Lecture 8 - The extended complex plane \(\hat{\mathbb{C}} \), rational functions, Möbius transformations

Material: [G]. [SS, Ch.3 Sec. 3]

The purpose of this lecture is to “compactify” \(\mathbb{C} \) by adjoining to it a point at infinity\(^1 \), and to extend to concept of analyticity there.

Let us first define: a **neighborhood of infinity** \(U \) is the complement of a closed, bounded set. A “basis of neighborhoods” is given by complements of closed disks of the form

\[
U_{z_0, \rho} = \mathbb{C} - \overline{D_\rho(z_0)} = \{ |z - z_0| > \rho \}, \quad z_0 \in \mathbb{C}, \quad \rho > 0.
\]

Definition 1. For \(U \) a nbhd of \(\infty \), the function \(f : U \to \mathbb{C} \) has a **limit at infinity** iff there exists \(L \in \mathbb{C} \) such that for every \(\varepsilon > 0 \), there exists \(R > 0 \) such that for any \(|z| > R \), we have \(|f(z) - L| < \varepsilon \).

We write \(\lim_{z \to \infty} f(z) = L \). Equivalently, \(\lim_{z \to \infty} f(z) = L \) if and only if \(\lim_{z \to 0} f \left(\frac{1}{z} \right) = L \).

With this concept, the algebraic limit rules hold in the same way that they hold at finite points when limits are finite.

Example 1.
- \(\lim_{z \to \infty} \frac{1}{z} = 0 \).
- \(\lim_{z \to \infty} \frac{z^2 + 1}{(z-1)(3z+7)} = \frac{1}{3} \).
- \(\lim_{z \to \infty} e^z \) does not exist (this is because \(e^z \) has an essential singularity at \(z = 0 \)). A way to prove this is that both sequences \(z_n = \frac{1}{2n\pi i} \) and \(z'_n = \frac{1}{2\pi i(n+1/2)} \) converge to zero, while the sequences \(e^{\frac{1}{zn}} \) and \(e^{\frac{1}{zn}} \) converge to different limits, 1 and 0 respectively.

Definition 2. \(\lim_{z \to z_0} f(z) = \infty \) if for every \(M > 0 \), there exists \(\rho > 0 \) such that \(|z - z_0| < \rho \) implies \(|f(z)| > M \). Equivalently, \(\lim_{z \to z_0} f(z) = \infty \) if and only if \(\lim_{z \to z_0} \frac{1}{f(z)} = 0 \).

Combining both definition above, we can say that \(\lim_{z \to \infty} f(z) = \infty \) iff for every \(M > 0 \), there exists \(R > 0 \) such that \(|z| > R \) implies \(|f(z)| > M \).

Example 2.
- If \(f \) has a pole of order \(k > 0 \) at \(z_0 \), \(f \) may be written as \(f(z) = \frac{g(z)}{(z-z_0)^k} \) with \(g(z_0) \neq 0 \) and \(g \) analytic near \(z_0 \). Then \(\frac{1}{f(z)} = \frac{(z-z_0)^k}{g(z)} \) so \(\lim_{z \to z_0} \frac{1}{f(z)} = 0 \), i.e., \(\lim_{z \to z_0} f(z) = \infty \).
- For \(f \) any nonconstant polynomial, \(\lim_{z \to \infty} f(z) = \infty \).

Definition 3. The extended complex plane (a.k.a. Riemann sphere) is the topological space \(\hat{\mathbb{C}} = \mathbb{C} \cup \{ \infty \} \), where open sets are generated either by open disks \(D_\rho(z_0) \) or neighborhoods of infinity.

\(\infty \) is now an abstract point which is no different than the other ones. We may study the behavior of a function \(f : \mathbb{C} \to \mathbb{C} \) at \(\infty \) by studying the function \(f(\frac{1}{z}) \) near \(z = 0 \). The question now is: when can such a function be extended as an analytic function \(\hat{f} : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \)?

\(^1\) Adjoining one point to \(\mathbb{C} \) is not the only way to compactify it, this is why this process is called one-point compactification.
Definition 4. \(f : \mathbb{C} \to \mathbb{C} \) is analytic at \(\infty \) iff the function \(w \mapsto f(\frac{1}{w}) \) has a limit in \(\hat{\mathbb{C}} \) at \(w = 0 \) and

(i) if this limit is finite, \(f(\frac{1}{w}) \) is analytic at \(w = 0 \),

(ii) if this limit is \(\infty \), \(\frac{1}{f(\frac{1}{w})} \) is analytic at \(w = 0 \).

Example 3. Show that \(f(z) = \frac{1}{z + 1} \) is analytic at \(\infty \) upon extending it with the value \(-1 \) there.

Definition 5. \(f : \mathbb{C} \to \mathbb{C} \) has a pole of order \(n \) at \(\infty \) if \(f(\frac{1}{w}) \) has a pole of order \(n \) at \(w = 0 \) (we allow \(n = 0 \), which covers the case of a finite limit).

Another way of saying that \(f \) has a pole at \(\infty \) is to say that \(\lim_{z \to \infty} f(z) \) exists in \(\hat{\mathbb{C}} \) (i.e. either as a finite number, or as \(\infty \)).

Theorem 1. \(f \) can be extended into an analytic function \(\tilde{f} : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) if and only if \(f \) is meromorphic on \(\mathbb{C} \) and \(\lim_{z \to \infty} f(z) \) exists, either as a complex number or \(\infty \).

This extension is done as follows: when \(f \) is a meromorphic function on \(\mathbb{C} \) such that \(\lim_{z \to \infty} f(z) \) exists in \(\hat{\mathbb{C}} \), we define \(\tilde{f} : \mathbb{C} \to \hat{\mathbb{C}} \):

- At \(z \in \mathbb{C} \) where \(f \) is analytic, define \(\tilde{f}(z) = f(z) \).
- At \(z \in \mathbb{C} \) where \(f \) has a pole, define \(\tilde{f}(z) = \infty \).
- At \(\infty \), set \(\tilde{f}(\infty) = \lim_{z \to \infty} f(z) \).

Analytic functions on \(\hat{\mathbb{C}} \) define conformal maps near every point where \(f' \neq 0 \).

Theorem 2. The map \(s : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) defined by \(s(z) = \frac{1}{z} \) with \(s(0) = \infty \) and \(s(\infty) = 0 \) is a conformal equivalence of \(\hat{\mathbb{C}} \) onto itself.

Proof. Check that \(s \) is one to one and onto: this is because \(s \circ s = \text{Id} \). \(s \) is analytic at every \(z \neq 0, \infty \). At \(z = \infty \), \(s(\frac{1}{w}) = w \) is analytic at \(w = 0 \) so \(s \) is analytic at \(z = \infty \). At \(z = 0 \), \(\frac{1}{s(z)} = z \) is analytic at \(z = 0 \) so \(s \) is analytic at \(z = 0 \).

Theorem 3. \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) is analytic (or meromorphic) if and only if \(f \) is a rational function.

Proof. We only prove \((\implies) \), the converse is left to the reader. The first claim is that \(f \) has finitely many poles \(z_1, \ldots, z_n \) on \(\mathbb{C} \) (denote \((d_1, \ldots, d_n) \) their multiplicities). Indeed, since \(f \) has a limit in \(\hat{\mathbb{C}} \) as \(z \to \infty \), then there exists \(r > 0 \) such that \(w \mapsto f(\frac{1}{w}) \) has no poles on \(D_r(0) \) (you may split cases according to whether \(\infty \) is a pole of \(f \) or not). In particular, \(f \) has no poles on \(\{|z| > \frac{1}{r}, z \in \mathbb{C} \} \).

Then since \(\hat{D}_{\frac{1}{r}}(0) \) is compact, \(f \) has finitely many poles there, so the first claim is proved. We then define \(g(z) := (z - z_1)^{d_1} \cdots (z - z_n)^{d_n} f(z) \), and we now claim that \(g \) is a polynomial. \(g \) has removable singularities at \(z_1, \ldots, z_n \) and is analytic elsewhere, so it’s an entire function. Moreover since \(f \) has a pole at \(\infty \) (of possible order 0), there exists \(d \geq 0 \) such that \(f(\frac{1}{w})w^d \) is bounded near zero, or equivalently, \(f(z)z^{-d} \) is bounded near \(\infty \). This implies that \(g(z)z^{-(d+d_1+\cdots+d_n)} \) is bounded near \(\infty \) and from a previous exercise, since \(g \) is entire, this implies that \(g \) is a polynomial of degree at most \(d + d_1 + \cdots + d_n \). As a conclusion, \(f(z) = \frac{g(z)}{\prod_{j=1}^{n}(z-z_j)^{d_j}} \) is a rational function.
The Riemann sphere Consider the sphere in $S = \{x_1^2 + x_2^2 + (x_3 - 1/2)^2 = 1/4\} \subset \mathbb{R}^3$ centered at $(0,0,1/2)$, with North Pole $N = (0,0,1)$.

S is sitting on the plane $\{x_3 = 0\} \equiv \mathbb{C}$, and we can define the stereographic projection map, for $M \in S - \{N\}$ to be the unique intersection point between the line NM and the plane $\{x_3 = 0\}$. This map is a homeomorphism: it is bijective, continuous with continuous inverse ρ^{-1}. As the neighborhoods of ∞ we defined earlier are mapped via ρ^{-1} to neighborhoods of the North Pole N, we may extend $\rho : S - \{N\} \to \mathbb{C}$ into a homeomorphism $\tilde{\rho} : S \to \hat{\mathbb{C}}$ by declaring $\tilde{\rho}(N) = \infty$ and $\tilde{\rho}(M) = \rho(M)$ for any $M \in S - \{N\}$.

![Figure 1: Stereographic projection](image)

In that sense, we can assimilate $\hat{\mathbb{C}}$ as a two-dimensional sphere. We will get other (visual) opportunities to see why in the future.

An important property of $\hat{\mathbb{C}}$ is that it is now a compact topological space, unlike \mathbb{C}. In particular, every sequence in $\hat{\mathbb{C}}$ has at least one accumulation point. This will imply that discrete subsets of $\hat{\mathbb{C}}$ can only be finite, with consequences on analytic functions $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$ (e.g. the “identity” theorem), namely:

Theorem 4 (Identity theorem on $\hat{\mathbb{C}}$). If $f, g : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ are analytic and agree on an infinite set, then they are identically equal.

This implies in particular that such non-trivial functions can only have finitely many zeros and poles.

Linear Fractional (a.k.a. Möbius) transformations

Definition 6. A Linear Fractional Transformation is a transformation of the form $h(z) = \frac{az + b}{cz + d}$, with $a, b, c, d \in \mathbb{C}$ such that $ad - bc \neq 0$.

Each non-singular 2×2 complex matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ determines a linear fractional transformation $\phi_A(z) = \frac{az + b}{cz + d}$. A straightforward calculation shows that $\phi_A \circ \phi_B = \phi_{AB}$ and that $\phi_A^{-1} = \phi_{A^{-1}}$, where AB is matrix multiplication and $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. In other words, the mapping $A \mapsto \phi_A$ is a “group homomorphism”. Most importantly, this property makes it easier to compute the composition of two LFT’s on the fly, by computing the product of the corresponding matrices.
Example 4.
- Affine transformations \(L(z) = az + b \ (c = 0, \ d = 1) \) requires \(a \neq 0 \).
- \(s(z) = \frac{1}{z} \), i.e. \((a, b, c, d) = (0, 1, 1, 0)\).

Note that for every \(\lambda \neq 0 \), the transformations \(h_{a,b,c,d} \) and \(h_{\lambda a, \lambda b, \lambda c, \lambda d} \) define the same transformation. One could add the normalizing condition \(ad - bc = 1 \), though it is sometimes more readable to not normalize.

Let us first notice that every LFT can be written as either (i) \(h = L_1 \) for \(L_1 \) some affine transformation, or (ii) as \(h = L_1 \circ s \circ L_2 \) for \(L_1, L_2 \) two affine transformations. Indeed, if \(c = 0 \), then (i) is satisfied, and if \(c \neq 0 \), we write

\[
h(z) = \frac{az + b}{cz + d} = \frac{cz + d}{cz + d} \cdot \frac{az + b}{cz + d} = \frac{a}{c} + \frac{b - ad}{c} \cdot \frac{1}{cz + d},
\]

so that, upon defining \(L_1(z) = \frac{bc - ad}{c}z + \frac{a}{c} \) and \(L_2(z) = cz + d \), then \(h = L_1 \circ s \circ L_2 \).

Definition 7. For \(U \subset \hat{\mathbb{C}} \) an open set, \(h \) is a conformal automorphism of \(U \) (i.e. \(h \in \operatorname{Aut}(U) \)) iff \(h : U \to U \) is conformal and bijective.

Proposition 5. For \(U \subset \hat{\mathbb{C}} \) an open set, \(\operatorname{Aut}(U) \) is a group under composition.

Proof. The composition of conformal, bijective maps is clearly conformal and bijective. Composition is always associative \(((f \circ g) \circ h = f \circ (g \circ h))\), the identity element is \(Id : U \to U \) and if \(f \in \operatorname{Aut}(U) \), then so it \(f^{-1} \).

Theorem 6 (Characterization of \(\operatorname{Aut}(\hat{\mathbb{C}}) \)). \(h \in \operatorname{Aut}(\hat{\mathbb{C}}) \) if and only if \(h \) is a linear fractional transformation.

Proof. (\(\iff \)) Suppose \(h \) is an LFT. \(h \) is bijective: indeed, if \(h \) is an affine map \(L(z) = az + b \), then it is bijective with inverse \(L^{-1}(w) = \frac{1}{a}(w - b) \); if \(h \) is of the form \(L_1 \circ s \circ L_2 \), i.e. a compound of three invertible transformations, then \(h \) is bijective with inverse \(h^{-1} = L_2^{-1} \circ s \circ L_1^{-1} \). Moreover, \(h \) is conformal: if \(h(z) = L(z) = az + b \), then \(h'(z) = a \neq 0 \) for every \(z \in \mathbb{C} \) so \(h \) is conformal; if \(h = L_2 \circ s \circ L_1, \) \(h \) is conformal as a composition of conformal functions.

(\(\implies \)) Suppose \(f \in \operatorname{Aut}(\hat{\mathbb{C}}) \) (so \(f \) is one to one, onto and conformal).

First case: if \(f(\infty) = \infty \), then \(q(z) = s \circ f \circ s \in \operatorname{Aut}(\hat{\mathbb{C}}) \) is such that \(q(0) = 0 \). But \(q'(0) \neq 0 \) since \(q \) is conformal, so \(f \) has a pole of order 1 at \(\infty \). Since \(f \) is one to one on \(\hat{\mathbb{C}} \), \(\infty \) has no other preimage by \(f \), so \(f \) has no pole on \(\mathbb{C} \), i.e. the function \(z^{-1}(f(z) - f(0)) \) is analytic and finite everywhere on \(\hat{\mathbb{C}} \); by Liouville’s theorem, it is constant on \(\mathbb{C} \), then there exists \(c \in \mathbb{C} \) such that \(z^{-1}(f(z) - f(0)) = c \), i.e. \(f(z) = cz + f(0) \).

Second case: If \(f(\infty) = k \neq \infty \). Let \(p(z) = \frac{1}{z - k} \) an LFT so \(p \in \operatorname{Aut}(\hat{\mathbb{C}}) \). By the group property, \(p \circ f \in \operatorname{Aut}(\hat{\mathbb{C}}) \) and \(p \circ f(z) = \frac{1}{f(z) - k} \) is such that \(p \circ f(\infty) = \infty \). By the first case, there exists \(a, b \) such that \(az + b = p \circ f(z) = \frac{1}{f(z) - k} \) so that \(f(z) = \frac{1}{az + b} + k \) is an LFT.

As \(\operatorname{Aut}(\hat{\mathbb{C}}) \) can be viewed as the “conformal motions” on the sphere, one may view the action of an LFT on the Riemann sphere dynamically via stereographic projection. See [AR] for a visual example of this.
References

[AR] Möbius transformations revealed, by D. Arnold and J. Rogness, Youtube video

[SS] Complex Analysis, Elias M. Stein and Rami Shakarchi, Princeton Lectures in Analysis II. 1