Inverse anisotropic conductivity from power densities in two dimensions

François Monard

Department of Mathematics, University of Washington.

Sept. 3, 2014
Pontificia Universidad Católica de Chile

Joint work with Guillaume Bal (Columbia University)
1. Introduction

2. A coupled-physics approach to inverse conductivity

3. Inverse conductivity from power densities - resolution

4. Numerical simulations
Overview

Inverse problem: Find $x \in \mathcal{X}$ such that $y = M(x)$, given data $y \in \mathcal{Y}$ and model M.

Examples:

X-Ray CT: a function $\gamma \leftarrow$ its line integrals. M: X-Ray transform.

Calderón’s problem (EIT): $\gamma \leftarrow \Lambda_\gamma$, M: conductivity eq.

Seismography: sound speed in Earth’s crust \leftarrow wave traveltimes.

Inverse wave problem: $u|_{t=0} \leftarrow u|_{\partial \Omega \times [0, T]}$, M: wave eq.
Introduction

Analysis of inverse problems

The theoretical analysis of an inverse problem consists in

- **Uniqueness** assessment: \(M(x_1) = M(x_2) \implies x_1 = x_2 \)
- **Stability** assessment (rules resolution in practice)
 Hilbert scale of stability:
 - well-posed problems (\(\delta M \) small \(\implies \delta x \) small)
 - mildly ill-posed problems (\(\delta M \) small \(\implies \delta x \) not too large)
 - severely ill-posed (\(\delta M \) small \(\implies \delta x \) too large)

- Derivation of **reconstruction formulas**
- Numerical implementation/simulation

▶ Applications to **imaging sciences**
 (medical, geophysical, atmospheric, etc...).
Two (linear) examples

1. $M_1[f](x) = \int_0^x f(t) \, dt$.
2. $M_2[f](x) = u(x, T)$ ($T > 0$ fixed), where u solves
 \[
 \partial_t u = \partial_{xx} u \quad (t > 0, x \in \mathbb{R}), \quad u(x, 0) = f(x).
 \]

Both problems are injective. In a noiseless world, $f(x) = \frac{d}{dx} M_1[f](x)$, and in particular,
\[
\|f - g\|_{L^2(\mathbb{R})} \leq \|M_1[f] - M_1[f]\|_{H^1(\mathbb{R})}.
\]

For the second problem, $f(x) = \mathcal{F}_{\xi \rightarrow x}^{-1}(e^{T \xi^2} \mathcal{F}_{x \rightarrow \xi} M_2[f])$, though there is no (s, p, C) such that
\[
\|f - g\|_{H^s(\mathbb{R})} \leq C\|M_2[f] - M_2[g]\|_{H^{s+p}(\mathbb{R})}.
\]

Problem 1 is mildly ill-posed while problem 2 is severely ill-posed.

▶ Stability quantifies the resolution available on reconstructions.
Motivation

Underlying goal: To **improve resolution** in soft tissue medical imaging modalities (e.g. from centimetric to millimetric).

- **Mechanical, optical** and **electrical** properties of tissues display **good contrast** for e.g. tumor detection, lung activity monitoring.

- Their corresponding imaging modalities are very **poorly resolved**.

- Inverse problems: mathematically **severely ill-posed**.

Figure: Conductivity map of human chest

[Kerrouche et al. ’01]
Outline

1 introduction

2 A coupled-physics approach to inverse conductivity

3 Inverse conductivity from power densities - resolution

4 Numerical simulations
The inverse conductivity problem

The model: $X \subset \mathbb{R}^n$ bounded domain.

- **Calderón’s problem:**
 Does Λ_γ determine γ uniquely? stably?

 [Calderón ’80]

- **Power density problem:**
 Does \mathcal{H}_γ determine γ uniquely? stably?

Note: $\int_X \mathcal{H}_\gamma u = \int_{\partial X} g \Lambda_\gamma g$

γ: uniformly elliptic conductivity tensor.
Derivation of power densities - 1/2

By ultrasound modulation

Physical focusing

[Ammann et al. ’08]

Synthetic focusing

[Kuchment-Kunyansky ’10]
[Bal-Bonnetier-M.-Triki ’11]

Small perturbation model:

\[
\frac{(M_\epsilon - M_0)}{\epsilon} \text{ gives an approximation of } \nabla u_0 \cdot \gamma \nabla u_0 \text{ at } x_0.
\]
Derivation of power densities - 2/2

By thermoelastic effects (Impedance-Acoustic CT)

1: voltage is prescribed at ∂X
 \[u|_{\partial X} = g(x) \delta(t) \]

2: currents are generated inside the domain
 \[\nabla \cdot (\gamma \nabla u) = 0 \]

3: the energy absorbed generates elastic waves
 \[\frac{1}{v_s^2} \frac{\partial^2 \rho}{\partial t^2} - \Delta \rho = 0 \]
 \[\rho|_{t=0} = \Gamma \mathcal{H}_\gamma[g] \]
 \[\partial_t \rho|_{t=0} = 0 \]

4: waves are measured at ∂X by ultrasound transducers

One reconstructs $\Gamma \mathcal{H}_\gamma = \Gamma \nabla u \cdot \gamma \nabla u$ over X (Γ: Grüneisen coefficient)

[Gebauer-Scherzer ’09]
Theoretical comparison of inversions

From Dirichlet-to-Neumann map (latest 2D results):

- **uniqueness:** holds for isotropic L^∞ [Astala-Päivärinta ’05]. Anisotropic case: lack of injectivity completely characterized [Astala-Lassas-Päivärinta ’05].

- **stability:** logarithmic, i.e. severely ill-posed. Poor resolution in practice. [Alessandrini ’88], [Santacesaria ’11]

From (”enough”) power density measurements:

Define $|\gamma| := \det \gamma$ and $\tilde{\gamma} := |\gamma|^{-\frac{1}{2}} \gamma$ ($\tilde{\gamma}$ satisfies $\det \tilde{\gamma} = 1$).

- **uniqueness:** both $|\gamma|^\frac{1}{2}$ and $\tilde{\gamma}$ are uniquely reconstructible via explicit, algebraic algorithms

- **stability:** well-posed (Lipschitz) in $W^{1,\infty}$ for $|\gamma|^\frac{1}{2}$, ill-posed of order 1 (Hölder) for $\tilde{\gamma}$.
Power density measurements - References

References on resolution of the power density problem:

- 2D isotropic [Capdeboscq et al. ’09].
- 2D-3D isotropic linearized [Kuchment-Kunyansky ’11].
- 2D-3D isotropic [Bal-Bonnetier-M.-Triki, IPI ’12].
- nD isotropic: [M.-Bal, IPI ’12] [Kocyigit ’12]
- 2D anisotropic: [M.-Bal, IP ’12] (today’s talk)
- nD anisotropic: [M.-Bal, CPDE ’13].

Pseudodifferential analysis on the linearized problem:

- Isotropic case [Kuchment-Steinhauer, ’12].
- nD anisotropic case [Bal-Guo-M., IPI ’13].

Resolution from a single power density - isotropic case:

- Newton-based numerical methods to recover \((u, \gamma)\)
 [Ammari et al. ’08, Gebauer-Scherzer ’09].
- Theoretical work on the Cauchy problem [Bal ’11].
1 introduction

2 A coupled-physics approach to inverse conductivity

3 Inverse conductivity from power densities - resolution

4 Numerical simulations
The problem

Problem: recover $\gamma = (|\gamma|^{\frac{1}{2}}, \tilde{\gamma})$ from the knowledge of
$H_{ij}(x) = \gamma \nabla u_i \cdot \nabla u_j$, where u_i solves

$$\nabla \cdot (\gamma \nabla u_i) = 0, \quad u_i|_{\partial \Omega} = g_i, \quad 1 \leq i \leq 3.$$

"Reparameterize" the problem: Define $A = \gamma^{\frac{1}{2}}$ and $S_i := A \nabla u_i$, all
unknowns. The S_i’s satisfy

$$\nabla \cdot (AS_i) = 0, \quad (J \nabla) \cdot (A^{-1} S_i) = 0, \quad 1 \leq i \leq 3,$$

where $J := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and the data takes the form $H_{ij} = S_i \cdot S_j$
(Grammian matrix).
Intermediate equations of interest

From two solutions \((u_1, u_2)\): write a decomposition of \(S = [S_1\vert S_2] = [A\nabla u_1\vert A\nabla u_2]\) of the form

\[S = Q(\theta)R(H_{11}, H_{12}, H_{22}) \] (e.g. "QR" or \(S = Q(\theta)\left[\begin{array}{cc} H_{11} & H_{12} \\ \text{sym} & H_{22} \end{array} \right]^{\frac{1}{2}}\)),

where \(Q(\theta) = \left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right] \). Using the previous PDE’s, one derives:

\[\nabla \log |\gamma|^{\frac{1}{2}} = N + (\nabla H_{ij} \cdot \hat{A}S_i)\hat{A}^{-1}S_j, \]

\[\hat{A}^2 \nabla \theta + [\hat{A}_2, \hat{A}_1] = \hat{A}^2 V - \frac{1}{2} JN, \quad \hat{A} := \hat{\gamma}^{\frac{1}{2}}, \]

where \(V := \frac{1}{2} H_{11}^{-1} \nabla H_{12} \) and \(N := \nabla \log d\), with \(d := (H_{11}H_{22} - H_{12}^2)^{\frac{1}{2}}\).

Legend: known data, anisotropic structure, unknown.
Reconstruction of $\tilde{\gamma}$

Using the above equation for two systems (u_1, u_2) and (u_1, u_3):

$$\tilde{A}^2 X = J Y, \quad Y := \nabla \frac{\det(\nabla u_1, \nabla u_3)}{\det(\nabla u_1, \nabla u_2)} = \nabla \frac{H_{11} H_{23} - H_{12} H_{13}}{H_{11} H_{22} - H_{12}^2}.$$

X is also known from the data. One deduces

$$\tilde{A}^2 = \tilde{\gamma} = (JX \cdot Y)^{-1} J(XX^T + YY^T) J$$

If one can guarantee that Y never vanishes over some Ω, then $\tilde{\gamma}$ is uniquely reconstructed over Ω with a stability estimate of the form

$$\|\tilde{\gamma} - \tilde{\gamma}'\|_{L^\infty(\Omega)} \leq C \|H - H'\|_{W^{1,\infty}(\Omega)}.$$
Reconstruction of $|\gamma|^{\frac{1}{2}}$

Once \tilde{A} or $\tilde{\gamma}$ is known (or reconstructed), use u_1, u_2 to reconstruct
- the angle function θ via the equation
 \[\nabla \theta = \mathbf{V} - \tilde{A}^{-2} \left(\frac{1}{2} \mathbf{JN} + [\tilde{A}_2, \tilde{A}_1] \right) \]
- the function $|\gamma|^{\frac{1}{2}}$ via its gradient equation.

Stability: using integration along curves and Gronwall’s lemma, one obtains **Lipschitz stability** in $W^{1,\infty}$ for θ and $\log |\gamma|^{\frac{1}{2}}$.

\[\| \log |\gamma|^{\frac{1}{2}} - \log |\gamma'|^{\frac{1}{2}} \|_{W^{1,\infty}(\Omega)} \leq C \| H - H' \|_{W^{1,\infty}(\Omega)}. \]
Requirements for the algorithm

Two crucial assumptions:

- \(\inf_{\Omega} \det(\nabla u_1, \nabla u_2) \geq c_1 > 0. \)
- \(\nabla \left(\frac{\det(\nabla u_1, \nabla u_3)}{\det(\nabla u_1, \nabla u_2)} \right) \neq 0, \quad x \in \Omega. \)

Q: How to control this with the boundary inputs \((g_1, g_2, g_3)\)?
- Do such \((g_1, g_2, g_3)\) exist?
- Do we have an explicit expression?
What boundary conditions work? 1/2

Question 1: how do we find g_1, g_2 such that
\[\inf_X \det(\nabla u_1, \nabla u_2) \geq c_0 > 0 \? \]

- If (g_1, g_2) is a homeomorphism of ∂X onto its image, then the above condition holds [Alessandrini-Nesi, ’01]. Take $(g_1, g_2) = Id_X$!

- Isotropic case: traces of CGO solutions ensure this for $|\rho|$ large enough.

- Anisotropic case: use the isotropic representative, define CGO’s and push-forward.
What boundary conditions work? 2/2

Question 2: how do we find g_1, g_2, g_3 such that Y vanishes as rarely as possible?

- **Isotropic case:** CGO solutions
- **Anisotropic case:** the vector Y transforms nicely with push-forwards so that we can use the CGO construction of the corresponding isotropic metric.
- 3 linearly independent (g_1, g_2, g_3) should suffice to achieve this almost everywhere.
Complex Geometric Optics solutions

For γ isotropic, these are complex-valued solutions of the form
$$u_\rho = \frac{1}{\sqrt{\gamma}} e^{\rho \cdot x} (1 + \phi_\rho),$$
where $\rho \cdot \rho = 0$.

This implies $\rho = r(k + ik_\perp)$ for some $k \in \mathbb{S}^1$ and $k_\perp = Jk$.
Moreover, we have $r\phi_\rho = O(1)$.

Answer to question 1: take $(u_1, u_2) = (\Re(u_{\rho_1}), \Im(u_{\rho_1}))$ for some $\rho_1 = r(k_1 + ik_\perp)$, then we have that
$$\det(\nabla u_1, \nabla u_2) \approx r + O(1).$$

Answer to question 2: take $(u_1, u_2, u_3, u_4) = (\Re(u_{\rho_1}), \Im(u_{\rho_1}), \Re(u_{\rho_2}), \Im(u_{\rho_2}))$ for some $\rho_1 = r(k_1 + ik_\perp)$, $\rho_2 = r(k_2 + ik_\perp)$ with $k_1 \neq k_2$, then we have
$$Y \approx r(k_1 - k_2) + O(1).$$

Requires regularity on γ.
Outline

1. introduction

2. A coupled-physics approach to inverse conductivity

3. Inverse conductivity from power densities - resolution

4. Numerical simulations
Numerics

Coded in **MatLab** on a cartesian, equispaced grid, using second-order centered **finite differences**.

Decompose $\gamma = |\gamma|^{\frac{1}{2}} \tilde{\gamma}$ with
\[
\tilde{\gamma}(\xi,\zeta) = \begin{bmatrix}
\xi & \zeta \\
\zeta & \frac{1+\zeta^2}{\xi}
\end{bmatrix}
\] (det $\tilde{\gamma} = 1$).

Compute:

- **Solutions** (u_1, u_2, u_3) with $(g_1, g_2, g_3)(x, y) = (x + y, y + 0.1y^2, -x + y)$
- **Data** $H_{ij} = \nabla u_i \cdot \gamma \nabla u_j$ with **noise** $H_{noisy} = H \ast (1 + \frac{\alpha}{100} \text{ random})$.
Numerics - Data H_{ij} and reconstruction of $|\gamma|$

Examples of power densities (H_{11} and H_{12})

$\alpha = 0\%$

Reconstruction of $|\gamma|$ (smooth and rough) with known $\tilde{\gamma}$

$\alpha = 30\%$

From noisy data ($\alpha = 30\%$)

true
Numerics - reconstruction of $\tilde{\gamma}(\xi, \zeta)$, then det γ

Anisotropy reconstruction formula:

$$\tilde{\gamma} = (JX \cdot Y)^{-1} J(XX^T + YY^T)J, \quad Y = \nabla \log \frac{H_{11}H_{23} - H_{12}H_{13}}{H_{11}H_{22} - H_{12}^2}.$$

true (ξ, ζ)

with rough $|\gamma|$ and $\alpha = 0\%$

with smooth $|\gamma|$ and $\alpha = 0.1\%$

det γ, true and recons. ($\alpha = 0.1\%$)
Numerics - reconstruction of $\tilde{\gamma}$

Lack of robustness to noise of the vector field $Y = \nabla(d_1/d_2)$. One may tackle this problem by adding measurements and minimizing a least-squares problem for (ξ, ζ).

(e) $d_1/d_2, \alpha = 0\%$ (f) $d_1/d_2, \alpha = 1\%$ (g) ξ at $\{x = 0.5\}$ (h) ζ at $\{x = 0.5\}$

Figure: (e)&(f): influence of the noise on the function d_1/d_2. (g)&(h): cross sections of ξ and ζ using least-square based reconstruction formulas.
Remarks

Power densities provide

- full inversion formulas,
- Lipschitz stability for $|\gamma|^{\frac{1}{2}}$, with great robustness to noise: resolution on $|\gamma|^{\frac{1}{2}}$ is as good as that on the H_{ij}’s.
- Hölder stability for $\tilde{\gamma}$ with much less robustness to noise.
- conditions of validity of these algorithms easy to fulfill.

Generalization to higher dimensions.

- reconstruction of $|\gamma|$ works and is Lipschitz-stable.
- reconstruction formulas for $\tilde{\gamma}$ have been derived with the same type of stability.
- unlike in two dimensions, the conditions of validity of these algorithms might not always be globally fulfilled.

[Bal-Courdurier, ’13]
Thank you!

References available at
http://www.math.washington.edu/~fmonard/research.html