Software stack

Two protocols are implemented to transport messages
using the EXTOLL hardware, with a tunable run-time
parameter. There is an eager protocol for small messages and
a rendezvous protocol for large messages. For the
experiments in this work, the threshold was set to 2 kB.

B. Eager protocol

The eager protocol relies on the VELO engine. First, a
MPI header is built mainly consisting of source process, tag,
communicator and size information. This MPI header along
with the actual data is then sent to the destination process
using VELO send functions. On the receiver side, the VELO
receive queue is checked by the progress function. Every
incoming entry is software-matched against the receive
queue using the MPI header which can be found at the
beginning of the message. If no match is found, the message

EXTOLL Basedriver

atudrv

User-Application

libVELO

OpenMPI

EXTOLL Hardware

VELO RMA RegisterfileATU

User

Space

NIC

Kernel

Space

libRMA

extoll_rfrmadrvvelodrv

PCI

Config-

space

Message Transfer Layer (MTL component for OpenMPI)

is added to the unexpected queue. If a matching receive is
posted later, this receive can immediately be completed via
the unexpected queue. A hardware VELO message has a
maximum size of 64 bytes in the EXTOLL prototype. Larger
messages are assembled from multiple VELO messages.
VELO messages can carry a small tag that is used to
distinguish different message types on this protocol layer, for
example if this is the first fragment of a larger MPI message.
The software also leverages the fact that VELO messages
arrive in the same order as they were originally sent.

C. Rendezvous protocol

The rendezvous protocol is built upon both VELO and
RMA engines. First, a request message is built and sent to
the receiver using VELO. Once this request is matched at the
receiver, a sequence of RMA Get operations is used to fetch
the data from the sender into the receiver’s application
buffer. The memory at the sender side is registered right
before the request is sent; the receiver registers its buffer
when starting the Get operation. For the rendezvous protocol,
notifications are used to signal completion both on sender
and receiver sides. After these notifications have been
received, the respective buffers are de-registered.

V. PROTOTYPE PERFORMANCE RESULTS

The architecture described in the last two sections is
currently implemented as a prototype using reconfigurable
hardware, i.e. Field Programmable Gate Arrays (FPGAs).
We developed a custom add-in card [8] combining the FPGA
with an HTX connector as host interface and six serial links
towards the network side. We use standard optical
transceivers and fibers to connect these add-in cards. The
implemented architecture is running at a frequency of 156
MHz with a data path width of 32 bits for the core logic, i.e.
the NIC and network block, and 200 MHz for the HT Core.
An 8 node cluster is equipped with these custom add-in cards
and a 3D torus is set up. Each node includes two 4-core
AMD Opteron 2380 processors running at 2.5 GHz, and 8
GB of DDR2-800 main memory. Linux version 2.6.31.6 is
installed on these machines.

Our prototype is suffering from some performance
limitations due to the used technology. Compared to ASICs,
FPGAs are limited in terms of capacity and frequency, as
well as flexibility due to integrated hard IP blocks. In
particular, the link bandwidth is limited to only 6.24 Gbps
and the hop latency is about 300ns, mainly due to the hard IP
modules used for serialization.

A. Message rate

First, we report message rate characteristics based on the
popular OSU Message Rate Test [9]. It reports the sustained
message rate, i.e. how many send operations can be issued
per second. For this test, multiple communication pairs are
set up between two nodes. No message aggregation or other
techniques are used to optimize this experiment.

Figure 3 shows the results of this test. We achieve a peak
non-coalesced message rate of more than 9.5 million
messages per second; yielding a peak bandwidth of 480
MB/s. For comparison, we have also included the results

from our IB-QDR experiment in this figure, which is the
same as in Table I. The message rate achieved with 10GE is
not competitive and only included for reference.

Figure 3. OSU Message Rate Test – Performance over Message Size

The maximum message rate for a varying numbers of
communication pairs is shown in Figure 4. EXTOLL
requires four simultaneous pairs to saturate, likely due to
MPI layer overhead. However, while IB-QDR also requires
four pairs to reach its peak, it does not maintain this
performance level but instead performance starts dropping
significantly.

Figure 4. OSU Message Rate - Performance over Pair Count

VI. PERFORMANCE ANALYSIS AND EXTRAPOLATION

As our prototype is based on FPGAs instead of much
faster ASICs, we present here a methodology allowing
estimating application-level performance for faster
technologies. In addition, we show that two complex
application-level benchmarks (HPCC RandomAccess and
Weather Research and Forecasting Model) heavily depend
on the message rate. To estimate the relative performance of
future versions we rely on simulation- and calculation-based
analyses, which are summarized in Table II. As for future
versions not only the frequency is varied but also the data

0.00

2.00

4.00

6.00

8.00

10.00

12.00

M
e

s
s

a
g

e
s

/s
e

c
o

n
d

 [
in

 m
il
li
o

n
s

]

Message size [B]

EXTOLL R1

IB QDR

10GE

0.00

2.00

4.00

6.00

8.00

10.00

12.00

M
e

s
s

a
g

e
s

/s
e

c
o

n
d

 [
in

 m
il
li
o

n
s

]

EXTOLL R1

IB QDR

10 GE

path width increases, we assume that an increase to 64 bit at
300 MHz translates to a relative performance of 600 MHz at
32 bit (or 384%), respectively a 800 MHz at 128 bit
translates to 2400 MHz at 32 bit (or 1538%).

TABLE II. PERFORMANCE INCREASE FOR DIFFERENT TECHNOLOGIES

Technology
Core

speed

Data

path

width

Relative

frequency

Relative

message

rate

Virtex-4 FPGA
156

MHz
32 bit 100% 100%

Virtex-6 FPGA
300
MHz

64 bit 384% 400%

65nm ASIC
800

MHz
128 bit 1538% 1000%

A. Methodology

In order to predict the performance of future EXTOLL
implementations we apply the following methodology. First,
we reduce the performance of the FPGA prototype in two
manners:

1. The message rate is reduced by including delays

after the send function in the API. As this is done

after the send function there should be little

influence on latency.

2. The core speed of the FPGA is reduced, which

influences the message rate, latency and bandwidth.
Then, we rerun the micro-benchmarks to determine the

correlation to the message rate, latency and bandwidth. In
addition, we use complex benchmarks to determine the
impact on application-level performance like GUPS and
GFLOP/s. We apply a best fit to the different measurement
points and extrapolate the resulting function to determine the
impact of faster ASIC and FPGA technologies. As long as
the system performance is not limited by third-order effects
like the processor or main memory, this extrapolation should
provide reasonable results.

1) Message Rate Variation
This is achieved by including delays in the API blocking

and non-blocking send call after actually triggering the send
operation. The delay is dependent on the message size, thus
the longer a message is, the longer is the delay is. We use
command line parameters to choose between several delay
sets, yielding different message rates. Obviously, this also
has an impact on bandwidth; however, this satisfies the
definition of the message rate. For messages smaller than
128 bytes, the latency is not affected. For larger messages,
the delay required to achieve a certain message rate also
affects latency, but the latency impact for these messages
sizes is not crucial.

In this way, we have selected sets of delay parameter to
configure the network for certain message rates, varying
between 100% and 70% of peak message rate.

2) Frequency Variation
Although some hard IP blocks prevent us from choosing

arbitrary core frequencies we have found a set of four
frequencies, shown in Table III together with relative
performance, averaged over all message sizes.

TABLE III. IMPACT OF FREQUENCY VARIATION

Frequency
Relative

frequency

Message

rate

Band-

width
Latency

156 MHz 100.00% 100.00% 100.00% 100.00%

140 MHz 89.74% 88.62% 92.64% 93.16%

125 MHz 80.13% 79.21% 85.23% 87.18%

117 MHz 75.00% 74.61% 80.89% 83.79%

B. Experiments

We employ the HPCC RandomAccess benchmark [10]
and the Weather Research and Forecasting (WRF) model
[11] on 8 nodes with 64 processes to characterize the
application-level impact of varying message rates.

1) HPCC RandomAccess
First, we vary the message rate. We expect a high

influence on the HPCC RandomAccess results, as this
benchmark relies on a massive exchange of small messages.

Figure 5. Message rate sensitivity for HPCC RandomAccess

Figure 5 shows the measurement results, reported in
normalized run time components for communication and
computation, and the performance-message rate correlation.
We assume that our instrumentation is only influencing the
communication time and not the computation time. Negative
values in the correlation indicate that the performance
decrease is bigger than the message rate decrease, and vice
versa. The configurations for 95%-70% of message rate
show the expected high correlation. However, the sharp
performance drop from 100% to 95% is unexpected. A
possible explanation for this super-linear slow-down might
be the effect of the delay after message sending which, as a
side effect, also sacrifices compute time. Thus, we remove
this setting from our calculations.

Figure 6. Frequency sensitivity for HPCC RandomAccess

0.00

0.50

1.00

1.50

2.00

2.50

70% 75% 80% 85% 90% 95% 100%

Normalized Message Rate

n
o

rm
a
li

z
e
d

 r
u

n
 t

im
e

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

communication fraction

computation fraction

Performance/message rate correlation

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

75% 80% 90% 100%

Normalized Frequency

n
o

rm
a
li

z
e
d

 r
u

n
 t

im
e

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

communication fraction

computation fraction

Performance/frequency correlation

Figure 6 shows the performance results when varying
frequency. In this case, all measurement points show a high
correlation and can be used for extrapolation.

Based on these results, we use an exponential best fit on
the communication time, measured using mpiP [12]. For 64
processes on 8 nodes, this benchmark spends 89% of its
execution time within MPI layers. The computing time
fraction is kept constant as the amount of work (i.e.
processing updates) is not varied. Figure 7 shows the
resulting performance in terms of GUPS, saturating at more
than 1.8 GUPS. We achieve a high match between the two
used variations, validating our approach.

Figure 7. HPCC RandomAccess performance extrapolation

2) WRF– Message rate variation
The same methods are applied to WRF. Figure 8 shows

the resulting performance, based on an MPI time of 45.00%
for WRF on 8 nodes and 64 processes.

Figure 8. WRF performance extrapolation

The two variations show a very nice fit, in particular for
the 400% setting and above. The difference for smaller input
values can be explained by the more complex nature of this
benchmark and the higher influence of frequency variation
with regard to bandwidth.

3) Summary
The outcome of the performance analysis and

extrapolation is summarized in Table IV. Although one
might claim that for both experiments our ASIC-based
version is located in the saturation of the performance graph,
we would like to note that this only applies for these two
benchmarks and that this is only an 8-node cluster. For larger
installations, saturation will likely be reached much later.

TABLE IV. SUMMARY OF PERFORMANCE EXTRAPOLATION

EXTOLL

version
Method

FPGA

156 MHz,

32bit

FPGA

300

MHz,

64bit

ASIC

800 MHz,

128bit

HPCC

Random

Access

Message
rate

variation
0.20853
GUPS

1.452

GUPS

1.895

GUPS

Frequency

variation

1.538

GUPS

1.896

GUPS

WRF

Message

rate

variation
48.50262

GFLOP/s

81.833
GFLOP/s

88.161
GFLOP/s

Frequency

variation

79.319

GFLOP/s

88.180

GFLOP/s

VII. RELATED WORK

A large amount of work has been published on
interconnection networks and their performance impact on
HPC systems. Due to its popularity, most of the research
targets the Infiniband architecture, in particular the ConnectX
technology provided by Mellanox [13]. Sur et al. provide a
detailed performance evaluation of the ConnectX architecture
in [14]. Another established network protocol is Ethernet,
and more recently, 10G Ethernet. Hurwitz has studied the
performance of 10G Ethernet on commodity systems [15].

Furthermore, several vendors have developed proprietary
network technologies. This includes Cray’s Seastar family,
which is extensively studied by Brightwell in [16]. Seastar is
similar to EXTOLL, however, lacks efficient user-level
communication and virtualization support. The successor of
Seastar is Cray’s Gemini [17]. Fujitsu has proposed its Tofu
network [18], which supports 6-dimensional Torus
topologies with high fault tolerance using multidimensional
routing paths. IBM has developed a series of proprietary
interconnects, including its Blue-Gene family [19] and
PERCS [20]. The Shaw research institute claims a 162 ns
end-to-end communication latency with Anton [21], an ASIC
that integrates both interconnect and highly specialized
processor for executing molecular dynamics simulations.
However, it only supports a small set of applications and is
not compatible with general-purpose software.

The HPCC RandomAccess benchmark has been studied
in detail [10] [22] [23], but not with regard to varying
message rate. Similar applies to the Weather Research and
Forecasting Model [11] [24].

VIII. CONCLUSION

We present a network architecture specifically designed
for high message rates, including hardware modules and
software layers. In particular, we describe the properties and
characteristics that enable our design to offer high message
rates, and put our performance results in context with other
popular interconnection networks.

For in-depth analysis and evaluation, we have designed
an entire hardware and software stack, rather than a
simulation model. This allows us to test our architecture on
an FPGA-based prototype cluster consisting of 8 computing
nodes. As opposed to experiments based solely on

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

1.40000

1.60000

1.80000

2.00000

0% 200% 400% 600% 800% 1000% 1200% 1400% 1600%

Normalized Frequency / Message Rate

G
U

P
S

GUPS extrapolated using

frequency variation

(64P8N)

GUPS extrapolated using

message rate variation

(64P8N)

0.00000

10.00000

20.00000

30.00000

40.00000

50.00000

60.00000

70.00000

80.00000

90.00000

100.00000

0% 200% 400% 600% 800% 1000% 1200% 1400% 1600%

Normalized Frequency / Message Rate

G
F

L
O

P
/s

GFLOP/s extrapolated using

frequency variation (64P8N)

GFLOP/s extrapolated using

message rate variation (64P8N)

simulations, we can now perform comprehensive
experiments, covering all aspects of an HPC system.

The FPGA implementation achieves a message rate
exceeding 9 million messages per second, which is very
competitive considering the performance-limiting FPGA
technology. Apart from such micro-benchmark results, we
report measurements of applications including the Weather
Research & Forecasting Model and the HPCC
RandomAccess benchmark.

For a detailed analysis of the impact of message rate on
application-level performance, we modify our design in two
ways to provide different message rates to the application.
First, we delay send operations to manually create gaps
between subsequent messages. Second, we vary the clock
frequency, which obviously also impacts message rate.

The outcome of this analysis is two-fold: first, we show
that the performance of applications like the HPCC
RandomAccess and the Weather Research & Forecasting
Model highly depends on the provided message rate. Second,
this analysis allows us to extrapolate performance for other
technologies. This includes more recent FPGAs but also
ASICs, which allow for both higher clock frequencies and
wider data paths.

IX. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments. Also, we would like to thank all the people that
contributed to the continuing success of the EXTOLL
project. In no particular order, we want to especially thank
Frank Lemke, Alexander Giese, Sven Kapferer, Benjamin
Geib, Niels Burkhardt, Sven Schenk, Benjamin Kalisch,
Myles Watson and Richard Leys for all their support and
ongoing work, without EXTOLL would never have been
possible.

X. REFERENCES

[1] TOP500 list: http://www.top500.org

[2] Underwood, K. D., Levenhagen, M. J., and Brightwell, R. 2007.
Evaluating NIC hardware requirements to achieve high message rate
PGAS support on multi-core processors. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing (SC '07). ACM, New
York, NY, USA.

[3] Asanovic, K., et al. 2009. A view of the parallel computing
landscape. Communications of the ACM, 52(10), 56-67.

[4] Kogge P. (Ed.), et al. 2008. ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems. US Department of
Energy, Office of Science, Advanced Scientific Computing Research,
Washington, DC. Available at http://www.er.doe.gov/ascr.

[5] Litz, H., Fröning, H., Nüssle, M., and Brüning, U. 2008. VELO: A
novel communication engine for ultra-low latency message transfers.
In Proceedings of 37th International Conference on Parallel
Processing (ICPP-2008), Sept. 08-12, 2008, Portland, Oregon, USA.

[6] Nüssle, M., Scherer, M., and Brüning, U. 2009. A resource optimized
remote-memory-access architecture for low-latency communication.
In Proceedings of 38th International Conference on Parallel
Processing (ICPP-2009), Sept. 22-25, Vienna, Austria.

[7] Prades, J., Silla, F., Duato, J., Fröning, H., Nüssle, M. 2012. A New
End-to-End Flow-Control Mechanism for High Performance
Computing Clusters. In Proceedings of IEEE International
Conference on Cluster Computing (CLUSTER2012), Sept. 24-28,
2012, Beijing, China

[8] Fröning, H., Nüssle, M., Slogsnat, D., Litz, H., and Brüning, U. 2005.
The HTX-Board: A Rapid Prototyping Station. In Proceedings of 3rd
annual FPGAworld Conference, Nov. 16, 2006, Stockholm, Sweden.

[9] OSU Micro-Benchmarks 3.3: http://mvapich.cse.ohio-
state.edu/benchmarks, last accessed Apr. 2011.

[10] Aggarwal, V., Sabharwal, Y., Garg, R., and Heidelberger, P. 2009.
HPCC RandomAccess benchmark for next generation
supercomputers. In Proceedings of the 2009 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS '09). IEEE
Computer Society, Washington, DC, USA, 1-11.

[11] Michalakes, et al. Development of a next generation regional weather
research and forecast model. In Proceedings of the Ninth ECMWF
Workshop on the Use of High Performance Computing in
Meteorology. Eds. Walter Zwieflhofer and Norbert Kreitz. World
Scientific, Singapore. pp. 269-276.

[12] Vetter, J., and Chambreau, C. mpiP: Lightweight, Scalable MPI
Profiling: http://mpip.sourceforge.net, last accessed Apr. 2011.

[13] Mellanox Technologies: http://www.mellanox.com.

[14] Sur, S., Koop, M. J., Chai, L., and Panda, D.K. 2007. Performance
analysis and evaluation of Mellanox ConnectX InfiniBand
architecture with multi-core platforms. In 15th IEEE Symposium on
High Performance Interconnects (HOTI), Aug. 22-24, 2007,
Stanford, CA.

[15] Hurwitz, J., and Feng, W.C. 2004. End-to-end performance of 10-
gigabit Ethernet on commodity systems. IEEE Micro 24(1):10-22.

[16] Brightwell, R., Pedretti, K., and Underwood, K. D. 2005. Initial
performance evaluation of the Cray SeaStar interconnect. In
Proceedings of the 13th Symposium on High Performance
Interconnects (HOTI '05). IEEE Computer Society, Washington, DC,
USA.

[17] Alverson, R., Roweth, D., and Kaplan, L. 2010. The Gemini system
interconnect. In 18th IEEE Symposium on High Performance
Interconnects (HOTI), IEEE, 2010, p. 83–87.

[18] Ajima, Y., Sumimoto, S., and Shimizu, T. 2009. Tofu: A 6D
Mesh/Torus interconnect for Exascale computers. IEEE Computer
42(11):36-40, Nov. 2009.

[19] Liang, Y., et al. 2006. BlueGene/L failure analysis and prediction
models. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN '06). IEEE Computer
Society, Washington, DC, USA, 425-434.

[20] Arimilli, B. Arimilli, R. Chung, V. Clark, S. Denzel, W. Drerup, B.
Hoefler, T. Joyner, J. Lewis, J., and Li, J. 2010. The PERCS high-
performance interconnect. In Proceedings of 18th Symposium on
High Performance Interconnects (HOTI). IEEE Computer Society,
2010, p. 75–82.

[21] Dror, R. O., et al. 2010. Exploiting 162-nanosecond end-to-end
communication latency on Anton. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC '10). IEEE
Computer Society, Washington, DC, USA, 1-12.

[22] Dongarra, J., Luszczek, P. 2005. Introduction to the HPCChallenge
Benchmark Suite. ICL Technical Report, ICL-UT-05-01. Available
from http://icl.cs.utk.edu/hpcc, last accessed Nov. 2012.

[23] Garg, R., and Sabharwal, Y. 2006. Software routing and aggregation
of messages to optimize the performance of HPCC Randomaccess
benchmark. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SC). ACM, 2006, p. 109.

[24] HPC Advisory Council. 2009. Weather Research and Forecasting
(WRF) Model – Performance and Profiling Analysis on Advanced
Multi-Core HPC Clusters, March 2009:
http://www.hpcadvisorycouncil.com, last accessed Nov. 2012.

