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Abstract— Computer systems continue to increase in 

parallelism in all areas. Stagnating single thread performance 

as well as power constraints prevent a reversal of this trend; on 

the contrary, current projections show that the trend towards 

parallelism will accelerate. In cluster computing, scalability, 

and therefore the degree of parallelism, is limited by the 

network interconnect and more specifically by the message 

rate it provides. We designed an interconnection network 

specifically for high message rates. Among other things, it 

reduces the burden on the software stack by relying on 

communication engines that perform a large fraction of the 

send and receive functionality in hardware. It also supports 

multi-core environments very efficiently through hardware-

level virtualization of the communication engines. We provide 

details on the overall architecture, the thin software stack, 

performance results for a set of MPI-based benchmarks, and 

an in-depth analysis of how application performance depends 

on the message rate. We vary the message rate by software and 

hardware techniques, and measure the application-level 

impact of different message rates. We are also using this 

analysis to extrapolate performance for technologies with 

wider data paths and higher line rates. 

Keywords- computer communications, high performance 

networking, performance analysis, performance prediction 

I.  INTRODUCTION 

Over the past years, there has been an increasing demand 
for more powerful computing systems. The TOP500 list [1] 
reveals that the vast majority of high performance computing 
systems are based on clusters, certainly due to their excellent 
price/performance ratio. Such clusters rely on commodity 
parts for computing, memory and enclosure, however, for 
highest performance they use specialized interconnection 
networks like Infiniband. Unlike clusters, Massively Parallel 
Processors (MPPs) make more use of specialized parts, 
which significantly increase performance but also cost. 

The overarching goal of the EXTOLL project is to fill the 
gap between clusters and MPPs, specifically with a system 
that combines the performance of an MPP with the cost-
effectiveness of a cluster. Workload analysis has determined 
that the message rate is one key characteristic that needs to 
be optimized to achieve this goal. In this paper, we will 
present a set of techniques utilized within the EXTOLL 
design, which enable high message rates, and show how 
applications can benefit from this improvement. 

The message rate is defined as the number of messages 
that can be injected into a network from a host per second. 

Thus, it describes the achievable bandwidth for small 
message sizes. Latency is of paramount importance for 
round-trip communication patterns; however, for 
unidirectional transfers its impact is negligible. For such 
push-style communication patterns, the message rate is much 
more significant. Not only do MPI applications benefit from 
high message rates, PGAS-style applications also express 
fine-grained communication patterns, which benefit a lot 
from high message rates [2]. 

Taking into account that the increasing degree of 
parallelism [3] [4] also leads to an increased number of 
communication partners, communication pattern 
characteristics will shift to higher message counts with 
smaller payloads. Thus, the peak bandwidth is not the only 
metric that is crucial for the overall performance; instead, an 
increasing amount of attention must be paid to the 
performance of smaller messages. To conclude, the 
performance of small transfers should not only be 
characterized using the start-up latency, but also using the 
message rate. 

The message rate performance particularly depends on 
the network interface controller, which needs to be optimized 
for high efficiency in order to yield high message rates. The 
theoretical upper bound of the message rate is the link’s peak 
bandwidth divided by message size; a more practical upper 
bound is the link’s sustained bandwidth that takes into 
account the network protocol overhead. While we have 
presented details of the communication units for small [5] 
and large data transfers [6] in previous work, this work 
extends previous publications by providing the following 
contributions: 

1. An analysis of the impact of different message rates 
to communication-centric applications and 
workloads. 

2. Details of the optimized and lean interface between 
EXTOLL’s communication units and the 
corresponding software layers. 

3. The first comprehensive disclosure of performance 
results based on prototype hardware in a standard 
cluster environment. 

4. A methodology to characterize an application’s 
dependency on message rate, also allowing 
predicting application-level performance for future 
technologies. 

The remainder of this work is structured as follows: in 
the next section, we provide an analysis of sustained message 
rates. In the following two sections, we will introduce the 



hardware and software architecture in detail. In section 5, 
performance results for the current prototype are reported. 
Section 6 is dedicated to the performance analysis for other 
technologies like ASICs. In section 7, we present related 
work, while the last section concludes. 

II. ON ACHIEVING HIGH MESSAGE RATES 

Theoretically, the effective bandwidth of a network can 
be translated into a message rate (MR) for a given packet 
size. Practically, this is only true for large packets where the 
overhead of packet passing is marginal compared to the 
packet size. For small payloads, more effects become visible 
and limit the message rate. The following components 
contribute to the sustained message rate: 

1. Network protocol overhead including framing, 

headers, CRC, etc 
2. Message passing protocol overhead including tags, 

source identification, etc 
3. Packet-to-packet gaps caused by network interface 
4. Packet-to-packet gaps caused by switching units 
5. Software overhead for sending and receiving 
The following Table I provides some numbers for two 

popular interconnection networks (10 Gigabit Ethernet and 
Infiniband QDR) and for EXTOLL, together with the 
sustained message rates achieved in our experiments. All 
message rates are reported in millions of messages per 
second. 

TABLE I.  ANALYSIS OF SUSTAINED MESSAGE RATE 

Network 10GE
1
 IB-QDR

2
 EXTOLL

3
 

Net Speed 10 Gbps 32 Gbps 5 Gpbs 

Theoretical peak 

message rate (8B 
payload) 

156.3 500.0 78.0 

Network protocol 

overhead 
82 B 38 B 32 B 

MPI protocol overhead 24 B 10 B 16 B 

Packet-to-Packet gap 
of switching units 

NA NA 8 B 

Packet-to-Packet gap 

of network interface 
NA NA 0 B 

Overhead total (as 
appropriate) 

114 B 
(w/o gaps) 

56 B 
(w/o gaps) 

64 B 
(total) 

Sustained Message 

Rate 

0.66 

(0.42%) 

6.67 

(1.33%) 

9.73 

(12.4%) 

Calculated overhead 

derived from sustained 

MR 

416.67 B 599.70 B 64.14 B 

 
For theoretical peak message rate the assumed minimum 

payload is 8 bytes. Sustained message rate is the peak 
measure rate achieved with multiple communication pairs, 
also reported as percentage of theoretical peak. 

                                                           
1  Intel 82598EB 10GE controller, no switch. 2x AMD Opteron 

2380 (4 cores, 2.5GHz) per node, Open-MPI 1.4.2 
2  Mellanox MT26428 with MTS3600 switch, 1x Intel Xeon E5645 

(6 cores, 2.4GHz) per node, MVAPICH 1.2.0 
3  EXTOLL R1, 2x AMD Opteron 2380 (4 cores, 2.5GHz) per 

node, Open-MPI 1.4.2 

We report detailed numbers in Table I for our EXTOLL 
network prototype, but best to our knowledge such numbers 
are not published from typical network vendors. Note that 
the table does not include numbers for software overhead, as 
due to overlap between software and hardware processing 
these numbers cannot be determined with sufficient 
accuracy. While the overheads for network and MPI protocol 
are similar for all three network types, the ratios of sustained 
vs. theoretical message rates differ significantly. The last row 
presents the corresponding calculated overhead in bytes 
derived from the sustained message rate. This overhead 
attributes to several potential sources: protocols, network 
interface, switching units and software overhead.  

EXTOLL’s calculated overhead matches closely the total 
overhead from the network interface and switching units 
(64.14B vs. 64B), validating our calculation, but also 
showing that our software overhead is minimal. On the other 
hand, the two other networks show a huge difference 
between the calculated overhead and analyzed overhead. 
Although we had to omit numbers for gaps caused by 
network interfaces and switching units, the difference is too 
big to attribute it only to these hardware units. We assume 
that these networks suffer from huge software overheads. 
Thus, our network design is very competitive compared to 
existing solutions and therefore allows analyzing the impact 
of message rate at application level. 

III. AN ARCHITECTURE FOR HIGH MESSAGE RATES 

In brief, EXTOLL’s main characteristics are support for 
multi-core environments by hardware-level virtualization, 
communication engines for very low overhead and a 
minimized memory footprint. Figure 1 shows a top-level 
block diagram of the EXTOLL architecture, integrating the 
host interface, network interface and switching units. The 
host interface is based on HyperTransport (HT), but could be 
replaced by PCIe logic (which in fact in another design is 
being done). The on-chip network HTAX closely matches 
the HT protocol, but overcomes some shortcomings with 
regard to the limited amount of source tags and the 
addressing scheme.  

The second large block implements the different modules 
needed for message handling, i.e. to inject messages into the 
network and receive messages from the network. The two 
major communication units are the Virtualized Engine for 
Low Overhead (VELO), supporting programmed I/O (PIO) 
for small transfers, and the Remote Memory Access (RMA) 
unit that, uses DMA to handle large messages. The two 
supporting units are the Address Translation Unit (ATU) and 
the control & status register file. 

The last block implements a complete network switch. It 
includes a crossbar-based switch, six ports towards the 
network side and three ports towards the message handling 
modules on the host side, allowing handling requests, 
responses and completions independently. 

A. Switching Resources Integrated into Network Interface 

The EXTOLL prototype can run any direct topology with 
a maximum node degree of six. The routing hardware is not 
limited to a certain strategy, like dimension order routing, 



nor to a specific topology. For smaller networks, for instance 
different variants from fully interconnected to hypercube and 
tori are available. Larger configuration will most probably 
use a 3D torus configuration, though, based on the available 
number of links. 

 

 
Figure 1.  Top-level architecture 

The integrated switch implements a variant of Virtual 
Output Queuing (VOQ) on the switch level to reduce Head-
of-line (HOL) blocking and employs cut-through switching. 
Multiple virtual channels are used for deadlock avoidance. In 
particular in-order delivery of packets and reliable packet 
transmission significantly simplifies the protocol design in 
MPI layers, allowing for very low software overhead as can 
be seen in Table I. 

B. Support for Small Data Transfers 

As the network is designed particularly for ultra-low 
latencies and high message rates, EXTOLL includes a 
special hardware unit named VELO that provides optimized 
transmission for small messages. It offers a highly efficient 
hardware and software interface to minimize the overhead 
for sending and receiving such messages. Using VELO, 
messages are injected into the network using PIO to reduce 
the injection latency as much as possible. Details of this 
scheme, as well as for the general architecture of VELO can 
also be found in [5]. Here, we extend this work with details 
of the software part and its impact on application-level 
performance. 
 

velo_ret_t velo_send(velo_connection_t* handle, 

          uint32_t len, uint64_t* buf, uint8_t tag) 

{ 

  uint64_t* dest= calc_address (handle, tag, len); 

  for ( i=0; i < ( len>>3 ); i ++ )  

    *dest++ = *buf++; 

  return VELO_RET_SUCCESS; 

} 

 

For VELO, a single write operation into the memory-
mapped I/O (MMIO) space is sufficient to send a message. 
For additional optimization, some of the message header 
information is encoded in the address to access VELO. This 
implementation saves space in the data section of the I/O 

transaction. The code snippet above helps to illustrate the 
software part of issuing a message to VELO. 

As one can see, there are only two simple steps required 
to inject the message: First, calculate the target address of the 
store instruction, and second, copy the message to the device. 
A simple loop can be used here. The write-combining feature 
of modern CPUs is employed to aggregate the data of one 
message into a single host-to-interface transaction. An 
exception mechanism exists in hardware to address the case 
in which a transaction is split by the CPU, for example 
caused by an interrupt that occurs in the middle of a 
transaction. Access to VELO is done directly from user-
space. Each process has distinct mappings, so hardware can 
immediately determine if the process is actually authorized 
to send messages. 

The VELO hardware unit is a completely pipelined 
structure controlled by a number of finite state machines. So 
no (relatively) slow microcode or even embedded processing 
resource is involved in sending or receiving data. Another 
fact that has important consequences on performance is the 
amount and the location of context or state information for 
the hardware. VELO is stateless in the sense that each 
transaction is performed as a whole and no state must be 
saved for one message to proceed. As a corollary, there is no 
context information stored in main memory and no caching 
of such information is necessary. Thus, VELO is able to 
provide high performance independent of the actual access 
pattern by different processes, a very important fact in 
today’s multi- or many-core systems.  

On the receive side, messages are written directly to main 
memory using a single ring-buffer per receiving process. 
Each process allocates its own receive buffer, and any source 
can store messages to this ring-buffer. User-level processes 
waiting for messages can poll certain memory locations 
within this ring buffer for new arrivals. This can be done in a 
coherent way, so polling is done on cache copies. Updates in 
the ring buffers invalidate the now outdated copies, 
enforcing the subsequent access to fetch the most recent 
value from main memory.  

The simplest flavor of a receive function is shown in the 
code snippet below. After determining the address to poll, 
the function waits for a new message to arrive. It 
subsequently copies the data to the application buffer, 
increments the internal read pointer and resets the header 
word to zero to prepare for the next time this slot will be 
used. The first quad word of a message in the VELO receive 
buffer is guaranteed to non-zero, identifying a valid packet. 
 

velo_ret_t velo_recv_wait(velo_port_t* handle, 

                       uint32_t len, uint64_t* buf) 

{ 

  volatile uint64_t* s = handle->header; 

  while (*(s) == 0l ) { /* busy wait*/ }; 

  memcpy ( buf, ( void* ) handle->msg, len ); 

  _velo_recv_inc_rp ( handle ); 

  handle->header = 0l; 

  return VELO_RET_SUCCESS; 

} 

For the VELO transport, the order is maintained by 
utilizing the hardware’s underlying flow-control principles, 
i.e. EXTOLL’s flow-control in the network and 
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HyperTransport’s flow-control for the host side. In extreme 
cases, this can lead to stalling CPU cores due to missing 
credits, which are needed to inject messages. To solve this 
problem a programmable watchdog is provided which 
prevents system crashes in such a case. On the software side, 
the problem can be avoided by using a higher-level flow-
control. The actual hardware implementation has been 
improved from the implementation described in [5] in such a 
way. Also, we increased both frequency and data path width. 

C. Support for Bulk Data Transfers 

Larger transfers are efficiently supported using the RMA 
unit. The RMA unit offers Put/Get based primitives. There is 
a hardware-based Address Translation Unit (ATU), which 
secures memory accesses from user-space. Registration and 
deregistration of pages is very fast and only limited by the 
time for a system call and the lookup of the virtual to 
physical translation by the kernel itself [6]. 

RMA allows for complete CPU-offloading, which is 
crucial for high overlap between computation and 
communication. Processors only have to post RMA 
command descriptors to the hardware using PIO. The 
complete data transmission, however, is executed by 
integrated DMA engines. 

An interesting feature that has been used for the MPI 
implementation (see below) is the notification framework; 
allowing notifying processes at the sending, responding or 
completing side of a Put resp. Get operations. Obviously 
notifications for responses are only applicable to Get 
operations. Each process has exactly one notification queue, 
in which the hardware stores all incoming notifications for 
this process regardless of their type. These queues share 
many similarities with VELO receive queues. 

IV. SOFTWARE STACK 

The software stack of the EXTOLL prototype is divided 
into the user-space part and the Linux kernel part. The actual 
process of sending and receiving messages is completely 
done in user-space. There are two low-level API libraries, 
one for VELO and one for RMA. Functions for a user-
application to request hardware access, set-up memory-
mappings and allocate receive queues are provided. For 
VELO, there are different flavors of send() and receive() 
functions available. A VELO context provides a single 
receive ring-buffer to the application, to which all messages 
destined to this application are written to by the hardware. 
For efficiency reasons, and to avoid stalling of the sending 
CPU-cores, a credit-based flow-control scheme has been 
implemented [7]. Measurements show that the performance 
is not significantly impacted by this additional software 
protocol. 

On the RMA side, there are functions to register and de-
register memory regions. One set of functions allows the user 
application to post arbitrary commands like put or get 
requests to the hardware. Another set of functions manages 
the notification queue, into which the hardware writes 
notifications to inform software about completed operations. 

A. Supporting MPI 

There exist several popular open source choices for the 
MPI implementations. We chose OpenMPI, mainly because 
the component-oriented architecture is well understood and 
formed a clean interface to the EXTOLL lower-level 
software. Within OpenMPI, there are again several interfaces 
available that can be used to implement support for a 
transport method. We chose the Message Transfer Layer 
(MTL) interface for EXTOLL. This interface is actually quite 
simple and encompasses only a small number of functions, 
for instance initialization and finalization functions, blocking 
and non-blocking send functions, and a callback-oriented 
progress function. A number of other functions for example 
to cancel or test requests are also available. Compared to 
other interfaces, in particular the Bit Transfer Layer (BTL), 
the downside of the MTL component is that MPI matching 
semantics have to be implemented. On the other hand, this 
allows optimizing matching semantics for our network 
design.  

 

Figure 2.  Software stack 

Two protocols are implemented to transport messages 
using the EXTOLL hardware, with a tunable run-time 
parameter. There is an eager protocol for small messages and 
a rendezvous protocol for large messages. For the 
experiments in this work, the threshold was set to 2 kB. 

B. Eager protocol 

The eager protocol relies on the VELO engine. First, a 
MPI header is built mainly consisting of source process, tag, 
communicator and size information. This MPI header along 
with the actual data is then sent to the destination process 
using VELO send functions. On the receiver side, the VELO 
receive queue is checked by the progress function. Every 
incoming entry is software-matched against the receive 
queue using the MPI header which can be found at the 
beginning of the message. If no match is found, the message 
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is added to the unexpected queue. If a matching receive is 
posted later, this receive can immediately be completed via 
the unexpected queue. A hardware VELO message has a 
maximum size of 64 bytes in the EXTOLL prototype. Larger 
messages are assembled from multiple VELO messages. 
VELO messages can carry a small tag that is used to 
distinguish different message types on this protocol layer, for 
example if this is the first fragment of a larger MPI message. 
The software also leverages the fact that VELO messages 
arrive in the same order as they were originally sent. 

C. Rendezvous protocol 

The rendezvous protocol is built upon both VELO and 
RMA engines. First, a request message is built and sent to 
the receiver using VELO. Once this request is matched at the 
receiver, a sequence of RMA Get operations is used to fetch 
the data from the sender into the receiver’s application 
buffer. The memory at the sender side is registered right 
before the request is sent; the receiver registers its buffer 
when starting the Get operation. For the rendezvous protocol, 
notifications are used to signal completion both on sender 
and receiver sides. After these notifications have been 
received, the respective buffers are de-registered.  

V. PROTOTYPE PERFORMANCE RESULTS 

The architecture described in the last two sections is 
currently implemented as a prototype using reconfigurable 
hardware, i.e. Field Programmable Gate Arrays (FPGAs). 
We developed a custom add-in card [8] combining the FPGA 
with an HTX connector as host interface and six serial links 
towards the network side. We use standard optical 
transceivers and fibers to connect these add-in cards. The 
implemented architecture is running at a frequency of 156 
MHz with a data path width of 32 bits for the core logic, i.e. 
the NIC and network block, and 200 MHz for the HT Core. 
An 8 node cluster is equipped with these custom add-in cards 
and a 3D torus is set up. Each node includes two 4-core 
AMD Opteron 2380 processors running at 2.5 GHz, and 8 
GB of DDR2-800 main memory. Linux version 2.6.31.6 is 
installed on these machines. 

Our prototype is suffering from some performance 
limitations due to the used technology. Compared to ASICs, 
FPGAs are limited in terms of capacity and frequency, as 
well as flexibility due to integrated hard IP blocks. In 
particular, the link bandwidth is limited to only 6.24 Gbps 
and the hop latency is about 300ns, mainly due to the hard IP 
modules used for serialization. 

A. Message rate 

First, we report message rate characteristics based on the 
popular OSU Message Rate Test [9]. It reports the sustained 
message rate, i.e. how many send operations can be issued 
per second. For this test, multiple communication pairs are 
set up between two nodes. No message aggregation or other 
techniques are used to optimize this experiment. 

Figure 3 shows the results of this test. We achieve a peak 
non-coalesced message rate of more than 9.5 million 
messages per second; yielding a peak bandwidth of 480 
MB/s. For comparison, we have also included the results 

from our IB-QDR experiment in this figure, which is the 
same as in Table I. The message rate achieved with 10GE is 
not competitive and only included for reference. 

 

 
Figure 3.  OSU Message Rate Test – Performance over Message Size 

The maximum message rate for a varying numbers of 
communication pairs is shown in Figure 4. EXTOLL 
requires four simultaneous pairs to saturate, likely due to 
MPI layer overhead. However, while IB-QDR also requires 
four pairs to reach its peak, it does not maintain this 
performance level but instead performance starts dropping 
significantly. 

 

 
Figure 4.  OSU Message Rate - Performance over Pair Count 

VI. PERFORMANCE ANALYSIS AND EXTRAPOLATION 

As our prototype is based on FPGAs instead of much 
faster ASICs, we present here a methodology allowing 
estimating application-level performance for faster 
technologies. In addition, we show that two complex 
application-level benchmarks (HPCC RandomAccess and 
Weather Research and Forecasting Model) heavily depend 
on the message rate. To estimate the relative performance of 
future versions we rely on simulation- and calculation-based 
analyses, which are summarized in Table II. As for future 
versions not only the frequency is varied but also the data 
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path width increases, we assume that an increase to 64 bit at 
300 MHz translates to a relative performance of 600 MHz at 
32 bit (or 384%), respectively a 800 MHz at 128 bit 
translates to 2400 MHz at 32 bit (or 1538%). 

TABLE II.  PERFORMANCE INCREASE FOR DIFFERENT TECHNOLOGIES 

Technology 
Core 

speed 

Data 

path 

width 

Relative 

frequency 

Relative 

message 

rate 

Virtex-4 FPGA 
156 

MHz 
32 bit 100% 100% 

Virtex-6 FPGA 
300 
MHz 

64 bit 384% 400% 

65nm ASIC 
800 

MHz 
128 bit 1538% 1000% 

A. Methodology 

In order to predict the performance of future EXTOLL 
implementations we apply the following methodology. First, 
we reduce the performance of the FPGA prototype in two 
manners: 

1. The message rate is reduced by including delays 

after the send function in the API. As this is done 

after the send function there should be little 

influence on latency. 

2. The core speed of the FPGA is reduced, which 

influences the message rate, latency and bandwidth. 
Then, we rerun the micro-benchmarks to determine the 

correlation to the message rate, latency and bandwidth. In 
addition, we use complex benchmarks to determine the 
impact on application-level performance like GUPS and 
GFLOP/s. We apply a best fit to the different measurement 
points and extrapolate the resulting function to determine the 
impact of faster ASIC and FPGA technologies. As long as 
the system performance is not limited by third-order effects 
like the processor or main memory, this extrapolation should 
provide reasonable results. 

1) Message Rate Variation 
This is achieved by including delays in the API blocking 

and non-blocking send call after actually triggering the send 
operation. The delay is dependent on the message size, thus 
the longer a message is, the longer is the delay is. We use 
command line parameters to choose between several delay 
sets, yielding different message rates. Obviously, this also 
has an impact on bandwidth; however, this satisfies the 
definition of the message rate. For messages smaller than 
128 bytes, the latency is not affected. For larger messages, 
the delay required to achieve a certain message rate also 
affects latency, but the latency impact for these messages 
sizes is not crucial. 

In this way, we have selected sets of delay parameter to 
configure the network for certain message rates, varying 
between 100% and 70% of peak message rate. 

2) Frequency Variation 
Although some hard IP blocks prevent us from choosing 

arbitrary core frequencies we have found a set of four 
frequencies, shown in Table III together with relative 
performance, averaged over all message sizes. 

 

TABLE III.  IMPACT OF FREQUENCY VARIATION 

Frequency 
Relative 

frequency 

Message 

rate 

Band-

width 
Latency 

156 MHz 100.00% 100.00% 100.00% 100.00% 

140 MHz 89.74% 88.62% 92.64% 93.16% 

125 MHz 80.13% 79.21% 85.23% 87.18% 

117 MHz 75.00% 74.61% 80.89% 83.79% 

B. Experiments 

We employ the HPCC RandomAccess benchmark [10] 
and the Weather Research and Forecasting (WRF) model 
[11] on 8 nodes with 64 processes to characterize the 
application-level impact of varying message rates. 

1) HPCC RandomAccess 
First, we vary the message rate. We expect a high 

influence on the HPCC RandomAccess results, as this 
benchmark relies on a massive exchange of small messages.  

 

 

Figure 5.  Message rate sensitivity for HPCC RandomAccess 

Figure 5 shows the measurement results, reported in 
normalized run time components for communication and 
computation, and the performance-message rate correlation. 
We assume that our instrumentation is only influencing the 
communication time and not the computation time. Negative 
values in the correlation indicate that the performance 
decrease is bigger than the message rate decrease, and vice 
versa. The configurations for 95%-70% of message rate 
show the expected high correlation. However, the sharp 
performance drop from 100% to 95% is unexpected. A 
possible explanation for this super-linear slow-down might 
be the effect of the delay after message sending which, as a 
side effect, also sacrifices compute time. Thus, we remove 
this setting from our calculations. 

 
Figure 6.  Frequency sensitivity for HPCC RandomAccess 
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Figure 6 shows the performance results when varying 
frequency. In this case, all measurement points show a high 
correlation and can be used for extrapolation.  

Based on these results, we use an exponential best fit on 
the communication time, measured using mpiP [12]. For 64 
processes on 8 nodes, this benchmark spends 89% of its 
execution time within MPI layers. The computing time 
fraction is kept constant as the amount of work (i.e. 
processing updates) is not varied. Figure 7 shows the 
resulting performance in terms of GUPS, saturating at more 
than 1.8 GUPS. We achieve a high match between the two 
used variations, validating our approach. 

 

 

Figure 7.  HPCC RandomAccess performance extrapolation 

2) WRF– Message rate variation 
The same methods are applied to WRF. Figure 8 shows 

the resulting performance, based on an MPI time of 45.00% 
for WRF on 8 nodes and 64 processes. 

 

 

Figure 8.  WRF performance extrapolation 

The two variations show a very nice fit, in particular for 
the 400% setting and above. The difference for smaller input 
values can be explained by the more complex nature of this 
benchmark and the higher influence of frequency variation 
with regard to bandwidth. 

3) Summary 
The outcome of the performance analysis and 

extrapolation is summarized in Table IV. Although one 
might claim that for both experiments our ASIC-based 
version is located in the saturation of the performance graph, 
we would like to note that this only applies for these two 
benchmarks and that this is only an 8-node cluster. For larger 
installations, saturation will likely be reached much later. 

 

TABLE IV.  SUMMARY OF PERFORMANCE EXTRAPOLATION 

EXTOLL 

version 
Method 

FPGA 

156 MHz, 

32bit 

FPGA 

300 

MHz, 

64bit 

ASIC 

800 MHz, 

128bit 

HPCC 

Random 

Access 

Message 
rate 

variation 
0.20853 
GUPS 

1.452 

GUPS 

1.895 

GUPS 

Frequency 

variation 

1.538 

GUPS 

1.896 

GUPS 

WRF 

Message 

rate 

variation 
48.50262 

GFLOP/s 

81.833 
GFLOP/s 

88.161 
GFLOP/s 

Frequency 

variation 

79.319 

GFLOP/s 

88.180 

GFLOP/s 

VII. RELATED WORK 

A large amount of work has been published on 
interconnection networks and their performance impact on 
HPC systems. Due to its popularity, most of the research 
targets the Infiniband architecture, in particular the ConnectX 
technology provided by Mellanox [13]. Sur et al. provide a 
detailed performance evaluation of the ConnectX architecture 
in [14]. Another established network protocol is Ethernet, 
and more recently, 10G Ethernet. Hurwitz has studied the 
performance of 10G Ethernet on commodity systems [15]. 

Furthermore, several vendors have developed proprietary 
network technologies. This includes Cray’s Seastar family, 
which is extensively studied by Brightwell in [16]. Seastar is 
similar to EXTOLL, however, lacks efficient user-level 
communication and virtualization support. The successor of 
Seastar is Cray’s Gemini [17]. Fujitsu has proposed its Tofu 
network [18], which supports 6-dimensional Torus 
topologies with high fault tolerance using multidimensional 
routing paths. IBM has developed a series of proprietary 
interconnects, including its Blue-Gene family [19] and 
PERCS [20]. The Shaw research institute claims a 162 ns 
end-to-end communication latency with Anton [21], an ASIC 
that integrates both interconnect and highly specialized 
processor for executing molecular dynamics simulations. 
However, it only supports a small set of applications and is 
not compatible with general-purpose software. 

The HPCC RandomAccess benchmark has been studied 
in detail [10] [22] [23], but not with regard to varying 
message rate. Similar applies to the Weather Research and 
Forecasting Model [11] [24]. 

VIII. CONCLUSION 

We present a network architecture specifically designed 
for high message rates, including hardware modules and 
software layers. In particular, we describe the properties and 
characteristics that enable our design to offer high message 
rates, and put our performance results in context with other 
popular interconnection networks. 

For in-depth analysis and evaluation, we have designed 
an entire hardware and software stack, rather than a 
simulation model. This allows us to test our architecture on 
an FPGA-based prototype cluster consisting of 8 computing 
nodes. As opposed to experiments based solely on 
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simulations, we can now perform comprehensive 
experiments, covering all aspects of an HPC system. 

The FPGA implementation achieves a message rate 
exceeding 9 million messages per second, which is very 
competitive considering the performance-limiting FPGA 
technology. Apart from such micro-benchmark results, we 
report measurements of applications including the Weather 
Research & Forecasting Model and the HPCC 
RandomAccess benchmark.  

For a detailed analysis of the impact of message rate on 
application-level performance, we modify our design in two 
ways to provide different message rates to the application. 
First, we delay send operations to manually create gaps 
between subsequent messages. Second, we vary the clock 
frequency, which obviously also impacts message rate.  

The outcome of this analysis is two-fold: first, we show 
that the performance of applications like the HPCC 
RandomAccess and the Weather Research & Forecasting 
Model highly depends on the provided message rate. Second, 
this analysis allows us to extrapolate performance for other 
technologies. This includes more recent FPGAs but also 
ASICs, which allow for both higher clock frequencies and 
wider data paths. 
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