
AMS 209: Project Report
Numerical Linear Algebra

Gaussian Elimination with and without Pivoting for
Solving Linear Systems

Geetanjali Rakshit

December 15, 2017

1 Abstract
The aim of this project is to solve a system of linear equations using Gaussian Elimination
with and without pivoting. The project has been implemented in Fortran and Python. A
linear algebra solver has been implemented in Fortran, while a run setup, run scheduler,
and a data visualizer have been implemented in Python. We solve for 3 sets of linear
equations and present our solutions. Also, we compare the results obtained from the
Fortran solver with the ones obtained by using the numpy libraries in Python.

2 Method
The pseudo-code for the two algorithms, Gaussian Elimination with and without pivoting,
is described in the Reading Material for the project (1). The code has two parts: the
Fortran part in the directory ”project/LinAlg” and the Python part in the directory
”project/pyRun” .

2.1 Fortran Implementation

The Fortran implementation reads the values of the matrix A and vector b from input
files A_i.dat and b_i.dat, respectively. It then prints these values to the screen. Next,
we apply Gaussian Elimination with or without partial pivoting to decompose the matrix
A into lower L and upper U triangular matrices such that A = LU , Ly = b and Ux = y.
After the matrices L and U are computed, we solve Ly = b and Ux = y to obtain the
solution x. This solution is then written to the screen and to a file called x_i.dat.

The implementation has a main driver routine called linear_solve in the directory
”project/LinAlg” , which calls other subroutines. The code is organized as follows:

• linear_solve.f90: This is the main driver routine, which calls the following subrou-
tines:

– read_data.f90: This reads in A and b from .dat files.

1



– setup_module.f90: This reads the parameters eqset (can be 1, 2 0r 3) and
matrix dimension n from a file setup.init.

– write_to_screen.f90: This writes both A and b to screen.

– LU_decomp.f90: This implements Gaussian elimination with and without par-
tial pivoting.

– forward_solve.f90: This solves Ly = b.

– backward_solve.f90: This solves Ux = y.

– write_data.f90: This outputs the result onto screen as well as well as to a file,
x_i.dat.

2.2 Python Implementation

The Python implementation initializes a system of linear equations into 2 variables: a
matrix A and a vector b, and writes them to files A_i.dat and b_i.dat, respectively, for
each i. Then, it compiles the Fortran code and runs it. After the Fortran solver runs,
we check for its correctness by comparing its solution with the solution from the Python
numpy library. A threshold value is used to quantify the error between the two solutions.
Finally, the implementation produces plots for the matrix A, and vectors x and b.

The pyRun.py file is in the directory project/PyRun. The code is organized as
follows:

• make_make(): This function compiles the Fortran code.

• setValues(): This function initializes the matrix A and the vector b, depending on
the set of equations (1, 2 or 3), for which the algorithm is to run.

• createFiles(): This function writes the matrix A and the vector b to A_i.dat and
b_i.dat files, for each i, and the setup.init file with parameters such as the set of
equations (1, 2 or 3) and the matrix dimension n.

• runFortranSolver(): This function runs the Fortran executable file.

• readFortranSolution(): This function returns the solution from the Fortran code
written in a file xi.dat.

• checkSolution(): This function compares the solution of the Fortran code with the
one computed by the numpy library. It prints PASS if the solutions are the same
up to a threshold, else prints FAIL, and outputs the error together with the Fortran
and Python solutions to screen.

• plotData(): This function plots the matrix A and vectors b and x.

• runScheduler(): This function is the scheduler that runs all the steps sequentially,
i.e., initialize, run Fortran code, compare with numpy solution and plot the values.

2



(a) Matrix A (b) Vectors b and x

Figure 1: 1st set of equations

(a) Matrix A (b) Vectors b and x

Figure 2: 2nd set of equations

3 Results
We solve for 3 sets of equations, as provided in the Project Handout (2). The equations
and the obtained solutions (value of x’s) are listed in equations 1, 2 and 3.

A =

 1 1 −1
1 2 −2
−2 1 1

 , b =

10
1

 , x =

22
3

 (1)

A =


4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

 , b =


1
1
−1
−1

 , x =


0
1
−1
0

 (2)

A =


1 −1 1 −1
−1 3 −3 3
2 −4 7 −7
−3 7 −10 14

 , b =


0
2
−2
8

 , x =


1
1
−3
−3

 (3)

We plot the matrix A and the vectors b and x for equations 1, 2 and 3 in Figures 1, 2
and 3, respectively.

Gaussian elimination with and without pivoting produces the same results. These
values of x were the same as those calculated by the numpy library in Python and shown
as x in the equations 1, 2 and 3.

3



(a) Matrix A (b) Vectors b and x

Figure 3: 3rd set of equations

4 Findings and Comments
Gaussian elimination without pivoting worked fine for the system of equations on which
we tested. This method doesn’t work when a diagonal element of the matrix becomes
zero. Gaussian elimination with partial pivoting is a more robust method due to the row
permutations.

5 Conclusion
We successfully solved the set of linear equations provided to us using the Fortran linear
solver, both with and without pivoting using the Gaussian Elimination method. These
results were the same as those produced by the Python numpy library.

6 References
1. Reading material: https://users.soe.ucsc.edu/~dongwook/wp-content/uploads/

2017/ams209/lectureNote/_build/html/project/finalproject.html#final-term-projects-due-6-pm-thursday-december-14-2017

2. Project Handout: https://users.soe.ucsc.edu/~dongwook/wp-content/uploads/
2017/ams209/lectureNote/_build/html/project/finalproject.html#final-term-projects-due-6-pm-thursday-december-14-2017

4

https://users.soe.ucsc.edu/~dongwook/wp-content/uploads/2017/ams209/lectureNote/_build/html/project/finalproject.html#final-term-projects-due-6-pm-thursday-december-14-2017
https://users.soe.ucsc.edu/~dongwook/wp-content/uploads/2017/ams209/lectureNote/_build/html/project/finalproject.html#final-term-projects-due-6-pm-thursday-december-14-2017
https://users.soe.ucsc.edu/~dongwook/wp-content/uploads/2017/ams209/lectureNote/_build/html/project/finalproject.html#final-term-projects-due-6-pm-thursday-december-14-2017
https://users.soe.ucsc.edu/~dongwook/wp-content/uploads/2017/ams209/lectureNote/_build/html/project/finalproject.html#final-term-projects-due-6-pm-thursday-december-14-2017

	Abstract
	Method
	Fortran Implementation
	Python Implementation

	Results
	Findings and Comments
	Conclusion
	References

