Efficient tensor tomography in fan-beam coordinates

François Monard

Department of Mathematics, University of Michigan

May 25, 2016
M17: Tomographic Inverse Problems and Applications
IPMS Conference
Outline

1 Introduction

2 Equivalence of range characterizations

3 Tensor Tomography
The Radon transform

First considered and inverted by Johann Radon in 1917. \(\Omega \subset \mathbb{R}^2 \) bounded, \(f \) with support in \(\Omega \).

\[
f(x) \underset{R}{\rightarrow} \quad Rf(s, \theta) = \int_{\mathbb{R}} f(s\hat{\theta} + t\hat{\theta}^\perp) \, dt,
\]

\[
\hat{\theta} := \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \quad (s, \theta) \in \mathbb{R} \times S^1.
\]
Efficient tensor tomography in fan-beam coordinates

Introduction

Application to transmission tomography

X-ray Computerized Tomography

Applications: tumor detection, bone damage, . . .

Mathematical model:
Radon transform

⇔
Vector/tensor tomography

F can be a vector field or a symmetric m-tensor

$$\text{IF}(x, v) = \int_0^{\tau(x,v)} F(\gamma_{x,v}(t), \otimes^m \dot{\gamma}_{x,v}(t)) \, dt, \quad (x, v) \in \partial_+ SM$$

Natural kernel (e.g. for $m = 1$): if $F = df$ with $f|_{\partial M} = 0$, then $\text{IF} = 0$. Similar kernels for any $m \geq 1$. [Sharafutdinov ’94]

Connections:

- $m = 1$: Doppler tomography [Anikonov–Romanov ’97] [Holman–Stefanov ’10]
- $m = 0, 2$: linearized boundary rigidity [Sharafutdinov ’07]
- $m = 4$: tomography in slightly anisotropic elastic media. [Sharafutdinov ’94]

Implementations: Schuster, Katsevich, Kazantzev, Bukhgeim, Derevtsov, Svetov, ...
1 Introduction

2 Equivalence of range characterizations

3 Tensor Tomography
Main theoretical difference: PG enjoys the Fourier Slice theorem, which allows for a proper, efficient regularization theory. Regularized inversions are approximate in fan-beam. [Natterer ’01]

Yet,

- working with fan-beam data is of interest (e.g. projection onto range)
- on surfaces without symmetries, parallel geometry does not exist!
Parallel v/s fan-beam geometry

Main theoretical difference: PG enjoys the Fourier Slice theorem, which allows for a proper, efficient regularization theory. Regularized inversions are approximate in fan-beam. [Natterer '01]

Yet,

- working with fan-beam data is of interest (e.g. projection onto range)
- on surfaces without symmetries, parallel geometry does not exist!
The classical moment conditions

Parallel geometry: $\mathcal{R} : \mathcal{S}(\mathbb{R}^2) \to \mathcal{S}(\mathbb{R} \times S^1)$

$$\mathcal{R}f(s, \theta) = \int_{\mathbb{R}} f(-s\hat{\theta}^\perp + t\hat{\theta}) \, dt, \quad (s, \theta) \in \mathbb{R} \times S^1.$$

Moment conditions: Gelfand, Graev, Helgason, Ludwig

(i) $\mathcal{D}(s, \theta) = \mathcal{R}f(s, \theta)$ for some f if

(ii) For $k \geq 0$, $p_k(\theta) := \int_{\mathbb{R}} s^k \mathcal{D}(s, \theta) \, ds = \sum_{k=-k}^{k} a_{k,k} e^{ik\theta}$.

(\text{ii}) $\int_{\mathbb{R}} \int_{S^1} \mathcal{D}(s, \theta)s^k e^{ik\theta} \, ds \, d\theta = 0$, $|p| > k$, $p - k$ even.
The classical moment conditions

Parallel geometry: $\mathcal{R} : \mathcal{S}(\mathbb{R}^2) \to \mathcal{S}(\mathbb{R} \times S^1)$

$$\mathcal{R}f(s, \theta) = \int_{\mathbb{R}} f(-s\hat{\theta} + t\hat{\theta}) \, dt, \quad (s, \theta) \in \mathbb{R} \times S^1.$$

Moment conditions: Gelfand, Graev, Helgason, Ludwig

(i) $\mathcal{D}(s, \theta) = \mathcal{R}f(s, \theta)$ for some f if

(ii) For $k \geq 0$, $p_k(\theta) := \int_{\mathbb{R}} s^k \mathcal{D}(s, \theta) \, ds = \sum_{\ell=-k}^{k} a_{\ell,k} e^{i\ell \theta}$.

(ii') $\int_{S^1} \int_{\mathbb{R}} \mathcal{D}(s, \theta) s^k e^{ip\theta} \, ds \, d\theta = 0$, $|p| > k$, $p - k$ even.
The classical moment conditions

Parallel geometry: \(\mathcal{R} : \mathcal{S}(\mathbb{R}^2) \to \mathcal{S}(\mathbb{R} \times \mathbb{S}^1) \)

\[
\mathcal{R}f(s, \theta) = \int_{\mathbb{R}} f(-s\hat{\theta}^\perp + t\hat{\theta}) \, dt, \quad (s, \theta) \in \mathbb{R} \times \mathbb{S}^1.
\]

Moment conditions: Gelfand, Graev, Helgason, Ludwig

\(D(s, \theta) = \mathcal{R}f(s, \theta) \) for some \(f \) if

(i) \(D(s, \theta) = D(-s, \theta + \pi) \) for all \((s, \theta) \in \mathbb{R} \times \mathbb{S}^1 \).

(ii) For \(k \geq 0 \),

\[
p_k(\theta) := \int_{\mathbb{R}} s^k D(s, \theta) \, ds = \sum_{\ell=-k}^{k} a_{\ell,k} e^{i\ell\theta}.
\]

(ii') \(\int_{\mathbb{S}^1} \int_{\mathbb{R}} D(s, \theta) s^k e^{ip\theta} \, ds \, d\theta = 0, \ |p| > k, \ p - k \) even.
The classical moment conditions

Parallel geometry: $\mathcal{R} : S(\mathbb{R}^2) \rightarrow S(\mathbb{R} \times S^1)$

$$\mathcal{R}f(s, \theta) = \int_{\mathbb{R}} f(-s\hat{\theta}^\perp + t\hat{\theta}) \, dt, \quad (s, \theta) \in \mathbb{R} \times S^1.$$
The Pestov-Uhlmann range characterization

\((M, g)\) simple surface, inward boundary \(\partial_+ SM\). Define \(l_0 : C^\infty(M) \rightarrow C^\infty(\partial_+ SM)\) as

\[
l_0 f(x, v) = \int_0^{\tau(x, v)} f(\gamma_{x,v}(t)) \, dt,
\]

\((x, v) \in \partial_+ SM\).

Scattering relation \(s\). Define \(P := A_- H_- A_+\), where

- \(A_+ : C^\infty(\partial_+ SM) \rightarrow C^\infty(\partial SM)\) symmetrization w.r.t. \(s\).
- \(H_-\): odd Hilbert transform on the fibers of \(\partial SM\).
- \(A_-^* : C^\infty(\partial SM) \rightarrow C^\infty(\partial SM)\): \(A_-^* f(x, v) = f(x, v) - f(s(x, v))\).

Range characterization of \(l_0\):

\[
l_0(C^\infty(M)) = P_-(C_s^\infty(\partial_+ SM)).
\]

[Pestov-Uhlmann ’05]
The Pestov-Uhlmann range characterization

\((M, g)\) simple surface, inward boundary \(\partial_{+} SM\). Define \(l_0 : C^\infty(M) \rightarrow C^\infty(\partial_{+} SM)\) as

\[
l_0 f(x, v) = \int_0^{\tau(x,v)} f(\gamma_{x,v}(t)) \, dt, \quad (x, v) \in \partial_{+} SM.
\]

Scattering relation \(s\). Define \(P := A_+^* H_- A_+\), where

- \(A_+ : C^\infty(\partial_{+} SM) \rightarrow C^\infty(\partial SM)\) symmetrization w.r.t. \(s\).
- \(H_- : \) odd Hilbert transform on the fibers of \(\partial SM\).
- \(A_+^* : C^\infty(\partial SM) \rightarrow C^\infty(\partial SM)\): \(A_+^* f(x, v) = f(x, v) - f(s(x, v))\).

Range characterization of \(l_0\):

\[
l_0(C^\infty(M)) = P_-(C_{s}^\infty(\partial_{+} SM)).
\]

[Pestov-Uhlmann '05]
The Pestov-Uhlmann range characterization

\((M, g)\) simple surface, inward boundary \(\partial_+SM\). Define \(l_0 : C^\infty(M) \to C^\infty(\partial_+SM)\) as

\[
l_0 f(x, v) = \int_0^{\tau(x, v)} f(\gamma_{x,v}(t)) \, dt, \quad (x, v) \in \partial_+SM.
\]

Scattering relation \(s\). Define \(P := A^*_\underbar{-}H\underbar{-}A_+\), where

- \(A_+ : C^\infty(\partial_+SM) \to C^\infty(\partial SM)\) symmetrization w.r.t. \(s\).
- \(H_\cdot\): odd Hilbert transform on the fibers of \(\partial SM\).
- \(A^*_\cdot : C^\infty(\partial SM) \to C^\infty(\partial SM)\): \(A^*_f(x, v) = f(x, v) - f(s(x, v))\).

Range characterization of \(l_0\):

\[
l_0(C^\infty(M)) = P_-(C_s^\infty(\partial_+SM)). \quad \text{[Pestov-Uhlmann '05]}
\]
Efficient tensor tomography in fan-beam coordinates

Equivalence of range characterizations

Theorem (M., ’15)

The Pestov-Uhlmann range characterization is equivalent to the classical moment conditions in the Euclidean setting.

Sketch of proof: Fan-beam coordinates: $(\beta, \alpha) \in S^1 \times (-\frac{\pi}{2}, \frac{\pi}{2})$.

- Explicit scattering relation:

 $s(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha)$.

- Explicit construction of the SVD of $P_- : L^2_+ \rightarrow L^2_-$ via an ad hoc basis of symmetrized complex exponentials.

- Reparameterized moment conditions is equivalent to saying “$D \setminus Range \ P_-$”.
Efficient tensor tomography in fan-beam coordinates

Equivalence of range characterizations

Theorem (M., ’15)

The Pestov-Uhlmann range characterization is equivalent to the classical moment conditions in the Euclidean setting.

Sketch of proof: Fan-beam coordinates: \((\beta, \alpha) \in \mathbb{S}^1 \times (-\pi/2, \pi/2)\).

- Explicit scattering relation:
 \(s(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha)\).

- Explicit construction of the SVD of \(P_- : L^2_- \rightarrow L^2_+\) via an ad hoc basis of symmetrized complex exponentials.

- Reparameterized moment conditions is equivalent to saying “\(\mathcal{D} \perp \text{Range } P_-\)”.
The Pestov-Uhlmann range characterization is equivalent to the classical moment conditions in the Euclidean setting.

Sketch of proof: Fan-beam coordinates: \((\beta, \alpha) \in S^1 \times \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\).

- Explicit scattering relation:
 \(s(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha)\).

- Explicit construction of the SVD of \(P_- : L^2_- \rightarrow L^2_+\) via an ad hoc basis of symmetrized complex exponentials.

- Reparameterized moment conditions is equivalent to saying "\(\mathcal{D} \perp \text{Range } P_-\)."

\[u'_{p,q} = e^{ip\beta}(e^{i(2q+1)\alpha} + (-1)^p e^{i(2(p-q)-1)\alpha}) \]
The Pestov-Uhlmann range characterization is equivalent to the classical moment conditions in the Euclidean setting.

Sketch of proof: Fan-beam coordinates: \((\beta, \alpha) \in \mathbb{S}^1 \times (\frac{-\pi}{2}, \frac{\pi}{2})\).

- Explicit scattering relation:
 \[s(\beta, \alpha) = (\beta + \pi + 2\alpha, \pi - \alpha). \]

- Explicit construction of the SVD of \(P_- : L^2_- \rightarrow L^2_+\) via an ad hoc basis of symmetrized complex exponentials.

- Reparameterized moment conditions is equivalent to saying "\(D \perp \text{Range } P_-\)."
Projecting noisy data onto range I_0 in fan-beam coordinates

Despite characterizing Range I_0, P_- cannot be used to project noisy data onto the range of I_0. Define, instead, $C_- := \frac{1}{2}A^*H_-A_-$. The operator $Id + C_-^2$ is the L^2-orthogonal projection onto Range P_- ($= \text{Range } I_0$).
Projecting noisy data onto range I_0 in fan-beam coordinates

Despite characterizing Range I_0, P_- cannot be used to project noisy data onto the range of I_0. Define, instead, $C_- := \frac{1}{2} A^* H A_-$. The operator $Id + C_2$ is the L^2-orthogonal projection onto Range $P_- (= \text{Range } I_0)$.
Outline

1. Introduction
2. Equivalence of range characterizations
3. Tensor Tomography
The tensor tomography problem

For $f(x, \theta) \in C^\infty(M \times S^1)$, define

$$I_f(\beta, \alpha) = \int_0^{2 \cos \alpha} f(e^{i\beta}(1-te^{i\alpha}), \beta+\pi+\alpha) \, dt, \quad (\beta, \alpha) \in S^1 \times (-\pi/2, \pi/2).$$

Contains:

- $I_f = I_0 f$ whenever $f(x, \theta) = f(x)$.
- Tensor tomography over m-tensors:
 $$f(x, \theta) = \sum_{\ell=-m:2:m} f_\ell(x) e^{im\theta}.$$
The tensor tomography problem

For \(f(x, \theta) \in C^\infty(M \times S^1) \), define

\[
I f(\beta, \alpha) = \int_0^{2\cos \alpha} f(e^{i\beta(1-te^{i\alpha})}, \beta+\pi+\alpha) \, dt, \quad (\beta, \alpha) \in S^1 \times (\frac{-\pi}{2}, \frac{\pi}{2}).
\]

Contains:

- \(I f = I_0 f \) whenever \(f(x, \theta) = f(x) \).
- Tensor tomography over \(m \)-tensors:
 \[
 f(x, \theta) = \sum_{\ell=-m:2:m} f_\ell(x) e^{im\theta}.
 \]

\(I : L^2(M \times S^1) \rightarrow L^2(\partial^+ SM) \) is continuous and **surjective**.
The tensor tomography problem

For \(f(x, \theta) \in C^\infty(M \times S^1) \), define

\[
I f(\beta, \alpha) = \int_0^2 \cos \alpha f(e^{i\beta}(1-te^{i\alpha}), \beta+\pi+\alpha) \, dt, \quad (\beta, \alpha) \in S^1 \times \left(\frac{-\pi}{2}, \frac{\pi}{2} \right).
\]

Contains:

- \(If = I_0 f \) whenever \(f(x, \theta) = f(x) \).
- Tensor tomography over \(m \)-tensors:
 \[
 f(x, \theta) = \sum_{\ell=-m:2:m} f_\ell(x) e^{im\theta}.
 \]

\(I : L^2(M \times S^1) \to L^2(\partial^+ SM) \) is continuous and surjective.
Litterature

Euclidean
- Reconstruction of the solenoidal part in any dimension and tensor order [Sharafudtinov ’94]
- Characterization of solenoidal tensors, reconstruction methods: [Kazantzev-Bukhgeim ’06], [Derevtsov-Svetov ’15]
- A-analytic theory, general convex domains: [Sadiq-Sherzer-Tamasan ’14]

Riemannian
- TTP on simple surfaces: [Paternain-Salo-Uhlmann ’12]
- Range characterization: [Paternain-Salo-Uhlmann ’12]
- Non-trapping surfaces of revolution: [Sharafudtinov ’97]
- Higher dimensions, assuming a foliation condition [Stefanov-Uhlmann-Vasy ’14]
Litterature

Euclidean
- Reconstruction of the solenoidal part in any dimension and tensor order [Sharafudtinov ’94]
- Characterization of solenoidal tensors, reconstruction methods: [Kazantzev-Bukhgeim ’06], [Derevtsov-Svetov ’15]
- A-analytic theory, general convex domains: [Sadiq-Sherzer-Tamasan ’14]

Riemannian
- TTP on simple surfaces: [Paternain-Salo-Uhlmann ’12]
- Range characterization: [Paternain-Salo-Uhlmann ’12]
- Non-trapping surfaces of revolution: [Sharafutdinov ’97]
- Higher dimensions, assuming a foliation condition [Stefanov-Uhlmann-Vasy ’14]
The potential-solenoidal decomposition

\[\mathbf{d} := \sigma \nabla \text{ “inner derivative”}. \] Any \(m + 1 \)-tensor decomposes uniquely into \(f = \mathbf{d}h + f^s \) with \(h|_{\partial M} = 0 \) and \(\delta f^s = 0 \).

[Sharafutdinov ’94] Since \(I(\mathbf{d}h) = 0 \), we have \(If = If^s \).

Natural question: how to reconstruct of \(f^s \) from \(If \)?

Past work:

- [Sharafutdinov ’94]: inversion formulas for \(f^s \), any order, any dimension, in Euclidean free space. Based on inverting \(\delta \mathbf{d} \), an operator whose expression depends on the tensor order.

- [Kazantzev-Bukhgeim ’04]: Full SVD description of \(I_m : L^2(S^m_{sol}) \rightarrow L^2(\partial_+ SM) \). \(m \)-dependent.

- [Derevtsov-Svetov ’15]: express \(f^s \) in terms of a solenoidal potential \(h \), reconstruct \(h \) then \(f^s \). Too many differentiations and integrations.
Observations

\[L^2(M \times S^1) = \bigoplus_{k \in \mathbb{Z}} \Omega_k, \quad \Omega_k := \{ f(x)e^{ik\theta}, \ f \in L^2(M) \}. \]
Observations

$L^2(M \times S^1) = \bigoplus_{k \in \mathbb{Z}} \Omega_k,$ \quad \Omega_k := \{ f(x)e^{i k \theta} , \quad f \in L^2(M) \}.$
Efficient tensor tomography in fan-beam coordinates

Tensor Tomography

Observations

\[L^2(M \times S^1) = \bigoplus_{k \in \mathbb{Z}} \Omega_k, \quad \Omega_k := \{ f(x)e^{ik\theta}, \quad f \in L^2(M) \}. \]
Observations

\[L^2(M \times \mathbb{S}^1) = \bigoplus_{k \in \mathbb{Z}} \Omega_k, \quad \Omega_k := \{ f(x)e^{ik\theta}, \quad f \in L^2(M) \}. \]

\[I(f_{-2}(x)e^{-2i\theta} + f_0(x) + f_2(x)e^{2i\theta}) = I(2\text{-tensors}) \]
Observations

\[L^2(M \times S^1) = \bigoplus_{k \in \mathbb{Z}} \Omega_k, \quad \Omega_k := \{ f(x)e^{ik\theta}, \quad f \in L^2(M) \}. \]

\[I(f_{-2}(x)e^{-2i\theta} + f_0(x) + f_2(x)e^{2i\theta}), \quad \overline{\partial}_zf_2 = \partial_zf_{-2} = 0 \]
A different decomposition: example on two-tensors

Example for m even (similar result for m odd).

Theorem (M., ’15)

Let $m = 2p$. For any $f \in L^2(M \times S^1) \cap S^m$, there exists a unique $g \in L^2(M \times S^1) \cap S^m$ such that

1. $If = Ig$,
2. $g = \sum_{k=-m:2:m} g_k(x) e^{ik\theta}$, $\overline{\partial_z g_{2k}} = \partial_z g_{-2k} = 0$, $1 \leq k \leq p$.
3. $\|g\|_{L^2(SM)} \leq C_m \|f\|_{L^2(SM)}$ for some constant C_m indep. of f, g.

Analogue exists on simple surfaces.

Theorem (M., ’15)

The ray transforms of the components of g live on orthogonal subspaces of $L^2(\partial_{+} SM)$.

\text{Efficient tensor tomography in fan-beam coordinates}
A different decomposition: example on two-tensors

Example for m even (similar result for m odd).

Theorem (M., '15)

Let $m = 2p$. For any $f \in L^2(M \times S^1) \cap S^m$, there exists a unique $g \in L^2(M \times S^1) \cap S^m$ such that

1. $If = Ig,$
2. $g = \sum_{k=-m:2:m} g_k(x) e^{ik\theta}$, $\overline{\partial}_z g_{2k} = \partial_z g_{-2k} = 0$, $1 \leq k \leq p$.
3. $\|g\|_{L^2(S^M)} \leq C_m \|f\|_{L^2(S^M)}$ for some constant C_m indep. of f, g.

Analogue exists on simple surfaces.

Theorem (M., '15)

The ray transforms of the components of g live on orthogonal subspaces of $L^2(\partial^+ S^M)$.

Efficient tensor tomography in fan-beam coordinates

Tensor Tomography
Efficient tensor tomography in fan-beam coordinates

Tensor Tomography

Decomposition in data space

Even tensors

\[l_0 f = lf \]

Odd tensors

\[l_\perp h = l(*dh) \]
Reconstructions

Case of even tensors. The odd case is similar.

Theorem (M., ’15)

Let $m = 2p$. Denote $\mathcal{D} = I f = I g$ with f, g as above. The functions g_{2k} can be reconstructed as follows:

$$
g_0 = \frac{1}{8\pi} I_{\|}^\# A^* \mathcal{H} A_- \mathcal{D}, \quad \text{and for} \quad 1 \leq k \leq n,$$

$$
g_{2k}(z) = \frac{1}{2\pi^2} \int_{S^1} \frac{e^{-i2k\beta}}{(1 - ze^{-i\beta})^2} \int_{-\pi/2}^{\pi/2} \mathcal{D}(\beta, \alpha) e^{i(1-2k)\alpha} \ d\alpha \ d\beta,$$

$$
g_{-2k}(z) = \frac{1}{2\pi^2} \int_{S^1} \frac{e^{i2k\beta}}{(1 - \bar{z} e^{i\beta})^2} \int_{-\pi/2}^{\pi/2} \mathcal{D}(\beta, \alpha) e^{i(-1+2k)\alpha} \ d\alpha \ d\beta.$$

Very efficient to compute. Does not differentiate. **Order-blind**
Example of a 2-tensor $f = f_0 + 2f^r_2 \cos(2\theta) - 2f^i_2 \sin(2\theta)$
Numerical examples

Reconstructed equivalent:

\[|lf - lg| \]
Numerical examples

vector field: $f = f_1^r \cos(\theta) - f_1^i \sin(\theta) + f_3^r \cos(3\theta) - f_3^i \sin(3\theta)$
3-tensor: $g = \star dg_0 + g^r_3 \cos(3\theta) - g^i_3 \sin(3\theta)$

g_0 is one degree smoother than f.
Summary:

- equivalence of range characterizations,
- fast projection onto the range of l_0 in fan-beam coordinates.
- an *ad hoc* decomposition for tensor tomography reconstruction.
- a toy model toward understanding fan-beam coordinates and tensor tomography on surfaces.

Thank you

Reference: (available at http://www-personal.umich.edu/~monard)

Summary:

- equivalence of range characterizations,
- fast projection onto the range of l_0 in fan-beam coordinates.
- an *ad hoc* decomposition for tensor tomography reconstruction.
- a toy model toward understanding fan-beam coordinates and tensor tomography on surfaces.

Thank you

Reference: (available at http://www-personal.umich.edu/~monard)