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Lecture 20 - Introduction to complex dynamics - 3/3: Mandelbrot and friends

Outline:

• Recall critical points and behavior of functions nearby.

• Motivate the proof on connectedness of polynomials for Julia sets.

• Mandelbrot set.

• The cubic family.

Zoology of Fatou sets

Here, we will merely state facts about the types of behavior one can expect on the Fatou set. We
have seen an example before, which was the basin of attraction of a fixed points.

Let Ω a connected component of the Fatou set. Since the family {Fn} has normally convergent
subsequences there (call accumulation function its limit), one may ask the question: how many
accumulation functions does the sequence {Fn}n have ? If it is a finite number, we may expect to
be in the basin of attraction of an attracting/superattracting or neutral periodic cycle. In the latter
case, such connected components are referred to as parabolic cycles. For example, it can be shown
that a neighborhood of a neutral fixed point is split into an even number of sectors, where orbits
alternatively converge or diverge away from that fixed point. Finally, if the number of accumulation
functions of the sequence {Fn}n is infinite (think for instance of the sequence of iterates of the map
F (z) = e2iπαz with α irrational), depending on the connectedness of Ω, it may lead to a so-called
Siegel disk or a Herman ring. The interested reader may find more detail on this topic in [DK],
Article “Julia sets” by Linda Keen.

Quasi self-similarity of Julia sets

The fractal quality of Julia sets is formalized by the concept of quasi-self-similarity. Self-similarity
occurs when a set is a dilated, isometric copy of one of its proper subsets, see e.g. the Von Koch
curve or the Cantor set. In our case, Julia sets are rarely self-similar because the “smaller copies”
are slightly distorted, though this distortion remains bounded in some sense. One may thus think
of the concept of quasi-self-similarity as a self-similarity up to small distortions.

Definition 1. φ : U → V is a K-quasi-isometry (K ≥ 1) if for every x, y ∈ U , we have

1

K
|x− y| ≤ |φ(x)− φ(y)| ≤ K|x− y|.

If K = 1, then |φ(x)−φ(y)| = |x− y| and φ is an isometry (e.g. in Euclidean space, a composition
of rotation and translation).

Theorem 1 (Sullivan). If F is a rational, expanding map, then the Julia set of F is such that
there exists K ≥ 1 and r0 > 0 such that for every z ∈ J and every 0 < r < r0, the set J ∩Dr(z),
dilated by a factor 1

r , is K-quasi-isometric to the whole of J .
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Figure 1: Examples of zooms into a Julia set (zoom-ins from l. to r.), illustrating quasi-self-similarity

Numerical representation of Julia sets

Let us present two methods in order to visualize Julia sets.

Method 1: Inverse iteration method

The first method is based on an earlier result that for any w ∈ J , the set
⋃
n∈N P

−n
c (w) is dense

in J . The method therefore consists in (i) picking a point w0 in J and (ii) computing successively
the preimages P−nc (w0).

Example 1. Fix c ∈ C and define Pc(z) = z2 + c. For this function, the two steps described above

go as follows: Step (i): We know that Pc(z) = z2 + c has fixed points z± = 1
2 ±

√(
1
4 − c

)
and that

z+ is always repelling, therefore z+ ∈ J .
Step (ii): Computing preimages of a given w consists in solving for z the equation z2+c = w, which
obviously has two solutions z = ±

√
w − c, and these are the two preimages of w. So by induction,

we can establish that
P−(n+1)
c (w0) = {±

√
w − c, w ∈ P−nc (w0)}.

We can see that P−nc (w0) has exactly 2n distinct elements.

Method 2: Boundary scanning method

The main drawback of the previous method is that it tries to capture the Julia set spot on, whose
chaotic nature does not pair well with the finite-accurary computations of computers.

The second method is based on the observation that for a function of the form Pc(z) = z2 + c,
∞ is a superattracting point, so there is R > 0 such that U := Ĉ\DR(0) ⊂ APc(∞) and moreover,
J (Pc) = ∂APc(∞) ⊂ DR(0). A quick estimate also shows that R = max(2, |c|) works. The method
then goes as follows:
Fix a large integer Nmax (say 500).

(i) Discretize a fine enough grid of the square [−R,R]× [−R,R].

(ii) For each gridpoint z, compute its orbit for Nmax steps and set n(z) to be either the smallest
integer where |Pnc (z)| > R, or Nmax if the orbit never exitted D2(0).

(iii) Display n(z).
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Instead of focusing on the boundary itself, we focus on visualizing APc(∞) as best we can, by
computing at each point of a given grid in how many steps the orbit of the point arrives in U . n(z)
is sometimes referred to as the escape rate. One may notice that in some cases, a whole region of
the plane is colored with the value Nmax, this is because in some cases, the Fatou set of Pc is made
of two components, one of which is bounded by the Julia set. We sometimes refer to this region
as the filled-in Julia set. We will see that the condition of whether there exists another bounded
component of the Fatou set of Pc is the very criterion which defines the Mandelbrot set.

Figure 2: Examples of Julia sets using both visualization methods on the iteration of polynomials
of the form Pc(z) = z2 + c.

Figure 2 shows examples of Julia sets for four different values of c. We see that the first method,
though much less expensive, lacks accuracy because the function that is iterated over is

√
z instead

of z (the first method relies on inverse orbits while the second relies on forward orbits). This
explains why in the outcome of method 1, some points lie outside the “main cloud”. Except in
the bottom-left example, this is NOT to be expected, as one can show that the Julia set is in fact
connected.

Another advantage of Method 2 over Method 1 is that, for polynomials of degree > 2, it becomes
tricky to compute preimages by polynomials of high degrees. This can still be done with relative
ease on the function F (z) = z − z3−1

3z2
as seen on Fig. 3 (the Newton map of z 7→ z3 − 1), though

in most cases, it seems much more convenient to use the boundary scanning method, which is easy
to implement for polynomials of arbitrary order. . .

Critical points and the Mandelbrot set

It is now time to stress the importance of the orbits of critical points in complex dynamics.

Theorem 2 (Fatou, 1905). Every attracting cycle for a rational function attracts at least one
critical point.
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Figure 3: Top: Julia set of Newton map of f(z) = z3 − 1 via inverse iterates. Bottom: same Julia
set obtained via the boundary scanning method.
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This means that if F = P
Q is a rational function with P,Q polynomials of degree at most d, the

equation F ′ = 0 consists in finding the roots of P ′Q−PQ′, a polynomial of degree at most 2d− 1,
so F has at most 2d− 1 critical points and can only have at most 2d− 1 attracting cycles.

In the case of the family Pc(z) = z2 + c, we have P ′c(z) = 2z regardless of c, and z = 0 is the
only critical point, so Pc has at most one attracting cycle.

Another important theorem is the following. For F a rational map, denote KF the set of seeds
with bounded orbit, and ΩF the set of critical points of F .

Theorem 3 (Fatou, Julia). If F is a polynomial, then we have:
(i) ΩF ⊂ KF if and only if JF is connected.
(ii) if ΩF ∩KF = ∅, then JF is a Cantor set.

Since ΩF = {0} when F = Pc, these are the only cases to consider. The c-plane is then split
into two sets where either 0 ∈ KPc or 0 /∈ KPc .

Definition 2. The Mandelbrot set M is the set of c in the parameter plane such that case (i) in
Theorem 3 occurs.

Remark 1. The Mandelbrot set is a set in the c-plane, or the ’parameter’ plane, whereas the Julia
set is a set of the ’dynamical’ plane z. Each value of c ∈ C leads to a different Julia set.

In other words, c /∈M if and only if the orbit of 0 under Pc, that is to say,

the sequence 0, c, c2 + c, (c2 + c)2 + c, . . . is unbounded.

It is this observation which motivates the computer graphics representing M , which one can write
along the same lines as the second method for representing Julia sets presented above. It is easy
to show that if |c| > 2, then the sequence {Pnc (0)}n always diverges, so that M⊂ D2(0).

Method for visualizing M: Fix a large integer Nmax (say 500).

(i) Discretize the square [−2, 2]× [−2, 2] finely enough.

(ii) For each gridpoint c, compute terms of the sequence Pnc (0) until they exit D2(0) or until n
reaches Nmax. Define n(c) as either the smallest integer less than Nmax such that |Pnc (0)| > 2,
or Nmax if the orbit of c remains in D2(0) until Nmax.

(iii) Visualize n(c).

Some facts about the Mandelbrot set. As interior points of the Mandelbrot set are such that
the orbit of 0 is bounded, we may wonder what its behavior is, in particular, how many accumulation
points the sequence {Pnc (0)}n has. When 0 is attracted to a k-cycle, that sequence has exactly k
accumulation points. In general, we define H a hyperbolic component of M a component of M
where the orbit of the point 0 is attracted to a cycle of fixed period.

One can show by calculation that 0 is attracted to a fixed point (or 1-cycle) if and only if c
belongs to the largest subset denoted W0 on Fig. 4, so-called the main cardioid. We denote this
set W0, of boundary equation ρW0(t) = e2πit

2 − e4πit

4 , t ∈ [0, 1].
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Figure 4: The Mandelbrot set M. As c follows the plain arrow, the system undergoes a perio-
doubling bifurcation. As c follows the dashed arrow, the system undergoes a period-tripling bifur-
cation.

The parameter value c = ρW0

(
1
2

)
= −3

4 is where a period-doubling bifurcation occurs, as we
have seen in the lectures on one-dimensional dynamics (which corresponds to when c is on the real-
axis), what we analyzed about the family Fc(x) = x2 + c, in particular the bifurcation diagram,
tells us a great deal here !), see Figure 5. When c is slightly to the left of −34 , we are in another
hyperbolic component (so-called W 1

2
) where the point 0 is attracted to a 2-cycle. The multiplier of

this 2-cycle has precise expression 4(c + 1) so that this multiplier has modulus less than 1 if and
only if c ∈ D 1

4
(−1), in particular we have W1/2 = D 1

4
(−1). At the boundary of components such as

W0 or W 1
2
, there are typically neutral cycles happening, since these are the bordeline cases where

a cycle passes from attracting to repelling and another passes from repelling to attracting.

In the same way that a bifurcation occurs at c = γW0(12), one can show that a period q-doubling

bifurcation occurs at each point γW0

(
p
q

)
: when c changes from being inside the big cardioid to

inside the hyperbolic component W p
q
, the point 0 changes from being attracted to a fixed point to

being attracted to a q-cycle.

At points γW0(t) where t is irrational, in the same way that the sequence {eiαn}n is dense in the
unit circle when α is irrational, the orbit of 0 seems to have infinitely many accumulation points
inside the Julia set. This is the case where the Julia set is so-called a Siegel disk, see example
Figure 6, right.

There are many more exciting facts about the Mandelbrot set (including things that yet remain
to be proved !) and the interested reader can take a look at the article “The Mandelbrot set” by
Bodil Branner in [DK] for more interesting details.

Additional properties. Against expectations and despite the fact that the Mandelbrot set looks
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Figure 5: Near the point c = −3
4 . Top, left to right: Julia set of Pc for c real, taking values c < −3

4 ,
c = −3

4 and c > −3
4 . We see on the left that the orbit of 0 converges to a 2-cycle while on the right,

it converges to a single point. Bottom: c = −3
4 + 0.1i, outside the Mandelbrot set. The Julia set

is completely disconnected and all orbits outside J eventually diverge to ∞. However they can
take arbitrarily long to do so, this si why we must increase Nmax in order to visualize additional
structure (left is Nmax = 100, right is Nmax = 500). In either picture, the constant red regions no
longer means that the corresponding seeds have bounded orbits; rather, Nmax was too small to see
these seeds reach the region Ĉ\D2(0).
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Figure 6: Left-middle: near the period 4-doubling bifurcation at c = γW0

(
1
4

)
. Right: Example of

a Siegel disk, where c = γW0(t) for some irrational t.

like an agglomerate of cardiods and disks of various sizes, it turns out that it is not (quasi-)self-
similar, unlike Julia sets. The smaller copies each have their own set of decorations which differ
from the other copies. On the other hand, sets in the shape of a Mandelbrot set appear in many
other one-parameter families of complex dynamics, including higher-order polynomials, a property
that gives the Mandelbrot set the attribute to be universal.

Let us give an example of this last fact. For ρ ∈ C, consider the family of cubics Pρ(z) =

z(z−1)(z−ρ) and define the Newton map Nρ(z) = z− Pρ(z)
P ′
ρ(z)

, the map to be iterated over. We know

that Nρ has three superattracting fixed points at 0, 1 and ρ, and since they are superattracting, this
precisely means that they are also critical, and are attracted by their respective basins. However,
there is a fourth critical point1 with value zc = 1+ρ

3 , and one may wonder into what basin of
attraction its orbit falls. For each value of ρ, we can then assign a color to the pixel ρ depending on
what basin of attraction it falls into, though we may notice that some values are in fact attracted to a
fourth attracting cycle. What’s more is that such regions in the ρ-plane take the form of Mandelbrot
sets, for which the previous discussion adapts: the hyperbolic component of this Mandelbrot set in
which ρ lies will determine the period of the additional cycle to which zc is attracted.

There are infinitely many such Mandelbrot sets inside the ρ-plane, and whenever ρ is in one
of them, the Julia set J (Nρ) in the z-plane contains small features reminiscent of the Julia set of
some quadratic polynomial !

Zooming into Mandelbrot. Although it is not self-similar, the Mandelbrot set is still very
complicated at every scale, and one may want to zoom into it at arbitrarily fine scales. Using a
finer and finer grid requires increasing the precision of the computations, which in turn become
computationally more intensive. See [Zoom] for an example of deep zoom into the Mandelbrot set,
of a factor 10228, taking months to render. For the record the biggest number in physical ranges is
in the order of 1042 (size of a proton to the universe).

This is where the separation lies between fractals in mathematics and fractals in physics: scale-
invariant principles in physics lead to fractal structures which are self-similar at a few scales, then
this self-similarity stops due to a change in the governing laws of nature at some limiting scale.
Their mathematical counterparts are, however, defined for arbitrarily small or large scales.

1When Pρ has simple roots, the equation N ′
ρ(z) = 0 is equivalent to Pρ(z) = 0 or P ′′

ρ (z) = 0. This second equation
gives us the last critical point.
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Figure 7: Left to right: zooms into the ρ-plane of the family of Newton maps of Pρ(z) = z(z −
1)(z − ρ). Pixels in yellow/turquoise/light blue corresponds to cases where zc = 1+ρ

3 is attracted
to the fixed point ρ/1/0, respectively. The dark blue pixels are when there is a fourth attracting
cycle, to which zc is attracted.

Figure 8: Right: ρ-plane with a parameter value ρ inside the hyperbolic component of an attracting
3-cycle. Left: the corresponding z-plane, partitioned into the three basins of attraction of the roots
of Pρ, as well as the additional basin of attraction of a 3-cycle, whose boundary resembles the Julia
set of some quadratic polynomial z 7→ z2 + c (compare to Fig. 2, bottom).
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[A] A History of complex dynamics. From Schröder to Fatou and Julia, by Daniel S. Alexander.
Aspects of Mathematics, Vieweg 1994.

[DK] Chaos and Fractals, the mathematics behind the computer graphics. Editors: Devaney and
Keen. 1, 6

[G] Complex Analysis, Theodore W. Gamelin. Undergraduate Texts in Mathematics, Springer.

[Zoom] “Deepest Mandelbrot set zoom animation ever” (video)

8

https://www.youtube.com/watch?v=0jGaio87u3A

