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Abstract

These lecture notes are associated with the 5-day mini-course given by the author at the 31st
summer school at the University of Jyväskylä, Aug. 8-12, 2022. After dicsussing generalities
associated with inverse problems such as injectivity, stability and mapping properties, we discuss
three prototypes of integral-geometric problems in special, symmetric cases (the Funk transform
on the 2-sphere; the Radon transform on the plane; the X-ray transform on the unit disk) and
attempt a thorough analysis of these problems via Fourier methods. These three cases differ by
their compactness or non-compactness, and by the presence or absence of a (convex) boundary.
Each of these peculiarities is reflected in the analysis, and it is the author’s hope that the ideas
to approach them may shed some light on how to approach more general situations without
symmetries.

Please email any comments/typos/suggestions.
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1 Lecture 1 - Introduction

Though we will later focus on inverse problems in integral geometry, these problems sit inside the
larger field of inverse problems, which prescribes an agenda of questions that one may address.
Some examples may then not be directly related to integral geometry, though they are part of the
inverse problems folklore (some of them still open to this day).

Other useful references: [Bal12, Chapter 1], [Ilm17, §1]

1.1 What is an inverse problem ?

The main question one is interested to address is:

Let M : X → Y be a continuous map between two topological spaces X , Y.
Given y ∈ Y, find x ∈ X such that M(x) = y.

As general comments:

� M can be linear or non-linear.

� X and Y can be finite-dimensional normed spaces or, most often, infinite-dimensional topo-
logical vector spaces (Banach, Hilbert, Fréchet spaces of functions and distributions) or topo-
logical manifolds.

� The spaces above often reflect a notion of smoothness, typically embodied by a scale of
Hilbert or Banach spaces (e.g. Sobolev spaces), whose intersection gives a Fréchet space
(e.g. smooth functions, rapidly-decaying functions or both), or LF spaces (e.g. smooth
functions with compact support). A scale of spaces is a family of Banach or Hilbert spaces
{(Hs, ‖·‖s}s∈N0 with continuous injections Hs ↪→ Ht, s ≥ t, and the intersection may be given
a Fréchet topology defined by the countable family of seminorms ‖ · ‖s, s ∈ N0. Important
examples include Sobolev spaces (f ∈ Hk(R) iff ∂αf ∈ L2 for all 0 ≤ α ≤ k, with norm
‖f‖2

Hk =
∑k

α=0 ‖∂αf‖2L2) and the classical Ck(R) Banach spaces (equipped with the sup
norm ‖f‖Ck := max0≤α≤k supx∈R |∂αf(x)|), with intersection space C∞(R). Another way to
quantify smoothness is by means of decay in the Fourier domain, which may motivate other
scales of spaces of the form Bk = {f ∈ L2(R); (1 + x2)k/2f ∈ L2(R)}, k ≥ 0.

� M may be not injective and not surjective. What, then, does it mean, to ’invert’ M ?

� It could be that the problem may be formulated as “recover x from M(x)”, and part of the
job is to find a ’good’ pair of spaces X , Y as well.

Example 1. � Finite-dimensional, linear inverse problems (given A ∈ Cp×q and y ∈ Cp, solve
Ax = y for x ∈ Cq).
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� Inverse diffusion on a ring: to recover the initial temperature distribution u0(θ) from the
observation of the temperature distribution at a later time uT (θ) = u(θ, T ), where u(θ, t)
solves the heat equation

∂tu = ∂2
θu, θ ∈ S1, t > 0 (heat equation)

u(θ, 0) = u0(θ). (initial condition)

This gives rise to a bounded operator

M : L2(S1) 3 f 7→ u ∈ L2(S1). (1)

� Bessel’s equation on a ring: to recover f ∈ L2(S1) from the unique solution u of

−∂2
θu+ u = f (on S1).

This gives rise to a bounded operator

M : L2(S1) 3 f 7→ u ∈ L2(S1). (2)

� Funk/X-ray/Radon transforms (see next lectures for details).

� (geodesic X-ray transform) A generalization of the X-ray transform is to consider a transform
that integrates a function along a family of curves. One way to realize this is by considering
M a domain in R2 and equip it with Riemannian metric giving rise to a family of “geodesic
curves”. Then the geodesic X-ray transform I0 is the map that sends a function f defined on
M to the collection of its integrals along each geodesics. The function I0f is then a function on
G, the set of all geodesics through M . The latter space may require geometric assumptions in
order to even make sense as a manifold, and once this is done, defining appropriate function
spaces on M ang G that accurately capture the mapping properties of I0 is a task that remains
under active study.

� (Boundary rigidity) The previous transform is a linearized version of a non-linear inverse
problem which consists of reconstructing a Riemannian metric on a manifold-with-boundary,
from its so-called boundary distance function. This is called the boundary rigidity problem,
also a hard problem under active study. For more info on the previous two examples, see
[IM19, PSU22].

1.2 The inverse problems agenda

Two practically motivated philosophical points may help approach what follows:

� The forward operator M is generally ’smoothing’ and therefore, undoing that process will
require ’unsmoothing’ the data, a process which is in itself ill-conditioned (or unstable) in the
sense that M−1 : Y → X may not be continuous in general. If M is thought of as a linear
operator between Hilbert spaces, A : X0 → Y0, this corresponds to saying that A is compact.
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� The data y may be corrupted by noise, in the sense that we want to find x ∈ X measuring
M(x) + η, where η models a noise realization which we have little control over. Two issues
naturally arise out of this: first, the measurement M(x) + η might no longer live in Y
(depending on how smoothing the problem is, M(x) may be smoother than η, so M(x) + η
lives in the space where η lives, not where M(x) lives); second, M(x) + η might not even be
in the range of M !

With that in mind, here are some of the important questions to be addressed:

1.2.1 Injectivity, and modding out “obvious” obstructions to it

Does M(x) characterize x uniquely (equivalently, does M(x1) =M(x2) imply x1 = x2) ? If not,
can one describe obvious obstructions to injectivity ?

There may be ways that the problem is “obviously non-injective”, and should first rule out the
obvious obstructions. A typical example of this is when there is a “gauge” group G acting on X
such that for all x ∈ X and for all g ∈ G, we haveM(g ·x) =M(x). As there is no hope to recover
more than the equivalence class of x, one should study the new operator

M̃ : X/G → Y.

The quest for injectivity is reformulated as a quest for “injectivity-modulo-gauge”: do we have
M(x1) =M(x2) if and only if x1 = g · x2 for some g ∈ G ?

Example 2. 1. For a linear operator A, G = kerA is one such example provided that one can
understand that space.

2. In the case of the boundary rigidity problem, G = Diff∂M (M), the group of self-diffeomorphisms
of M fixing the boundary of M .

1.2.2 Range characterization

The operator M : X → Y is most likely not surjective, so how does M(X ) sit inside Y ? Given
y ∈ Y, can one find “consistency conditions” which imply that y is in the range of M ? If M is
linear, thenM(X ) is a linear subspace of Y; can one easily describe the supplementary (sometimes,
orthocomplement) of M(X ) ?

Example 3. Consider the operator A : `2(N0)→ `2(N0) given by Au =
(

1−(−1)n

n+1 un

)
n

, u = (un)n.

Equip `2(N0) with the orthonormal family {en}n≥0 where for n ≥ 0, en = {δjn}j≥0.

A is not surjective for two fundamentally different reasons: any basis vector e2k is not achieved
in the range of A, and if we were to restrict A to the span 〈e1, e3, e5, . . . 〉, where it becomes injective,
it is still not surjective because elements in the range have faster decay than `2. In particular, the

sequence u =
{

1+(−1)n

n

}
n
∈ `2(N0) seems to have a preimage by A, but that preimage does not

belong to `2(N0).
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1.2.3 Stability

Suppose injectivity has been settled. Stability is a quantification of how ’well-behaved’ the inversion
process will be.

Characterization via moduli of continuity. One way to think of stability is to ask what
is the form of the modulus of continuity of M−1 : Y → X , if any ? i.e., for which function
ω : [0,∞)→ [0,∞) with limx→0 ω(x) = 0 do we have1

‖M−1(y1)−M−1(y2)‖X . ω(‖y1 − y2‖Y).

Since M−1 might not even make sense, we prefer writing

‖x1 − x2‖X . ω(‖M(x1)−M(x2)‖Y). (3)

Equation (3) is a stability estimate, which quantifies how error on data (measured with ‖ · ‖Y)
translates into error on the reconstruction (measured with ‖ · ‖X ). It helps answer the question:
suppose I want a reconstruction error no greater than ε, what precision on my measurements do I
need ?

The problem is then said Lipschitz-stable in (X ,Y) if one has equality (3) with ω(x) = x, the
best-case scenario2; Hölder-stable in (X ,Y) if ω(x) = xα for some 0 < α < 1; worse moduli of
continuity include ω(x) = 1

| log x| (log-stable, or exponentially ill-posed).

A problem may be made Lipschitz-stable for some specific choice of norm, in spite of the fact
that it is objectively badly-behaved. But then, this Lipschitz estimate is probably practically
unusable because the space Y is too small for the noise to live in it. Although we mentioned above
that there is some leeway in choosing the spaces X and Y, a first constraint is to use a space Y
where the noise lives.

Characterization via scales of spaces. Another way to define stability is with respect to
Hilbert scales Xk and Yk such thatM : Xk → Yk is continuous for all k. Then the inverse problem
is, relative to this choice of scales,

� well-posed if ‖x− x′‖k . ‖M(x)−M(x′)‖k for all k

� mildly ill-posed of order α > 0 if there is α > 0 such that ‖x−x′‖k . ‖M(x)−M(x′)‖k+α for
all k. One then seeks the smallest α and calls it the order of ill-posedness of M (it depends
on the choice of scales)

� severely ill-posed otherwise.

When the grading of the Hilbert scales at play describes order of differentiability, the α above
quantifies by how many derivatives the operatorM is smoothing (as a result, reconstructing x will

1We will write a . b if there is a constant C such that a ≤ Cb. Unless important, we will not keep track of
constants.

2Recall from one-variable calculus: a function with superlinear modulus of continuity is constant.
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involve differentiating the data α times). A severely ill-posed problem typically corresponds to an
operator which is smoothing by an infinite degree.

What is the link between the above two characterizations of stability ? When the second one is
well-understood, one can cook up appropriate moduli of continuity for the inverse, provided that
one adds a prior smoothness assumption on the unknown x (see Exercise 5).

Relating scales of spaces. Given a compact, injective and self-adjoint operator B on a Hilbert
space (X0, (·, ·)0), there is a canonical way of constructing a Hilbert scale for which B is exactly
ill-posed of order 1. The construction is done as follows:

� By the spectral theorem for compact self-adjoint operators ([Fol95, Th. 0.44]), there exists a
complete orthonormal set {en}n of X0 and non-negative numbers σ0 ≥ σ1 ≥ σ2 ≥ . . . , each
with finite multiplicity and with limn→∞ σn = 0, such that for all x ∈ X0,

Bx =
∑
n≥0

σn (en,x)0 en

� Upon defining the space X := ∩k≥0B
kX0, on such elements, one may define the operator Bs

for any s ∈ R, by defining

Bsx :=
∑
n≥0

σsn (en,x)0 en.

Then for every k ∈ N0, define the space

Xk : the completion of X for the inner product (x,y)s := (B−sx, B−sy)0, (4)

a Hilbert space by construction. X is then typically equipped with the weakest topology
making the injections X → Xk continuous (i.e., xn converges to x in E if and only if ‖xn −
x‖k → 0 as n→∞ for all k).

� Then it’s easy to see that B : Xk → Xk+1 is an isometry for all k, in particular bounded with
bounded inverse. As such, relative to the scale {Xk}k, the operator B is ill-posed of order 1.

In some sense, this construction, while being perfectly adapted to describing mapping properties
of B, does not necessarily tell us anything about the operator B, as it is unrelated to more standard
scales which encode, for instance, derivatives. Part of the work in assessing stability properties of
the operator B is then to find how to relate the scale constructed above to more standard ones (Ck,
Sobolev types, or modelled after specific differential operators), if possible at all.

1.2.4 Further questions

While we will probably not address these aspects here, it is worth noting that the inverse problems
community is heavily concerned with the following questions.
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Reconstruction: What are the ways that we can recover x fromM(x) ? (explicit reconstruction
formulas, Fredholm equations, regularized inversions, Markov Chain Monte Carlo)

Partial Data problems: What if we only have partial knowledge ofM(x) (e.g. discrete samples,
or a restriction of the full data) ? How are injectivity, stability and reconstruction impacted ?

Parameter dependence: Similarly to the previous question: how do the answers to injectivity,
stability and reconstruction depend on some parameter in the system considered ? Examples:

� Injectivity and stability of the geodesic X-ray transform on a Riemannian surface depend on
whether that surface has conjugate points.

� Injectivity of the attenuated X-ray transform over vector fields degenerates as the attenuation
vanishes.

� In an inverse wave problem (TAT/PAT), injectivity and stability depend on the observation
time.

Practical questions: What is the nature of the noise in the measurement ? (in what space does
it live ?) how to use the stability estimate to understand how errors will magnify ? How much do
we have to regularize the inversion in order to obtain a meaningful reconstruction ?

1.3 Some prototypes

� Finite-dimensional, linear inverse problems. Singular Value Decomposition. Recall that for a
linear operator A : Cp → Cq, setting r = min(p, q), there exists orthonormal bases (u1, . . . , up)
and (v1, . . . , vq) and non-negative numbers σ1, . . . , σr such that

Auj = σjvj , A∗vj = σjuj , 1 ≤ j ≤ r.

If p > q, then we also have Auj = 0 for q < j ≤ p and if q > p, we have A∗vj = 0 for
p ≤ j < q. The uj ’s are the eigenvectors of A∗A : Cp → Cp (a symmetric operator), the vj ’s
are the eigenvectors of AA∗ : Cq → Cq, and σ2

j are the eigenvalues of either operator.

In the case where p = q and all singular values are non-zero and arranged in decreasing order
σ1 ≥ · · · ≥ σp, then we have

σp‖x‖ ≤ ‖Ax‖ ≤ σ1‖x‖, ∀x ∈ Cp, (5)

which gives us both continuity and stability constants.

� Infinite-dimensional linear inverse problems involving compact3 operators. Suppose A is now
a linear, bounded operator between two Hilbert spaces A : H1 → H2. Can we use the SVD
picture again ? Well, not always. The operator A∗A : H1 → H1 will be bounded, self-adjoint,

3A linear operator between Hilbert spaces A : H1 → H2 is compact if it maps bounded sequences to sequences
with convergent subsequences.
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but its spectrum may not be discrete4. However, if A∗A is compact, then indeed, we can find
two Hilbert orthonormal bases un, vn of H1,H2 and a decreasing sequence of non-negative
numbers σj such that

Auj = σjvj , A∗vj = σjuj , j ≥ 0.

This is the spectral theorem for self-adjoint, compact operators5. Moreover, since A∗A is
compact, the sequence σj necessarily decreases to zero, so infj σj = 0 and there will be no
room to write a stability estimate as in (5). Having an SVD is however extremely relevant to
understand stability, inversion and regularization purposes.

� Consider the measurement operator as follows: Given f ∈ L2([0, π]), Let M(f) = u|t=T ,
where u(x, t) solves the heat equation

∂tu = ∂xxu (0, π)× (0, T ), u|t=0 = f,

with Neuman boundary conditions ∂xu(0, t) = ∂xu(π, t) = 0.

1. Expand f and u as Fourier cosine series to make appear an explicit form of the measure-
ment operator. In the Fourier cosine series identification f ↔ {an}n≥0 such that f(x) =∑∞

n=0 an cos(nx), the operator M is diagonal and its action looks like an 7→ ane
−n2T .

In particular, the operator M (or, rather FMF−1 with F the cosine series transform)
is bounded and injective from `2(N0) into itself.

2. On the other hand, the inverse is not `2 → `2 continuous, nor is it hp → `2 bounded for

any p ≥ 0 (study the ratio
‖f‖`2

‖M(f)‖hp
with f(x) = cos(nx)). This is an example of an

exponentially ill-posed problem.

3. Yet we can still find a space H where M : `2 → H is an isometry (i.e. with bounded
inverse in particular). This space can be easily found to be

H =

(an) ∈ `2,
∑
n≥0

|an|2e2n2T <∞

 .

It corresponds to Fourier series which decay at an exponential rate. For such series, the
corresponding Fourier cosine series

∑∞
k=0 ak cos(kx) is smooth on [0, π]. Then M maps

rough functions into smooth ones. Undoing that process would then require “differenti-
ating infinitely many times”, one of the interpretations of severe ill-posedness.

1.4 Next lectures. . .

For the ’friendliest’ cases of X-ray transforms on surfaces, one usually says that they are ’smoothing
of order 1/2’ and their associated normal operators are ’smoothing of order 1’. This section aims
at making these statements most explicit, following one or more of the following routes:

4See the spectral theorem for bounded, self-adjoint operators
5[Fol95, Th. 0.44 + Th. 0.38]: If A is a compact self-adjoint operator on a Hilbert space H, then H has an

orthonormal basis consising of eigenvectors for A. In addition, every non-zero eigenvalue has finite multiplicity, and
the the only possible limit point is 0.
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� by computing an explicit singular value decomposition of the operator. Once this is done,
the construction of Hilbert scales which reflect these smoothing properties becomes relatively
straightforward.

� by finding an explicit functional relation between the X-ray transform (or rather, one of
its normal operators) with distinguished differential operators. Since the latter oftentimes
determine a scales of smoothness in their ambient spaces, the smoothing properties of the
operator of interest naturally follow.

The next three examples include a compact manifold with boundary, a complete manifold, and
a manifold with boundary. Each of these cases brings its own set of peculiarities.
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Exercise 1 (On Fourier series). Given f ∈ L1(S1), we may define the sequence of Fourier coeffi-
cients of f , {cn[f ] := 1

2π

∫ 2π
0 e−inθf(θ) dθ}n∈Z, a bounded, doubly infinite sequence (in `∞(Z)). For

fixed n, we denote

Sn[f ](θ) :=
n∑

k=−n
ck[f ]eikθ ∈ Pn,

where we denote Pn the set of trigonometric polynomials of degree at most n, of the form p(θ) =∑n
k=−n cke

ikθ for some complex numbers ck.

On [0, 2π], let us define the Hilbert scale

Hk(S1) =

f ∈ L2(S1), ‖f‖2k :=

k∑
j=0

∫ 2π

0
|f (j)(θ)|2 <∞

 , (6)

with H0 = L2, equipped with the Hermitian inner product (f, g) =
∫ 2π

0 f(θ)ḡ(θ) dθ. On Z, define
the Hilbert scale

hk(Z) =

u ∈ CZ, ‖u‖2k =
∑
j∈Z

(1 + j2)k|uj |2 <∞

 . (7)

1. Check that the functions {en(θ) = 1√
2π
einθ}n∈Z is an orthonormal system in L2(S1) and

that Sn[f ] =
∑n

k=−n(f, ek)ek. In the sequel, we will assume that {en}n∈Z is a complete6

orthonormal set in L2(S1).

2. Show that Sn[f ] is the minimizer of functional

F (p) =

∫ 2π

0
|f(θ)− p(θ)|2 dθ, p ∈ Pn.

Thus, Sn[f ] is the best L2-approximant of f among all trigonometric polynomials of degree n.

3. Show that for every n, Sn[f ] and f − Sn[f ] are L2-orthogonal and that

‖f‖2L2 = ‖Sn[f ]‖2L2 + ‖f − Sn[f ]‖2L2

= 2π
n∑

k=−n
|ck[f ]|2 + ‖f − Sn[f ]‖2L2 , n ≥ 0.

4. Deduce that Sn[f ] converges to f in L2(S1) and that

‖f‖2L2 = 2π
∑
k∈Z
|ck[f ]|2 (Parseval). (8)

What does (8) say about the Fourier series map L2(S1) 3 f 7→ {ck[f ]}k∈Z ∈ `2(Z) ?

6This means: if f ∈ L2(S1) satisfies (f, en) = 0 for all n, then f = 0. A proof can be found in [HN01, Ch. 7],
showing that trigonometric polynomials are dense in C(S1) using approximations of identity and the density of C(S1)
in L2(S1).
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5. Suppose f ∈ C1. Show that cn[1
i
d
dθf ] = n cn[f ] for all n ∈ Z.

6. Given a polynomial q =
∑`

j=0 qjx
j, denote q(1

i
d
dθ ) :=

∑`
j=0 qj

(
1
i
d
dθ

)j
.

Provided that f ∈ C`, show that cn[q(1
i
d
dθ )f ] = q(n)cn[f ]. Combine this with (8) to deduce

that f ∈ H`(S1), then its coefficients belong to h`(Z).

7. Prove the converse: if a sequence belongs to h`(Z), then the Fourier series construct a function
that is H`(S1).

Exercise 2. For k ≥ 0, define the scale of Hilbert spaces

hk :=

u = {un}n≥0 ∈ CN, ‖u‖2k :=
∑
n≥0

n2k|un|2 <∞

 . (9)

and denote `2 := h0. Consider a sequence of complex numbers {λn}n≥0, and consider the ’diagonal’
operator

A : `2 → `2, A({un}n) = {λnun}n.

1. Under what condition is the operator A bounded (=continuous) ?

2. Suppose λn 6= 0 for all n. Is A invertible ? Is A−1 : `2 → `2 always continuous ?

3. Fix p ≥ 0 and suppose λn = 1
np . With A defined as above, what is the order of ill-posedness

of A in the scale hk defined in (9) ?

4. Same question with the sequence λn = e−n.

Exercise 3 (Bessel solution operator). Consider the operator M defined in (2).

1. Describe the operator M using Fourier series.

2. What is the degree of ill-posedness of M relative to the scale (6) ?

3. Show that if H∞ := ∩k≥0H
k(S1) is equipped with its Fréchet topology given by the seminorms

{‖ · ‖k}k in (6), the operator M : H∞ → H∞ has a continuous inverse.

Exercise 4 (Diffusion operator). Consider the operator M defined in (1).

1. Describe the operator M using Fourier series.

2. Show that, relative to the scale (6), M is severely ill-posed.

3. Describe the “canonical” scale of spaces (4).
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Exercise 5 (On moduli of stability). Let a linear forward operator M : X → Y and X = ∩k≥0Xk,
Y = ∩k≥0Yk with {Xk}k, {Yk}k Banach scales. Suppose that for every k, M : Xk → Yk is bounded.
Assume moreover that {Yk}k satisfies interpolation inequalities7 of the form, if 0 ≤ k ≤ `

‖g‖Yλk+(1−λ)` ≤ C‖g‖
λ
Yk‖g‖

1−λ
Y` , λ ∈ [0, 1], g ∈ Y`, (10)

for some constant C(k, `, λ). Suppose that the operator M is ill-posed of order α > 0 in the sense
that

‖x− x′‖Xk ≤ C‖M(x)−M(x′)‖Yk+α , k ≥ 0. (11)

Fixing k, the question is whether we can obtain an estimate of ‖x− x′‖Xk in terms of a LOWER-
regularity norm of M(x − x′) than Yk+α, ideally Yk (as this might be the space where the noise
lives). We show that this is possible if we add the prior assumption that the unknown has “high
regularity”, namely x, x′ ∈ Xβ for some β > α+ k.

1. Assuming the uniform bound ‖x‖Xβ , ‖x′‖Xβ ≤ C for some β > α+k, use (10) for appropriate
(λ, k, `), (11) and the boundedness of M to show a Hölder estimate of the form

‖x− x′‖Xk ≤ C‖M(x)−M(x′)‖θYk ,

where θ ∈ [0, 1] depends on α and β.

2. How does θ behave as β increases ?

3. Use Hölder’s inequality to show that the scale {hk}k in (9) satisfies (10).

Exercise 6. 1. Let {λn}n a sequence of non-negative numbers decreasing to zero, and define the
operator A : `2(N0)→ `2(N0) by (Au)n = λnun, u = {un}n.

Prove that the operator A is compact.

2. Deduce that the inclusion h2 → `2 is compact.

7Sobolev scales most often satisfy this.



MA2 - JSS31 - Summer ’22 - François Monard 14

2 Lecture 2 - The Funk transform on the two-sphere S2

2.1 Formulation

Our first example of integral-geometric operator is the Funk transform, initially studied in [Fun16].
In the 70’s, Guillemin [Gui76] used this transform in order to construct Zoll8 metrics on the sphere.
This example is also treated in [MP11, Sec. 1.2]. See also the recent work [Kaz18].

For the Funk transform, we can derive the full SVD of the operator, and appropriate Hilbert
scales where to describe the mapping properties of the operator.

Let S2 = {(x, y, z) ∈ R3, x2 + y2 + z2 = 1} the Euclidean 2-sphere. Given f ∈ C∞(S2) and
p ∈ S2, we define

If(p) :=

∫ 2π

0
f(γp(t)) dt,

where γp is the equator on the sphere thinking of p as the North pole (it moves around !), traversed
counterclockwise when viewed from p. If p = N = (0, 0, 1) (the actual North Pole),

γN (t) = (cos t, sin t, 0), t ∈ [0, 2π), (12)

parametrized as a nuit-speed geodesic.

Any other great circle can be deduced from γN via a rotation, in particular the group

SO(3) = {R ∈M3(R), RTR = id, detR = 1} (13)

will play a special role in what follows via its action on functions on the sphere (or on R3 in the
same way): for f ∈ C∞(S2) and R ∈ SO(3), define

R · f(x) := f(R−1x) = f(RTx), x ∈ S2. (14)

Exercise 7. 1. How to parameterize γp for any p ∈ S2 ?

2. Give the parametric equation of γp for p = (0, 1, 0).

3. Give the parametric equation of γp for p = (1, 1, 1)/
√

3.

Since γp depends smoothly on p and f ∈ C∞(S2), then If ∈ C∞(S2). Note that in this case, f
and If can both be viewed as functions on the same domain S2 (this will never happen again in
the integral geometric problems considered below). The question to investigate is thus:

study the problem of reconstructing f ∈ C∞(S2) from If ∈ C∞(S2).

Exercise 8. Consider f : S2 → R equal to 1 on a spherical cap of small aperture α ≤ π/8 centered
at the North pole (in spherical coordinates (cosϕ sin θ, sinϕ sin θ, cos θ), this corresponds to the set
{θ ∈ [0, α]}), and zero elsewhere.

Describe the support of If , and the sets on which If is comstant.
8A Zoll manifold is a closed Riemannian manifold, all of whose geodesics are closed and of the same length. The

round sphere is such an example.
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Obvious kernel and cokernel. Let A : S2 → S2 the antipodal map (A(p) = −p). A is a smooth
involution and induces a direct sum decomposition

C∞(S2) = C∞even(S2)⊕ C∞odd(S2),

where a function f will be considered even if f ◦A = f , odd if f ◦A = −f . Then the following two
observations can be made: first If = 0 whenever f is odd, and If is even for any f . It therefore
makes sense that we refine our initial question to:

study the problem of reconstructing f ∈ C∞even(S2) from If ∈ C∞even(S2).

In what follows, we will show that I is an automorphism of C∞even(S2) and that, upon defining

an appropriate Hilbert scale Hs
even(S2), I is an isomorphism of Hs

even onto H
s+ 1

2
even. This will be

based on understanding its eigendecomposition by means of spaces of spherical harmonics.

2.2 Spherical Harmonics

In order to define a scale of spaces on S2, one natural idea is to define, for k = 2` even, H2`(S2)
as the closure of C∞(S2) for the topology defined by the norm ‖f‖H2` = ‖(−∆S2 + 1)`f‖L2 . Here
∆S2 denotes the Laplace-Beltrami operator9, then −∆S2 is non-negative, essentially self-adjoint
operator and the +1 makes it injective. It is an example of an elliptic operator, which means that,
in spite of the fact that this is a single differential operator, if ∆f is in L2, then so will be any other
second derivative of f .

When this is done, we realize that we only have spaces of even order, though we would like to
define Hs for all integer s, or even for all s ≥ 0 (and even all s ∈ R). A process called interpolation
allows to do this, though another clear picture emerges if we know the spectral decomposition
of ∆S2 . Note that general functional-analytic arguments show that ∆S2 has a complete, discrete
eigensystem in L2(S2) and that its spectrum tends to ∞10. We now undertake this task, largely
following [Fol95, Ch. 2.H].

The story of spherical harmonics sums up to this11: define Hk the space of polynomials on R3,
harmonic12 and homogeneous of degree k, and let Hk = {P |S2 : P ∈ Hk}. The latter is called
spherical harmonics of degree k.

Theorem 1. (Spherical harmonics) (1) For every k ∈ N0, Hk = ker(−∆S2 − k(k + 1)Id) and
dimHk = 2k + 1. Moreover, Hk is an irreducible SO(3)-representation.

(2) We have the direct orthogonal sum

L2(S2) =
⊕
k≥0

Hk, (15)

9In the coordinates (θ, ϕ) 7→ (sin θ cosϕ, sin θ sinϕ, cos θ), ∆S2f = 1
sin θ

∂
∂θ

(sin θ ∂f
∂θ

) + 1
sin2 θ

∂2f
∂ϕ2

10Sketch of proof: by Riesz-representation theorem, for f ∈ L2, the problem −∆S2u + u = −f admits a unique
solution in H1, this defines (−∆S2 + 1)−1 : L2(S2)→ H1(S2) as a bounded operator. Since the inclusion H1 → L2 is
compact, then (−∆S2 +1)−1 is a compact, operator, moreover, injective and self-adjoint. By the spectral theorem for
compact, self-adjoint operators ([Fol95, Th. 0.44]), there exists a complete orthonormal set φn of L2(S2) along with
a decreasing sequence λn → 0 such that (−∆S2 + 1)−1φn = λnφn. Then (φn, λ

−1
n − 1) is an eigensystem for ∆S2 .

11it works with minor modifications in all dimensions ≥ 2, see [Fol95, Ch. 2.H]
12in the sense that ∆R3P = 0, where ∆ = ∂2

x + ∂2
y + ∂2

z
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in the sense that every f ∈ L2(S) admits a unique orthogonal and L2-convergent decomposition
f =

∑
k≥0 fk with fk ∈ Hk.

Proof of Theorem 1. First let Pk the space of polynomials on R3, homogeneous of degree k, and
write r2 := x2 + y2 + z2. One may show as exercise that dimPk = (k + 1)(k + 2)/2. In addition,
the action (14) preserves Pk. This is due to the fact that the Laplacian commutes with this action
(see Exercise 11), and that this action preserves homogeneity.

One must then understand the orthocomplement of Hk in Pk. To this effect, [Fol95, Prop. 2.49]
states that for k ≥ 2,

Pk = Hk ⊕ r2Pk−2, r2Pk−2 := {r2P : P ∈ Pk−2}, (16)

whose proof is given in Ex. 10. As a result,

dimHk = dimPk − dimPk−2 = 2k + 1,

and by induction,

Pk = Hk ⊕ r2Hk−2 ⊕ r4Hk−4 . . . (17)

Also recall the expression of the Laplacian in spherical coordinates:

∆R3 =
1

r2
∆S2 +

∂2

∂r2
+

2

r

∂

∂r
.

Now, if f ∈ Hk, then one may write f = rkf̄ where f̄ = f |S2 , then applying the equation above
and evaluating at r = 1 yields the relation

∆R3f = 0 = ∆S2 f̄ + k(k + 1)f̄ .

Hence Hk consists is the eigenspace of ∆S2 associated with eigenvalue −k(k + 1). As ∆S2 is self-
adjoint, this implies the L2(S2)-orthogonality Hk ⊥ H` for k 6= `. A proof of the irreducibility can
be found in [Fol95, Exercise 8, Ch 2.H].

The proof of (15) is based on the Weierstrass approximation theorem, together with (17): in
a nutshell, a function in L2(S2) can be approximated by functions in C(S2), which in turn can
be approximated by restrictions to S2 of polynomials, which by (17) decompose as finite sums of
spherical harmonics.

Exercise 9. Show that dimPk = (k + 1)(k + 2)/2.

Exercise 10. This problem guides you through the proof of (16). Here and below, denote x =
(x, y, z) and for a tri-index α = (α1, α2, α3) ∈ N3

0, we denote |α| = α1+α2+α3, α! = α1!α2!α3!, xα =
xα1yα2zα3 and ∂α = ∂α1

x ∂α2
y ∂α3

z . Thus, a general element of Pk takes the form P =
∑
|α|=k aαxα

for some complex numbers {aα}α, where the sum runs over all tri-indices of length k, and for such
a P , we define the differential operator P (∂) :=

∑
|α|=k aα∂

α.
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1. On Pk, we define the inner productP =
∑
|α|=k

aαxα, Q =
∑
|β|=k

bβxβ

 7→ ∑
|α|=k

α!aαbα.

Show that such an inner product can be obtained by computing the quantity {P,Q} := P (∂)Q.
[Hint: show that {xα, xβ} = α! if α = β, 0 otherwise.]

2. Show that for P ∈ Pk−2 and Q ∈ Pk,

{r2P,Q} = {P,∆R3Q}.

3. Conclude (16).

Exercise 11 (Rotation-invariance of the Laplacian). Let ∆R3 = ∂2
x1 + ∂2

x2 + ∂2
x3, f ∈ C∞(R3) and

R ∈ SO(3). Define h(x) := f(RTx) (or, equivalently, f(R−1x)).

Show that ∆R3h(x) = (∆R3f)(RTx). In terms of the action (14), this means that ∆R3(R · f) =
R · (∆R3f) for all f ∈ C∞(R3) and R ∈ SO(3).

2.3 Eigendecomposition of the Funk transform

The group SO(3) acts on C∞(S2) by rotations: g · f(p) = f(g−1p). The key observation is that I
commutes13 with this action in the sense that

I(g · f) = g · If, g ∈ SO(3), f ∈ C∞(S2).

By Schur’s lemma14, this implies two things at the level of all the irreducible SO(3)-representations
Hk: for all k ≥ 0,

� I(Hk) ⊆ Hk

� I|Hk = λkId for some constant λk.

If k is odd, since Hk ⊂ C∞odd(S2), we already know that λk = 0. For k even, k = 2` for some ` ≥ 0,
it suffices to find a “good” function in f ∈ H2` and a point p where f(p) 6= 0, then λ2` will be

given by c2` = If(p)
f(p) . A good choice is as follows: one may check that the “sectoral” harmonic

function f(x, y, z) = (x + iy)2`, restricted to S2, belongs to H2`. Now choose p = (1, 0, 0), with
γp(t) = (0, cos t, sin t) to deduce

λ2` =
1

f(1, 0, 0)

∫ 2π

0
f(0, cos t, sin t) dt = (−1)`

∫ 2π

0
(cos t)2` dt.

13In representation theory language, I is equivariant w.r.t the SO(3) action, or I is SO(3)-linear.
14Schur’s lemma: Suppose V , W are complex vector spaces with two irreducible G-representations ρV , ρW . (1)

If V and W are not isomorphic, then there exists no non-trivial G-linear map between them. (2) If V = W and
ρV = ρW , then the only G-linear maps between V and W are the constant multiples of the identity.
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The above is a Wallis integral, and one may deduce the final expression

λ2` = (−1)`2π
(2`)!

22`(`!)2
, ` ∈ N0. (18)

As a conclusion, the eigenvalue decomposition of I : L2(S2)→ L2(S2) is given by:

ker I =
⊕
`≥0

H2`+1, ker(I − λ2`) = H2`, ` ≥ 0,

or at the level of the spectral decomposition:

If =
∑
k≥0

λkfk, f =
∑
k≥0

fk, fk ∈ Hk.

Using Stirling’s formula15, we arrive at the conclusion that

|λ2`| ∼
√

8π(2`)−1/2, `→∞. (19)

We now explain how to exploit this to formulate mapping properties of the Funk transform in
a sharp way.

2.4 Mapping properties

To formulate mapping properties, we need two things: (1) to translate smoothness on S2 into rate
of decay of the spherical harmonic decomposition and (2) to use the asymptotics of λ2` for large `
given in (19).

For s ≥ 0, one may define Hs(S2) to be the closure of C∞(S2) for the norm

‖f‖2Hs :=
∑
k≥0

(1 + k(k + 1))s‖fk‖2L2 , f =
∑
k≥0

fk, fk ∈ Hk. (20)

For s = 2` an even integer, this amounts to the norm ‖(−∆ + 1)`f‖L2 and hence it indeed encodes
that, when this quantity is finite, the function f has 2` square-integrable derivatives. Allowing
s to be any non-negative reals achieves a few things: it gives meaning to “having derivatives of
fractional order”; it hints at the fact that for any s ≥ 0, the operator

f =
∑
k≥0

fk 7→
∑
k≥0

(1 + k(k + 1))s/2fk

is one way to define the operator (−∆+1)s/2. By construction, this operator is Hs → L2 bounded,
a process which embodies the action of taking “s derivatives” (in an “isotropic” way).

15n! ∼
√

2πn
(
n
e

)n
as n→∞
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Remark 1. Given s fixed, although the construction (20) has the special property that it can be
related exactly to the operator (−∆ + 1), one may notice that for any sequence dk such that (i)
dk 6= 0 for all k and (ii) there exists two positive constants such that C1 ≤ |ksdk| ≤ C2, one may
define the norm

‖f‖2 :=
∑
k≥0

d2
k‖fk‖2L2 , f =

∑
k≥0

fk, fk ∈ Hk,

and the closure of C∞(S2) with respect to that norm would give a Hilbert space whose topology is
the same as Hs(S2).

Just like C∞ = C∞even ⊕ C∞odd, we can split these Sobolev spaces into even and odd functions

Hs(S2) = Hs
even(S2)⊕Hs

odd(S2).

On to the smoothing properties of I, the main crux is to understand the polynomial behavior
of λ2` as `→∞. By (19), there exists two positive constants C1, C2 such that

C1(1 + (2`)1/2) ≤ |λ2`| ≤ C2(1 + (2`)1/2), ` ≥ 0. (21)

Out of this, we can deduce the two-sided estimates

C1‖f‖Hs
even
≤ ‖If‖

H
s+1

2
even

≤ C2‖f‖Hs
even

, (22)

a precise description of the fact that the operator I is smoothing of order 1
2 . Inequalities (22) can

first be proved for f ∈ C∞even(S2), then extended by density to the space Hs
even(S2).

Exercise 12. Work out the details of (21) and (22).
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3 Lecture 3 - The Radon transform on the plane R2

3.1 Preliminaries

Recall that the Schwartz space of “smooth functions with rapid decay” (e.g. gaussians, compactly
supported smooth functions) is the Fréchet space S (R2) whose topology is defined by the countable
family of seminorms

‖f‖α,β ≤ sup
R2

|xα∂βf(x)|, α, β ∈ N2
0.

In other words, {fn}n converges to f in S if for every bi-indices α, β, ‖fn − f‖α,β → 0 as n→∞.
The Fourier transform

F : f 7→ f̂(ξ) =

∫
R2

f(x)e−ix·ξ dξ, ξ ∈ R2, (23)

is a well-defined and continuous map from S (R2) to itself, thanks to the following result:

Exercise 13. Show that for any multi-indices α, β and f ∈ S (R2),

F [xα∂βxf ](ξ) = i|α|+|β|∂αξ (ξβ f̂)(ξ).

Deduce that F : S → S is continuous.

The inversion of F is given by

f(x) =
1

(2π)2

∫
R2

f̂(ξ)eix·ξ dξ, x ∈ R2.

The space of tempered distributions, S ′(R2), is the dual space to S (R2), i.e. the space of linear,
continuous forms on S (R2). In other words, u belongs to S ′ if for every {fn}n converging to f
in S , the pairings 〈u, fn〉 converge to 〈u, f〉. One way to characterize them is: u belongs to S ′ if
and only if there exists k ∈ N0 and a constant C such that

|u(f)| ≤ C
∑

|α|,|β|≤k

‖f‖α,β. (24)

A function f ∈ S (R2) gives rise to a tempered distribution uf ∈ S ′(R2) via the action

uf : g 7→ 〈f, g〉 :=

∫
R2

f g dx

and, together with the identity∫
R2

f̂(ξ) g(ξ) dξ =

∫
R2

f(x)ĝ(x) dx,

this motivates an extension of F to S ′(R2) through the definition

〈û, f〉 := 〈u, f̂〉, f ∈ S (R2). (25)

The Fourier transform so obtained is a continuous map F : S ′(R2)→ S ′(R2) which allows to make
sense of the Fourier transform for rather badly behaved objects16.

16think: functions with low-regularity, no-decay at infinity, diracs, etc. . .
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3.2 Definition and basic mapping observations

Given f ∈ Cc(R2) or f ∈ S (R2), we define

Rf(s, θ) =

∫
R
f(sθ + tθ⊥) dt, (s, θ) ∈ Z := R× S1, (26)

where θ =
(

cos θ
sin θ

)
and θ⊥ =

(− sin θ
cos θ

)
. Let us equip Z with area element ds dθ and define L2(Z) with

respect to that measure. For the same reason that the Funk transform automatically produces even
functions with respect to the antipodal map (integration of a function along a curve is insensitive
to the orientation of that curve), the Radon transform of a function automatically satisfies the
symmetry:

Rf(s, θ) = Rf(−s, θ + π), (s, θ) ∈ Z, f ∈ S (R2). (27)

One can define a Schwartz space on S (Z) through the seminorms

‖g‖k,`,m = sup
Z
|sk∂`s∂mθ g(s, θ)|, k, `,m ∈ N0, (28)

and show that R : S (R2)→ S (Z) is continuous.

Exercise 14. Show that R : S (R2)→ S (Z) is continuous. This can be done by showing that for
every p ∈ N0, there exists q ∈ N0 and a constant Cp > 0 such that for all f ∈ S (R2),∑

k,`,m≤q
‖Rf‖k,`,m ≤ C

∑
|α|,|β|≤p

‖f‖α,β.

Similarly, R : C∞c (R2) → C∞c (Z) is continuous17. Observe in particular that if f is supported
in {|x| < R}, then Rf is supported in the truncated cylinder {|s| < R}.

Exercise 15. 1. Compute the Radon transform of the characteristic function of the ball of radius
ε > 0 and center s0e

iβ with ρ > 0.

2. Let f(x) =

{
(1− |x|2)−1/2 |x| < 1,
0 |x| ≥ 1.

Compute Rf(s, θ) for |s| ≤ 1.

The necessity of moment conditions: lack of surjectivity The operator R : S (R2) →
S (Z) is not surjective. To see this, we have the following:

Lemma 2. If g is in the range of R : S (R2) → S (Z), then condition (27) is satisfied, and for
every k ∈ N0,

∫
R g(s, θ)sk ds is a homogeneous polynomial of degree k in cos θ, sin θ.

17Note that spaces of smooth functions with compact support are slightly more general than Fréchet.
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Proof. Suppose g = Rf for some f ∈ S (R2) and let k ≥ 0. We compute∫
R
skRf(s, θ) ds =

∫
R2

skf(sθ + tθ⊥) dt ds

=

∫
R2

(x · θ)kf(x) dx (setting x(s, t) = sθ + tθ⊥)

=

k∑
j=0

(
k

j

)
cosj θ sink−j θ

∫
R2

f(x)xjyk−j dx,

hence the result.

For example, g(s, θ) = e−s
2
eiθ cannot be in the range of R, since

∫
R g(s, θ) ds =

√
2πeiθ is

not a polynomial of degree zero in cos θ, sin θ. More generally, one may cook up enough linearly
independent examples to show that the S (Z)\R(S (R2)) is infinite-dimensional.

It can be shown that the converse also holds, namely that if these conditions are satisfied,
then g = Rf for some f . In fact, such an f can be uniquely constructed from the moments∫
R2 f(x)xjyk−j dx appearing above.

As a consequeence of the previous calculation, we can cook up a proof of injectivity of R on
smooth (or merely continuous), compactly supported functions.

Theorem 3 (Cc(R2)-injectivity of R). Suppose f ∈ Cc(R2) is such that Rf = 0. Then f ≡ 0.

Proof. Let K be a compact set containing the support of f . By the calculations of lemma 2, the
condition Rf = 0 implies that

∫
K f(x)p(x) dx = 0 for all polynomials. Since K is compact, by

Weiestrass approximation (density of polynomials in the uniform norm in C(K), and a fortiori in
the L2(K)-norm), this forces f = 0.

Exercise 16. Let f ∈ S(R2).

1. Show that R[∂xf ] = cos θ ∂∂sRf and R[∂yf ] = sin θ ∂∂sRf .

2. Show that ∂2

∂s2
Rf(s, θ) = R[∆f ](s, θ). ∆ = ∂2

x + ∂2
y .

3. For (α,a) ∈ S1 × R2, define the action of the Euclidean group

(α,a) · f(x) := f(R(α)x + a), R(α) :=

[
cosα sinα
− sinα cosα

]
, f ∈ S (R2).

Find a relation between R[(α,a) · f ] and Rf .

3.3 The L2 − L2 adjoint Rt

By direct calculation, one may compute the L2(R2)→ L2(Z) adjoint Rt given by

Rtg(x) =

∫
S1
g(x · θ, θ) dθ, x ∈ R2. (29)

Notice the duality of geometries: the Radon transform integrates a function over all points
through a line, while its transpose integrates over all lines through a point.
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3.4 The normal operator RtR as a convolution operator

Combining both definitions of R and Rt, one may obtain directly that

RtRf(x) = 2

∫
R2

f(y)
1

|x− y|
dy =

(
2

| · |
? f

)
(x).

Since RtR is a convolution operator, is becomes diagonalized through the Fourier transform,
more specifically

R̂tRf(ξ) = 2ĥ(ξ)f̂(ξ), h(x) :=
1

|x|
.

The question is: what sense does the Fourier transform of h make, and how to compute it ?

Indeed, h is not in L1, nor in L2. . . On the other hand, it makes sense as a tempered distribution,
since for f ∈ S (R2),∣∣∣∣∫

R2

1

|x|
f(x) dx

∣∣∣∣ ≤ sup
x
|f(x)(1 + |x|2)|

∫
R2

1

|x|(1 + |x|2)
dx ≤ C sup

x
|f(x)(1 + |x|2)|.

This justifies that its Fourier transform makes sense as a tempered distribution.

Lemma 4. With h(x) = 1
|x| , we have ĥ(ξ) = 2π

|ξ| in the sense of tempered distributions.

Proof. To compute it, we use the following trick: the function h is the S ′-limit of hε(x) = e−ε|x|

|x| in

the sense that for every f ∈ S , 〈hε, f〉S ′,S → 〈h, f〉S ′,S as ε→ 0. Since the Fourier transform is

S ′ → S ′-continuous, ĥ is the S ′-limit of ĥε, and since hε ∈ L1(R2), we can compute its Fourier
transform in the ’classical’ sense:

ĥε(ξ) =

∫
R2

e−ε|x|

|x|
e−ix·ξ dx =

∫ ∞
0

∫
S1
e−ερ−iρ|ξ| cos θ dθ dρ =

∫
S1

1

ε+ i|ξ| cos θ
dθ

=
1

|ξ|

∫
S1

1
ε
|ξ| + i cos θ

dθ.

Now by complex integration, one can show that for any a > 0,∫
S1

dθ

a+ i cos θ
=

2π√
1 + a2

, (30)

and hence,

ĥε(ξ) =
2π

|ξ|
1√

1 + ε2

|ξ|2
,

whose S ′-limit can be proved to be ĥ(ξ) = 2π
|ξ| .

Exercise 17. Prove (30).
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Conclusion. We then conclude that

R̂tRf(ξ) =
4π

|ξ|
f̂(ξ).

In particular, note that since −̂∆f(ξ) = |ξ|2f̂(ξ), then

F((RtR)2(−∆)f)(ξ) =
(4π)2

|ξ|2
|ξ|2f̂(ξ) = (4π)2f̂(ξ).

In other words, (RtR)2(−∆)f = (4π)2f , a statement which one may think of as “the operator
1

4πR
tR is a negative squareroot of (−∆)”.

What remains to clarify is: in what spaces does all of this work ?

3.5 Mapping properties on weighted L2 spaces

Recall the definition, for f ∈ S (R2):

Rf(s, θ) =

∫
R
f(sθ + tθ⊥) dt, (s, θ) ∈ R× S1.

One may show that R : S (R2) → S (Z) is continuous. However, in spite of the fact that we
have defined the “adjoint” of R relative to the L2(R2)-L2(Z) pairing, let us first clarify the following
point:

Lemma 5. The Radon transform R : L2(R2)→ L2(Z) is not bounded.

Proof. Consider the function f(x) = 1
〈x〉β where we denote 〈x〉 := (1 + |x|2)1/2. We make the

following claims:

� f ∈ L2 iff β > 1: indeed,

‖f‖2L2 =

∫
R2

dx

(1 + |x|2)β
= 2π

∫ ∞
0

ρ dρ

(1 + ρ2)β
,

and the latter is finite iff 2β − 1 > 1.

� If β > 1, its Radon transform takes the form

Rf(s, θ) =

∫
R

1

(1 + s2 + t2)β/2
dt =

1

〈s〉β−1

∫
R

du

(1 + u2)β/2
=

Aβ
〈s〉β−1

,

upon changing variable t = u
√

1 + s2. Aβ is a fixed number, finite iff β > 1.

� For β > 1, Rf ∈ L2(Z) iff β > 3
2 : indeed,

‖Rf‖2L2(Z) = A2
β2π

∫
R

ds

〈s〉2β−2
,

and the integral on the right is finite iff 2β − 2 > 1.
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As a conclusion for any 1 < β ≤ 3/2, the function f(x) = 〈x〉−β is in L2 while Rf is not in L2.

To reintroduce spaces in which the Radon transform becomes bounded, we need to consider
weighted spaces where the weights behave polynomially at infinity. In particular, we define

L2(R2, 〈x〉α) :=

{
f :

∫
R2

|f(x)|2〈x〉α dx <∞
}
,

L2(Z, 〈s〉α) :=

{
g :

∫
Z
|g(s, θ)|2〈s〉α ds dθ <∞

}
.

With these definitions, we prove the following:

Theorem 6. For any α > 1
2 , the Radon transform is continuous in the following setting:

R : L2(R2, 〈x〉2α)→ L2(Z, 〈s〉2α−1),

with operator norm no greater than
√

2πA2α, A2α :=
∫
R

dt
(1+t2)α

.

Proof. Suppose α > 1
2 , then use Cauchy-Schwarz inequality to make appear

|Rf |(s, θ)2 =

∣∣∣∣∣
∫
R
f(sθ + tθ⊥)

(1 + s2 + t2)α/2

(1 + s2 + t2)α/2
dt

∣∣∣∣∣
≤
∫
R
|f(sθ + tθ⊥)|2〈sθ + tθ⊥〉α dt ·

∫
R

dt

(1 + s2 + t2)α
.

Changing variable t =
√

1 + s2u, we arrive at∫
R

dt

(1 + s2 + t2)α
=

A2α

〈s〉2α−1
, A2α =

∫
R

dt

(1 + t2)α
<∞.

Multiplying through by 〈s〉2α−1, we arrive at

|Rf |(s, θ)2〈s〉2α−1 ≤ A2α

∫
R
|f(sθ + tθ⊥)|2〈sθ + tθ⊥〉α dt.

Now integrate w.r.t. ds dθ, change variable x(s, t) = sθ+tθ⊥ in the R.H.S. to arrive at the estimate

‖Rf‖2L2(Z,〈s〉2α−1) ≤ 2πA2α‖f‖2L2(R2,〈x〉2α).

Hence the result.

Exercise 18. Find an expression for Aβ in terms of the Beta function

B(x, y) := 2

∫ π/2

0
(sin θ)2x−1(cos θ)2y−1 dθ, x > 0, y > 0.

Remark 2. For any α > 1/2, we can now compute the adjoint of R : L2(R2, 〈x〉2α)→ L2(Z, 〈s〉),
by direct calculation it is given by R∗α = 〈x〉−2αRt〈s〉2α−1. In particular, we obtain many bounded
self-adjoint realizations of R on a continuous family of weighted L2 spaces:

〈x〉−2αRt〈s〉2α−1R : L2(R2, 〈x〉2α)→ L2(R2, 〈x〉2α), α > 1/2.

One may notice that only the case α = 1/2 would make the operator RtR appear. However, the
previous proof breaks down for α = 1/2.
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4 Lecture 4 - Fourier slice theorem and consequences

4.1 The Fourier Slice Theorem

We first describe our Hilbert scales on R2 and Z. We define the Fourier transform on R2 as usual:

f̂(ξ) =

∫
R2

e−ix·ξf(x) dx, ξ ∈ R2, f ∈ L2(R2),

and on Z,

g̃(σ, θ) =

∫
R
e−isσg(s, θ) ds, g ∈ L2(Z).

for r ∈ R, define

‖f‖2Hr(R2) =

∫
R2

(1 + |ξ|2)r|f̂(ξ)|2 dξ, ‖g‖2Hs(Z) =

∫
Z

(1 + σ2)r|g̃(σ, θ)|2 dσ dθ.

Theorem 7 (Fourier Slice Theorem). For all f ∈ S (R2),

R̃f(σ, θ) = f̂(σθ), (σ, θ) ∈ Z.

Proof.

R̃f(σ, θ) =

∫
R
e−iσsRf(s, θ) ds =

∫
R
e−iσs

∫
R
f(sθ + tθ⊥) dt ds.

The result follows by changing variable x(s, t) = sθ + tθ⊥, noticing that sσ = x · θσ = x · (σθ).

Some consequences:

� If f ∈ S satisfies Rf = 0, then R̃f = 0 and hence f̂ = 0, hence f = 0 (Injectivity # 2).

� The FST motivates a first reconstruction formula: take Rf , compute its 1D Fourier transform
in s, this is the Fourier transform of f in polar coordinates; recover f from its Fourier
transform. This last step may require a tricky interpolation from polar to cartesian, and we
will see below other reconstruction formulas which do not have this drawback.

4.2 Stability estimates

In the Hilbert scales defined above, the FST allows to formulate sharp stability estimates.

Theorem 8 (two-sided estimates, see Thm 2.2.2. in [Bal12]). Let f ∈ Hr(Rn) for some r ∈ R.
Then we have the following inequalities:

(i)
√

2‖f‖Hr(R2) ≤ ‖Rf‖Hr+1/2(Z).

(ii) For any smooth and compactly supported function χ,

‖R(χf)‖Hr+1/2(Z) ≤ Cχ‖χf‖Hr(R2).
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Other Hilbert scales were recently defined in [Sha16], allowing further isometric estimates similar
to (i).

From the “two-sidedness” of the conclusion above, the estimates can not be improved on the
Sobolev scale. This is an embodiment of the fact that the problem is “ill-posed of order 1/2”. Note
however that one direction does require the use of a cutoff function χ, and the constant Cχ cannot
be made independent of χ.

Proof. For the purpose of proving both (i) and (ii), we first compute, as a preliminary:

‖Rf‖2
Hr+1

2 (Z)
=

∫
R×S1

|R̃f(σ, θ)|2〈σ〉2r+1 dσ dθ = 2

∫
(0,∞)×S1

|R̃f(σ, θ)|2〈σ〉2r+1 dσ dθ,

where we have used the symmetry R̃f(σ, θ) = R̃f(−σ, θ+π). We now use the Fourier Slice Theorem
and change variable ξ = σθ to arrive at

‖Rf‖2
Hr+1

2 (Z)
= 2

∫
R2

|f̂(ξ)|2〈ξ〉2r 〈ξ〉
|ξ|

dξ.

Now notice that we always have 〈ξ〉 ≥ |ξ|, so estimate (i) following immediately from bounding 〈ξ〉|ξ|
from below by 1.

To obtain (ii) however, we see that there is an issue18 because 〈ξ〉|ξ| is not bounded on R2. Fixing

a “cutoff” function χ ∈ C∞c (R2), we rewrite the last equation as

1

2
‖R(χf)‖2

Hr+1
2 (Z)

=

∫
R2

|χ̂f(ξ)|2〈ξ〉2r 〈ξ〉
|ξ|

dξ =

∫
|ξ|<1︸ ︷︷ ︸
I1

+

∫
|ξ|≥1︸ ︷︷ ︸
I2

.

On the term I2, for |ξ| ≥ 1, we always have 〈ξ〉|ξ| =
(

1
|ξ|2 + 1

)1/2
≤
√

2, and hence I2 ≤
√

2‖χf‖Hr .

Bounding I1 is the trickier part. We exploit the fact that the singularity at ξ = 0 is integrable:

I1 =

∫
|ξ|≤1

|χ̂f(ξ)|2〈ξ〉2r 〈ξ〉
|ξ|

dξ ≤
∫
|ξ|≤1
〈ξ〉2r 〈ξ〉

|ξ|
dξ︸ ︷︷ ︸

=C<∞

· sup
|ξ|≤1
|χ̂f(ξ)|2.

Now fix ψ ∈ C∞c (R2) equal to 1 on the support of χ so that χf = ψχf . Then for |ξ| ≤ 1,

|χ̂f(ξ)|2 = |χ̂fψ(ξ)|2 =

∣∣∣∣∫
R2

χ(x)f(x)ψ(x)e−ix·ξ dx

∣∣∣∣2
=

1

(2π)2

∣∣∣∣∫
R2

χ̂f(η) ̂ψe−i(·)·ξ(η) dη

∣∣∣∣2 (Parseval)

≤ 1

(2π)2

∫
R2

|χ̂f(η)|2〈η〉2r dη ·
∫
R2

| ̂ψe−i(·)·ξ(η)|2〈η〉−2r dη (Cauchy-Schwarz)

≤ 1

(2π)2
‖χf‖2Hr

∫
R2

|ψ̂(η + ξ)|2〈η〉−2r dη.

18This is sometimes referred to as a zero-frequency problem, since it occurs at ξ = 0.
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The last factor is uniformly bounded over the set |ξ| ≤ 1. Putting everything back together,

I1 ≤ Cχ‖χf‖Hr ,

where the constant Cχ may depend on the size of the support of f (through the choice of function
ψ).

Some comments about the Hs spaces on Z. The classical Sobolev scale on Z should read
something like: Hk

cl(Z) is made of functions g in L2(Z) such that for all `,m ∈ N0 with `+m ≤ k,
∂`θ∂

m
s g (in the sense of distributions) belongs to L2(Z).

Our current definition only allows regularity with respect to s, and as such, defines a family of
“anisotropic Sobolev spaces”. What, then, makes us recover regularity in the θ variable when a
function has s-regularity ? Usually, nothing. However in our case, the constraint that g be in the
range of R will allow one to propage regularity in s into regularity in θ.

In a nutshell, the topologies Hk(Z) and Hk
cl(Z) are not equivalent in general, but they are

on the range of R (when considered on functions with compact support). Such a statement finds
rigorous formulations in, e.g., [Nat01, Ch. II, Th. 5.2] and [Mon20, Proposition 16].

4.3 Interlude: Riesz potentials, Hilbert transform and convolution operators

This section serves as preliminary for the one that follows. Some details have been skipped in
lecture.

Recall the identity f̂ ? g(ξ) = f̂(ξ)ĝ(ξ). It’s true for f, g ∈ S (Rn) but can be pushed to g ∈ S ′

and f a distribution with compact support.

Given f a distribution with compact support19, one may consider the convolution operator
Af : S → S ′ defined by Af (g) := f ? g. The previous identity tells us that it can be computed
in two ways: (i) by direct computation of the convolution, or (ii) via Fourier transform, as Af =

F−1 ◦ f̂(ξ)◦F . In other context, the function f̂(ξ) is called the symbol (or Fourier multiplier) of Af ,

and Af is called the quantization of f̂ . The form (ii) is extremely useful for computing purposes,
as the computation of F and F−1 can be done using the Fast Fourier Fransform (FFT).

Several operators are convolution operators in disguise:

� The identity is nothing but g 7→ δ ? g, which, as a Fourier multiplier, gives f̂(ξ) = 1. In
particular, δ̂ = 1.

� Any differential operator P (D) =
∑
|α|≤m aα∂

α can be viewed as convolution by P (D)δ, with

Fourier multilplier P (iξ). In particular, the Laplacian ∆ has symbol −|ξ|2.

A class of interest to us in the next section will be the Riesz potentials: on Rn, for α < n,
define Iα via Fourier transform:

Îαf(ξ) := |ξ|−αf̂(ξ). (31)

19An element of E in the PDE notes.
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The condition α < n ensures that |ξ|−αf̂(ξ) remains locally integrable so that it can be viewed as
an element of S ′.

Some comments: for α < 0, Iα is “unsmoothing”, for example, I−2 = −∆; for α = 0, I0 is the
identity; for 0 < α < n, Iα is smoothing. It is also immediately clear that Iα ◦ Iβ = Iβ ◦ Iα = Iα+β

as long as α, β and α+ β are strictly less than n.

The Hilbert transform. Picking up where we left off, let us focus on the one-dimensional case,
using s for the physical variable and σ for its dual Fourier variable. The operator I−1 is then a
convolution operator with symbol |σ|, and one may wonder how close it is from being a d

ds derivative,
an operator whose symbol is iσ. The answer is fairly simple: upon writing

|σ| = iσ · 1

i
sgn(σ),

we see that I−1 can be written as the product of two commuting operators, one being d
ds , and the

other one being the operator with Fourier multiplier ĥ(σ) := 1
i sgn(σ). We call that operator the

Hilbert transform. Namely, define

H : L2(R)→ L2(R), Hf := F−1(ĥ(ξ)Ff). (32)

From this definition, some interesting properties follow quickly: Parseval’s formula implies that
H is an isometry of L2; moreover, H2 = −Id.

One may however wonder what that operator looks like as a convolution operator. Namely: if
ĥ(σ) := 1

i sgn(σ), what does h ∈ S ′ look like ? Upon defining the distribution p.v.1s by

〈p.v.1
s
, ϕ〉S ′,S := lim

ε→0

∫
R\(−ε,ε)

ϕ(s)

s
ds =

∫ ∞
0

ϕ(s)− ϕ(−s)
s

ds,

we have the following

Lemma 9. With ĥ(σ) = 1
i sgn(σ), we have h(s) = 1

πp.v.
1
s .

Proof. We first show that d
dσ sgn(σ) = 2δ. Indeed, for any ϕ ∈ S ,

〈 d
dσ

sgn(σ), ϕ〉 = −〈sgn(σ), ϕ′〉 = −
∫
R

sgn(σ)ϕ′(σ) dσ

=

∫ 0

−∞
ϕ′(σ) dσ +

∫ ∞
0

ϕ′(σ) dσ = 2ϕ(0) = 〈2δ, ϕ〉.

In addition, we claim that δ = 1̂
2π , as the line below shows:

〈δ, ϕ〉 = ϕ(0) =
1

2π

∫
R
ϕ̂(ξ) dξ = 〈 1

2π
, ϕ̂〉 = 〈 1̂

2π
, ϕ〉.

Combining the past two claims, we arrive at the conclusion that

−̂ish(σ) =
d

dσ
ĥ(σ) =

d

dσ

1

i
sgn(σ) =

2

i
δ =

2

i

1̂

2π
.
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Since the Fourier transform is an isomorphism, we deduce the equality of tempered distributions:

sh(s) =
1

π
. (33)

One may be tempted to divide by s and call it a day, but the function 1
s does not define a distri-

bution. However, the distribution 1
πp.v.

1
s does, and in fact, solves equation (33) (exercise: check

this). As a result, we have the following equality of tempered distributions

s

(
h(s)− 1

π
p.v.

1

s

)
= 0.

We now use the following lemma, whose sketch is given in Ex. 19:

Lemma 10. If u ∈ S ′ solves su = 0 in S ′, then u = Cδ for some constant C.

We then deduce that

h(s) =
1

π
p.v.

1

s
+ Cδ.

Finally, C is zero by evenness/oddness considerations: h and 1
πp.v.

1
s are both odd in the sense

that 〈h, ϕ(−s)〉 = −〈h, ϕ〉 for all ϕ ∈ S , and δ is even in the sense that 〈δ, ϕ(−s)〉 = 〈δ, ϕ〉 for all
ϕ ∈ S . The last display in the equality forces C to be zero. Hence the result.

By virtue of Lemma (9), we obtain the following second characterization of the Hilbert trans-
form:

Hf(t) =
1

π
p.v.

∫
R

f(s)

t− s
ds, (34)

which we will use later.

Exercise 19. Sketch of proof of Lemma 10: suppose su = 0. Fix χ ∈ C∞c (R) a function equal to
1 in a neighbourhood of 0. For ϕ ∈ S , write ϕ(s) = ϕ(0)χ(s) + sψ(s) for some ψ ∈ S . Conclude
by computing 〈u, ϕ〉 using this decomposition.

Exercise 20 (A second proof of Lemma 9). 1. Show that s
ε2+s2

converges to p.v.1s in S ′.

2. Compute the inverse Fourier transform of the L1 function ĥε(σ) = 1
i sgn(σ)e−ε|σ|. Conclude

by S ′-approximation and continuity of the Fourier transform in S ′.

4.4 Filtered-Backprojection formulas

Exact formulas. In what follows, we will somewhat abuse notation: for a function on R2, we
will define the Riesz potential Iαf as in (31). For functions on Z, we will use the 1D Riesz potential
w.r.t. the s variable, namely

Ĩαg(σ, θ) := |σ|−αg̃(σ, θ).

Using these operators, we can then derive the following one-parameter family of inversion for-
mulas, see also [Nat01, Thm. 2.1]. Recall the definition of the backprojection operator

Rtg(x) =

∫
S1
g(x · θ, θ) dθ, x ∈ R2.
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Theorem 11. For all α < 2 and f ∈ S (R2),

f(x) =
1

4π
I−αRtIα−1Rf.

Proof. We compute, using the Fourier inversion formula

Iαf(x) =
1

(2π)2

∫
R2

Îαf(ξ)eix·ξ dξ

(a)
=

1

(2π)2

∫
R2

|ξ|−αf̂(ξ)eix·ξ dξ

=
1

(2π)2

∫ ∞
0

∫
S1
|σ|1−αf̂(σθ)eix·σθ dσ dθ (ξ = σθ)

(b)
=

1

(2π)2

1

2

∫
R

∫
S1
|σ|1−αR̃f(σ, θ)eix·σθ dσ dθ

=
1

4π

∫
S1
I1−αRf(x · θ, θ) dθ

=
1

4π
RtI1−αRf(x).

In (a) we have used the definition of Iα, and in (b) we have used the symmetry R̃f(−σ, θ + π) =

R̃f(σ, θ) to extend the integral to R.

Special cases:

� The case α = 1 reads

f =
1

4π
I−1RtRf,

where I−1 corresponds to the Fourier multiplier |ξ|, i.e. I−1 =
√
−∆. We could have guessed

this from the work that was done in Section 3.

� Perhaps the most popular case is when α = 0, this gives the celebrated filtered-backprojection
formula:

f =
1

4π
RtI−1Rf. (35)

The operator I−1 is the one-dimensional Fourier multiplier |σ|. Computing it is done colum-
nwise (for each θ separately), and each column is processed via fast fourier transform

before and after multiplication of by |σ|. As explained above we can write I−1 = d
dsH = H d

ds .

� One can rewrite (35) so as to recover Radon’s original inversion formula:

f(x) =
−1

π

∫ ∞
0

dFx(q)

q
, Fx(q) :=

1

2π

∫
S1
Rf(q + x · θ, θ) dθ.

This formula has a nice geometric interpretation: f(x) is a weighted functional of Fx(q), which
is the average of Rf over all lines tangent to the circle of center x and radius q.
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Approximate formulas. The Fourier multiplier |σ|, also called a ramp filter, amplifies high
frequencies more than low frequencies. Since actual images have limited bandwidth20, and since
noise tends to be more prominent at high frequencies, we want to replace this “exact” filter by a
low-pass one, emphasizing the features of f which can be more faithfully reconstructed by the data
at hand.

The general setting is the following: take w ∈ S (R), w ≡ w(s) an even function (in the sense
that w(−s) = w(s)), and let W = Rtw, that is to say

W (x) =

∫
S1
w(x · θ) dθ = W (|x|).

Then following the same scheme of proof as Theorem 11, one can show the following general

result. In the statement
x
? denotes two-dimensional convolution and

s
? denotes one-dimensional

s-convolution.

Theorem 12 (Filtered-Backprojection Formulas).

W
x
? f =

1

4π
Rt(w

s
? Rf). (36)

Exercise 21. Prove Theorem 12.

Remark 3 (On filters). Formulas of this type do not reconstruct f exactly, rather, they reconstruct
W ? f , which should be thought of as a “regularized”, low-frequency version of the unknown.

The relevant parameter is w̃(σ), which should be in some sense a low-pass version of |σ|. Fixing
a cutoff bandwidth b > 0, here are the most commonly used filters in Matlab’s iradon function.

Ram-Lak: w̃b(σ) = |σ|χ[−b,b](σ).

Shepp-Logan: w̃b(σ) = |σ|χ[−b,b](σ) sin(πσ/2b)
πσ/2b .

cosine: w̃b(σ) = |σ|χ[−b,b](σ) cos(π2
|σ|
b ).

Hahn: w̃b(σ) = |σ|χ[−b,b](σ)(.54 + .46 cos(πσ/b)).

Hamming: w̃b(σ) = |σ|χ[−b,b](σ)(.5 + .5 cos(πσ/b)).

Exercise 22. The Radon transform in higher dimensions. For f ∈ S (Rn), define

Rf(s, ω) =

∫
{x·ω=s}

f, s ∈ R, ω ∈ Sn−1,

where the hyperplane hs,ω := {x ∈ Rn, x · ω = s} is equipped with its natural Lebesgue measure.

Notice the symmetry Rf(s, ω) = Rf(−s,−ω). Define f̂ the Fourier transform as usual on Rn, and
g̃(σ, ω) the one-dimensional Fourier transform along the s factor for functions on R× Sn−1.

1. Prove the Fourier slice theorem: for any f ∈ S (Rn), R̃f(σ, ω) = f̂(σω),

20i.e., their Fourier transforms is supported in a ball of radius b. The smallest such b is often called the bandwidth.
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2. Compute the formal adjoint operator of R : L2(Rn) → L2(R× Sn−1), call it R∗. What is its
geometric meaning ?

3. Recalling the definition of the Riesz potentials as usual (for α < n, Îαf(ξ) = |ξ|−αf̂(ξ)), prove
the filtered-backprojection formula, true for any f ∈ S (Rn):

f =
1

2
(2π)1−nI−αR∗Iα−n+1Rf, α < n.

4. Focus on the case α = 0 and explain how the locality of I−n+1 depends on the parity of n.

5. Conclude that in odd dimensions, f(x) can be reconstructed from the Radon transform over
all planes intersecting a small neighborhood of x.

Exercise 23. Radon transform and wave equation. Recall d’Alembert’s formula

v(x, t) =
1

2
(f(x− t) + f(x+ t)) +

1

2

∫ x+t

x−t
g(u) du

which provides the expression for the unique solution to the 1 + 1-dimensional wave problem

∂2v

∂t2
− ∂2v

∂x2
= 0 (x ∈ R, t > 0), v|t=0 = f,

∂v

∂t
|t=0 = g.

This problem shows how the Radon transform and d’Alembert’s formula provide a method for solving
wave equations in Rn × (0,∞) for any n ∈ N.

1. Prove that for f ∈ S (Rn), d2

ds2
Rf = R[∆f ].

2. Use the previous result to derive a solution of the wave problem

∂ttu−∆u = 0 (x ∈ Rn, t > 0), u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),

by setting up a PDE problem for the function v(s, ω, t) := R[u(·, t)](s, ω) (where the Radon
transform acts on the x-variable only).

4.5 Moving to functions supported on the unit disk

As a precursor to the next lecture, we shall now restrict functions to those with compact support
in the unit disk D, and make the following observation: the Radon transform is not only L2(D)→
L2([−1, 1]×S1, ds dθ)-bounded, but the presence of short curves allows us to shrink the co-domain
immediately, to write:

Theorem 13. The Radon transform is bounded as an operator

R : L2(D)→ L2([−1, 1]× S1, (1− s2)−1/2 ds dθ). (37)

Exercise 24. Prove Theorem 13.
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In the next lecture, we will switch from parallel coordinates (s, θ) to fan-beam coordinates

(s, θ) 7→ (β = θ − π/2− sin−1 s, α = sin−1 s) ∈ S1 × (−π/2, π/2). (38)

The latter coordinates, arising from the idea of parameterizing all segments passing through D
from the boundary, are more amenable to a theory of X-ray transforms on Riemannian manifolds,
since parallel geometry is somewhat a “global” view of geodesics which one may not have on
general manifolds. In addition, this change of variable conveniently desingularizes the volume form
(1− s2)−1/2 ds dθ into dα dβ.
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5 Lecture 5 - The X-ray transform on the unit disk D

We will now return to an example where the integral geometric operator of interest has discrete
spectrum, and where a Singular Value Decomposition can be derived.

5.1 From parallel beam to fan-beam

From Exercise (24), one may find out that the operator

R : L2(D)→ L2([−1, 1]× S1, (1− s2)−1/2 ds dθ)

is bounded. In spirit this weight on the codomain arises from the fact that integration curves
become shorter as |s| approaches 1 and this also contributes to the smallness of Rf there. Note
that we have shrunk the co-domain, and thus we have changed the expression of the adjoint, which
now looks like

R∗g(x) =

∫
S1

[(1− s2)−1/2g](x · θ, θ) dθ =

∫
S1

g(x · θ, θ)
(1− (x · θ)2)1/2

dθ.

There are “natural” angle variables in which the measure (1−s2)−1/2 ds dθ becomes dα dβ, called
fan-beam coordinates: β ∈ S1 parameterizes a point from the boundary, while α ∈ (−π/2, π/2)
parameterizes the angle where to cast the line segment, relative to the inner pointing normal. See
Fig. 1 for an example of both transforms side-by-side.

We now call I0 the operator R|L2(D) to connect it with X-ray transform notation21. Hence, for
f ∈ L2(D), let us define

I0f(β, α) :=

∫ 2 cosα

0
f(eiβ + tei(β+π+α)) dt, (β, α) ∈ S1 × [−π/2, π/2]. (39)

Below, we will denote ∂+SD = S1
β × [−π/2, π/2]α. This notation, customarily used in the

context of X-ray transforms on manifolds, means the “inward-point boundary of the unit tangent
bundle SD”, i.e. the set of boundary points of D together with the inward-pointing unit tangent
vectors. One may also think of the outward-pointing vectors ∂−SD = S1

β × [π/2, 3π/2]α, and we
have ∂SD = ∂+SD ∪ ∂−SD.

Elementary mapping properties. A first observation is that the symmetry (27) translates in
this case into

I0f(β, α) = I0f(β + π + 2α,−α), (β, α) ∈ ∂+SD. (40)

There is another interesting observation: upon changing variable t = (2 cosα)u inside the
integral, one may rewrite this integral as:

I0f(β, α) := 2 cosα

∫ 1

0
f
(
ei(α+β)((1− 2u) cosα− i sinα)

)
du, (β, α) ∈ S1 × [−π/2, π/2].

(41)
21On (M, g) a Riemannian manifolds with unit tangent bundle SM , I is often notation for the geodesic X-ray

transform on functions on SM , while I0 is its restriction to functions on M .
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Exercise 25. Show (41).

If f ∈ C∞(D), we see that I0f is not only smooth on the interior of ∂+SD, but it naturally
wants to be extended to ∂SD := S1

β × S1
α into a smooth function that is odd on the “circle fibers of

∂SD”, i.e. odd with respect to the involution (β, α) 7→ (β, α + π). Combining this last comment
with the fact that the composition of (β, α) 7→ (β + π + 2α,−α) with (β, α) 7→ (β, α + π) is the
“scattering relation”

∂+SD 3 (β, α) 7→ (β + π + 2α, π − α) ∈ ∂−SD, (42)

we arrive at the conclusion that

Lemma 14. The operator I0 maps C∞(D) into C∞α,−,+(∂+SD), the space of smooth functions on
∂+SD satisfying (40), and whose odd extension to ∂−SD by oddness via the map (42) is smooth on
SD.

See [MM21] for more general facts and motivation behind the space C∞α,−,+(∂+SD).

The adjoint I∗0 . Since I0(β, α) = Rf(sinα, β+π/2+α), using a change of variable from (s, θ) to
(β, α), one may show that I0 : L2(D)→ L2(S1

β × [−π/2, π/2]α, dα dβ) is bounded, and its adjoint
(a.k.a. the backprojection operator) takes the form

I∗0g(x) =

∫
S1

1

cosα−(x, θ)
g(β−(x, θ), α−(x, θ)) dθ, (43)

where β−(x, θ), α−(x, θ) are the fan-beam coordinates of the unique line passing through (x, θ), as
explained in section 5.3 below.

Figure 1: left to right: a function f , its Radon transform Rf (axes: (θ, s)), its X-ray transform I0f
(axes: (β, α))

The purpose below is to compute the full SVD of I0 using the method of intertwining differential
operators, which we now recall.
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5.2 The method of intertwining operators

Suppose we have a bounded, injective operator between two Hilbert spaces

A : (H1, ‖ · ‖1)→ (H2, ‖ · ‖2),

and suppose we have two operators D1 : D(D1) → H1 and D2 : D(D2) → H2, defined on dense
subspaces D(D1) ⊂ H1 and D(D2) ⊂ H2, and self-adjoint in the sense that for all u, v ∈ D(D1),
〈D1u, v〉1 = 〈u,D1v〉1, similarly for D2.

Suppose that the intertwining relation A ◦ D1 = D2 ◦ A holds on D(D1), and assume further
that D1 has simple spectrum λ0 ≤ λ1 ≤ · · · ≤ λn ≤ . . . with eigenvectors {un}n≥0, a complete
orthonormal set in H1.

Theorem 15. With the assumptions above, the SVD of A : H1 → A(H1) is given by(
un
‖un‖1

,
Aun
‖Aun‖2

,
‖un‖1
‖Aun‖2

)
n≥0

.

Note that A is not always surjective, this is why the operator is co-restricted to its range in
the statement. If A is not injective, it may be that Aun = 0 for some n, in which case those un’s
participate in the kernel of A.

Proof of Theorem 15. For all n ≥ 0, set vn = Aun. We have that

D2vn = D2(Aun) = A(D1un) = A(λnun) = λnvn,

hence the family {vn}n≥0, being eigenvectors with distinct eigenvalues of the self-adjoint operator,
is an orthogonal family. By definition, {vn/‖vn‖2}n≥0 is a complete orthonormal set in A(H1), and
we obviously have

A
un
‖un‖1

=
‖vn‖2
‖un‖1

vn
‖vn‖2

, n ≥ 0.

It just remains to show that

A∗
vn
‖vn‖2

=
‖vn‖2
‖un‖1

un
‖un‖1

, n ≥ 0.

To do this, we simply expand A∗vn =
∑

p≥0 anpup, where

anp =
〈A∗vn, up〉
‖up‖21

=
〈vn, Aup〉
‖up‖21

=
〈vn, vp〉
‖up‖21

= δnp
‖vn‖22
‖un‖21

,

and the result follows.

The original idea can be found in [Maa91], where the backprojection operator I∗0 (in fact, in
general dimension there, the adjoint of the Radon transform) is first diagonalized using spherical
harmonics, into countably many one-dimensional operators (one for each spherical mode). Each
such operator intertwines two second-order differential operators, and the computation of the spec-
trum of one involves solving ODEs, which in spirit is much simpler than solving integral equations.
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What if A is not injective ? Note further that upon taking adjoints and using the self-
adjointness of D1, D2, we may obtain a second intertwining relation D1 ◦ A∗ = A∗ ◦ D2, and
combining the two, we arrive that the fact that [A∗A,D1] = 0 and [AA∗, D2] = 0.

In particular, the eigenspaces of D1 are A∗A-stable, and since they are all one-dimensional
A∗Aun = anun for every n ≥ 0. The kernel of A is precisely the span of those vectors un for which
an = 0, and upon removing those and replacing A by its injective restriction A|{kerA}⊥ , we can
apply Theorem 15.

In what follows, we will factor in the circular symmetry of the problem by considering pairs
of intertwined differential operators.

5.3 Interwiners for the backprojection operator I∗0

The presentation that follows is a combination of [Mon20, Section 3] and [MM21]. We will denote

∂+SD = S1
β × [−π/2, π/2]α, µ = cosα.

Let us define the operator I]0 : C∞α (∂+SD) → C∞(D) as the formal adjoint of I0 : L2(D) →
L2(∂+SD, µ dα dβ), (so that I∗0 defined in (43) takes the form I∗0 := I]0( 1

µ ·)). Such an opera-
tor takes the form

I]0g(x) =

∫
S1
g(β−(x, θ), α−(x, θ)) dθ, (44)

where β−(x, θ), α−(x, θ) are the fan-beam coordinates of the unique oriented line passing through
(x, θ). In what follows, we will identify x with ρeiω. See Figure 2 for a summary.

x

y

θ

ω
ρ β−

α−
x = ρeiω

eiβ−

Figure 2: Setting of definition of (β−(ρeiω, θ), α−(ρeiω, θ)) (written as (β−, α−) on the diagram).
The rotation invariance implies that if θ and ω are translated by δ, then β− is translated by δ and
α− remains unchanged.

From the observation made in Fig. 2, these functions satisfy the following relation:

β−(ρeiω, θ) = ω + β−(ρ, θ − ω), α−(ρeiω, θ) = α−(ρ, θ − ω).
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In particular, the expression of I]0g immediately becomes

I]0g(ρeiω) =

∫
S1
g(ω + β−(ρ, θ − ω), α−(ρ, θ − ω)) dθ =

∫
S1
g(ω + β−(ρ, θ), α−(ρ, θ)) dθ.

We then immediately see the first intertwining property

∂ω ◦ I]0 = I]0 ◦ ∂β, ∂ω ◦ I∗0 = I∗0 ◦ ∂β.

Upon defining

T := ∂β − ∂α, (45)

a second intertwining property is then given as follows.

Theorem 16. Define the operators

L := (1− ρ2)
∂2

∂ρ2
+

(
1

ρ
− 3ρ

)
∂

∂ρ
+

1

ρ2

∂2

∂ω2
, (46)

and D := T 2 + 2 tanαT . Then we have the following intertwining properties:

L ◦ I]0 = I]0 ◦D, (47)

L ◦ I∗0 = I∗0 ◦ (−T 2), L := −L+ 1. (48)

Proof. Proof of (47). In what follows, α− and β− will be short for α−(ρ, θ) and β−(ρ, θ). Note the
easy two properties

β− + α− + π = θ, sinα− = −ρ sin θ.

In particular, this gives ∂α−
∂ρ = − sin θ

cosα−
= 1

ρ tanα−, ∂α−
∂θ = −ρ cos θ

cosα−
, and the derivatives of β− can

be deduced through the relations

∂β−
∂ρ

= −∂α−
∂ρ

,
∂β−
∂θ

= 1− ∂α−
∂θ

.

From these relations, we immediately deduce the property that

∂

∂ρ
I]0g = −1

ρ
I]0[tanαTg].

Iterating this formula, we obtain

∂2

∂ρ2
I]0g =

1

ρ2
I]0[tanαTg] +

1

ρ2
I]0[tanαT (tanαTg)] =

1

ρ2
I]0[tan2 αT 2g − tan3 αTg].

Then by direct algebra, using the last two identities, we obtain

[(1− ρ2)∂2
ρ + (

1

ρ
− 3ρ)∂ρ]I

]
0g =

1

ρ2
I]0[tan2 αT 2g − tanα(1 + tan2 α)Tg] . . .

− I]0[tan2 αT 2g − tanα(tan2 α+ 3)Tg].

(49)
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To obtain further identities, we write

0 =

∫
S1
∂θ(g(ω + β−, α−)) dθ

=

∫
S1

(
∂β−
∂θ

∂β +
∂α−
∂θ

∂α

)
g(ω + β−, α−) dθ

= I]0[∂βg] + ρ

∫
S1

cos θ

cosα−
Tg(ω + β−, α−) dθ,

as well as

0 =

∫
S1
∂2
θ (g(ω + β−, α−)) dθ

=

∫
S1
∂θ

(
∂βg +

ρ cos θ

cosα−
Tg

)
dθ

=

∫
S1

(
∂2
βg +

2ρ cos θ

cosα−
T∂βg −

(
ρ sin θ

cosα−
+ ρ2 cos2 θ

sinα−
cos3 α−

)
Tg +

ρ2 cos2 θ

cos2 α−
T 2g

)
dθ.

From the previous identity and the fact that T∂β = ∂βT , the second term equals −2I]0[∂2
βg]. In the

remaining terms, we use that −ρ sin θ = sinα− and ρ2 cos2 θ = ρ2(1 − sin2 θ) = ρ2 − sin2 α− and
the previous equality becomes

1

ρ2
I]0[tan2 αT 2g − tanα(1 + tan2 α)Tg] = − 1

ρ2
I]0[∂2

βg] + I]0[− tanα(1 + tan2 α)Tg + (1 + tan2 α)T 2g]

= − 1

ρ2
∂2
ωI

]
0g + I]0[− tanα(1 + tan2 α)Tg + (1 + tan2 α)T 2g].

Plugging this relation into the right hand side of (49), we obtain[
(1− ρ2)∂2

ρ +

(
1

ρ
− 3ρ

)
∂ρ

]
I]0g = − 1

ρ2
∂2
ωI

]
0g + I]0[(T 2 + 2 tanαT )g],

hence (47) is proved. Equation (48) follows immediately once noticing that

D =
1

µ
T 2µ+ 1,

thus Theorem 16 is proved.

The operators L and −T 2. An integration by parts with zero boundary terms (notice that ρ
and 1− ρ2 both vanish at the ends of [0, 1]) shows that for all u, v ∈ C∞(D),

(Lu, v)L2(D) =

∫
D

(
(1− ρ2)(∂ρu)(∂ρv) +

1

ρ2
(∂ωu)∂ωv

)
ρ dρ dω + (u, v)L2(D), (50)

in particular (L, C∞(D))) is a symmetric operator when acting on L2(D). More importantly, it
is essentially self-adjoint, in the sense that its operator closure22 is self-adjoint. In addition, the
operator (−T 2, C∞α,−,+(∂+SD)) is essentially L2

+(∂+SD)-self-adjoint.

22The operator L whose domain is the completion of the pre-Hilbert space C∞(D) equipped with the inner product
(f, g) = (f, g)L2 + (Lf,Lg)L2 , defined as Lu := limn→∞ Lun, where un is any sequence in C∞ converging to u in this
topology.
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In fact, following notation in [MM21], an orthogonal basis of L2
+(∂+SD) whose C∞ span gives

C∞α,−,+(∂+SD) is given by

ψn,k :=
(−1)n

4π
ei(n−2k)(β+α)(ei(n+1)α + (−1)ne−i(n+1)α), n ≥ 0, k ∈ Z, (51)

and such that (−T 2)ψn,k = (n+ 1)2ψn,k for all n, k.

From these observations, passing to the adjoints in (48), the further intertwining property holds

I0 ◦ L = (−T 2) ◦ I0. (52)

Exercise 26. Prove that for u, v ∈ C∞(D), (Lu, v)L2(D) = (u,Lv)L2(D).

5.4 Backprojecting the joint eigenfunctions of −T 2 and −i∂β - Zernike polyno-
mials

We now focus our attention to I∗0ψn,k = I]0

[
ψn,k
µ

]
. Together with the definition of I]0 and the

relations satisfied by the Euclidean footpoint map for all (ρeiω, θ) ∈ SD:

β−(ρeiω, θ) + α−(ρeiω, θ) + π = θ,

β−
(
ρeiω, θ

)
= β−(ρ, θ − ω) + ω, α−(ρeiω, θ) = α−(ρ, θ − ω),

we arrive at the expression

I]0

[
ψn,k
µ

]
(ρeiω) = ei(n−2k)ω 1

2π

∫
S1
ei(n−2k)θ e

i(n+1)α−(ρ,θ) + (−1)ne−i(n+1)α−(ρ,θ)

2 cosα−(ρ, θ)
dθ.

With the relation sinα−(ρ, θ) = −ρ sin θ, we may rewrite this as

I]0

[
ψn,k
µ

]
(ρeiω) =

ei(n−2k)ω

2π

∫
S1
ei(n−2k)θWn(−ρ sin θ) dθ, (53)

where we have defined

Wn(sinα) :=
ei(n+1)α + (−1)ne−i(n+1)α

2 cosα
. (54)

The functions Wn are related to the Chebychev polynomials of the second kind Un, specifically
through the relation Wn(t) = inUn(t). In particular, it is immediate to check the 2-step recursion
relation and initial conditions

Wn+1(t) = 2itWn(t) +Wn−1(t), W0(t) = 1, W1(t) = 2it.

By induction, the top-degree term of Wn is (2it)n. Fixing n ≥ 0, we now split the calculation into
two cases:
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Case k < 0 or k > n. In light of (53), since Wn is a polynomial of degree n, then Wn (−ρ sin θ)
is a trigonometric polynomial of degree n in eiθ. In particular, if k < 0 or k > n, then |n− 2k| > n
and thus the right hand side of (53) is identically zero. In short, we deduce

I]0

[
ψn,k
µ

]
= 0, n ≥ 0, k < 0 or k > n.

Case 0 ≤ k ≤ n. For the remaining cases, we then define Zn,k := I]0

[
ψn,k
cosα

]
, and for the sake of

self-containment, we now show that the functions {Zn,k}n≥0, 0≤k≤n so constructed are the Zernike
basis in the convention of [KB04], by showing that they satisfy Cauchy-Riemann systems and take
the same boundary values.

Lemma 17. The functions {Zn,k}n≥0, 0≤k≤n satisfy the following properties: For all n ≥ 0

∂zZn,0 = 0, ∂zZn,k + ∂zZn,k+1 = 0 (0 ≤ k ≤ n− 1), ∂zZn,n = 0, (55)

Zn,k(e
iω) = (−1)kei(n−2k)ω, 0 ≤ k ≤ n, ω ∈ S1. (56)

Proof. Using the relation Wn(−t) = (−1)nWn(t), we arrive at the expression

Zn,k(ρe
iω) = ei(n−2k)ω (−1)n

2π

∫
S1
ei(n−2k)θWn(ρ sin θ) dθ

=
(−1)n

2π

∫
S1
ei(n−2k)θWn(ρ sin(θ − ω)) dθ. (57)

With ∂z = e−iω

2 (∂ρ − i
ρ∂ω) and ∂z̄ = eiω

2 (∂ρ + i
ρ∂ω), we compute

∂z(ρ sin(θ − ω)) = i
e−iθ

2
, ∂z̄(ρ sin(θ − ω)) = −ie

iθ

2
.

Plugging these into (57) immediately implies

∂zZn,k + ∂zZn,k+1 = 0, 0 ≤ k ≤ n− 1. (58)

In addition, we compute

Zn,0(ρeiω) = einω
(−1)n

2π

∫
S1
einθWn(ρ sin θ) dθ

= einω
(−1)n

2π

∫
S1
einθ(2iρ sin θ)n dθ

= ρneinω
(−1)n

2π

∫
S1
einθ(2i sin θ)n dθ

where the second equality comes from the fact that the lower-order terms of Wn(ρ sin θ) have no
harmonic content along einθ. Finally, the constant is∫

S1
einθ(eiθ − e−iθ)n dθ =

∫
S1

(e2iθ − 1)n dθ = 2π(−1)n.
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In short, Zn,0 = ρneinω = zn. This also implies ∂zZn,0 = 0 and since we have Zn,n = (−1)nZn,0 =
(−1)nzn, we deduce that ∂zZn,n = 0.

To prove the boundary condition, using that Zn,k(ρe
iω) = ei(n−2k)ωZn,k(ρ), it is enough to show

that Zn,k(1) = (−1)k for every n ≥ 0 and 0 ≤ k ≤ n. That this is true for k = 0 and k = n
follows from the expressions just computed, and the general claim follows by induction on n once
the following equality is satisfied:

Zn,k(1) = Zn−2,k−1(1)− Zn−1,k−1(1) + Zn−1,k(1). (59)

To prove (59), it suffices to input the recursion Wn(sin θ) = 2i sin θWn−1(sin θ) +Wn−2(sin θ) into
the expression (57), and to evaluate it at ρeiω = 1.

From Lemma 17, we see that the family so defined satisfies the characterization (b) of [KB04,
Theorem 1] of the Zernike polynomials. One may see that this characterization defines the same
family due the following facts: for n ≥ 0 and k = 0, the functions Zn,k in both sets agree; by
induction on k > 0, in both sets of functions, Zn,k satisfies a ∂z equation with same right-hand side
and same boundary condition, for which a solution is unique if it exists.

Let us then give a few useful properties of these polynomials:

� The following characterization is proved in [KB04, Theorem 1]:

Zn,k(z, z) =
1

k!

∂k

∂zk

[
zn
(

1

z
− z
)k]

, n ≥ 0, 0 ≤ k ≤ n. (60)

� The family {Zn,k}n≥0,0≤k≤n is orthogonal on L2(D). Indeed, they are the eigenfunction of
the pair of self-adjoint operators (L,−∂2

ω) (as densely defined on C∞(D)), since we have

(L,−∂2
ω)Zn,k = (L,−∂2

ω)I∗0ψn,k = I∗0 (−T 2,−∂2
β)ψn,k = ((n+ 1)2, (n− 2k)2)Zn,k,

and the map (n, k) 7→ ((n+ 1)2, (n− 2k)2) is injective.

� Their completeness in L2(D) follows again from the Weierstrass approximation theorem.

We finally show

Lemma 18.

‖Zn,k‖2 =
π

n+ 1
, n ≥ 0, 0 ≤ k ≤ n. (61)

A functional-analytic proof is given in [Mon20, Appendix]. We give here a proof in the spirit
of recurrence relations for orthogonal polynomials.

Proof of Lemma 18. As a quick consequence of (60), the following relation holds

(n+ 1)Zn,k = −∂(Zn+1,k+1 + Zn−1,k), n ≥ 0, 0 ≤ k ≤ n. (62)
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Multiplying (62) by Zn,k and integrating, we arrive at the relation

(n+ 1)‖Zn,k‖2 = −
∫
D

(∂Zn+1,k+1)Zn,k +

∫
D

(∂Zn−1,k)Zn,k.

The last term is zero because ∂Zn−1,k is of degree n− 2 and Zn,k is orthogonal to any polynomial
of degree ≥ n− 1. On to the first term,∫

D
(∂Zn+1,k+1)Zn,k =

∫
D
∂(Zn+1,k+1Zn,k)−

∫
D
Zn+1,k+1∂Zn,k,

= − 1

2i

∫
∂D
Zn+1,k+1Zn,k dz −

∫
D
Zn+1,k+1∂Zn,k.

The rightmost term is again zero by consideration of degree, while the boundary term is computed
using (56), to wit∫

D
(∂Zn+1,k+1Zn,k) dz =

−1

2i

∫
S1

(−1)k+1ei(n+1−2(k+1))βe−i(n−2k)β(−1)kieiβ dβ =
1

2

∫
S1
dβ = π,

hence (61) is proved.

Exercise 27. Prove (62) using (60).

5.5 SVD of I0 and mapping properties

We now conclude regarding the SVD of I0 using the method of intertwining differential operators.
This SVD has been known for quite some time, see e.g. [Cor64, Lou84], and the idea to use
intertwining differential operators for such derivations can be found e.g. in [Maa91], though they
are usually written there for each polar harmonic number separately.

Equation (48) allows to avoid this separation by harmonics. Below, the “hat” notation stands
for vector normalization in their respective spaces.

Theorem 19. The Singular Value Decomposition of I0 : L2(D)→ L2(∂+SD, dΣ2) is given by

(Ẑn,k, ψ̂n,k, an,k)n≥0,0≤k≤n, an,k :=

√
4π√
n+ 1

. (63)

Proof. We obviously have (−T 2)ψn,k = (n + 1)2ψn,k and −i∂βψn,k = (n − 2k)ψn,k, which by self-
adjointness on L2(∂+SD, dΣ2) of the two operators applied, makes ψn,k and orthogonal system. In
addition, an immediate computation gives

‖ψn,k‖2L2(∂+SD) =
1

4
, n ≥ 0, k ∈ Z.

In addition we have, as explained in [MM21] I∗0ψn,k = 0 for k < 0 or k > n, and for 0 ≤ k ≤ n, we
define Zn,k := I∗0ψn,k. By Theorem 16, we compute

LZn,k = LI∗0ψn,k = I∗0 (−T 2)ψn,k = (n+ 1)2Zn,k

−i∂ωZn,k = (n− 2k)Zn,k,
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which immediately makes them an orthogonal system in L2(D). This gives us orthogonal systems
associated with I0 and I∗0 and to compute the singular values, it suffices to normalize all vectors.
By definition we have

I∗0 ψ̂n,k = an,k Ẑn,k, an,k :=
‖Zn,k‖L2(D)

‖ψn,k‖L2(∂+SD)
= 2‖Zn,k‖L2(D)

(61)
=

√
4π√
n+ 1

,

hence the result.

The following statement follows directly. Although it is unclear whether it appears explicitly in
the literature, the ingredients for the proof were known since Zernike’s seminal paper [Zer34].

Theorem 20. The following relation holds:

L(I∗0I0)2f = (4π)2f, f ∈ C∞(D).

Proof. The proof is seen at the level of the spectral decomposition, since we have for every n ≥ 0
and 0 ≤ k ≤ n,

I∗0I0Zn,k =
4π

n+ 1
Zn,k, and LZn,k = (n+ 1)2Zn,k.

Mapping properties of I∗0I0. For s ∈ R, let us define the scale of Hilbert spaces

H̃s(D) =

{
f =

∞∑
n=0

n∑
k=0

fn,kẐn,k,

∞∑
n=0

(n+ 1)2s
n∑
k=0

|fn,k|2 <∞

}
=
{
f ∈ L2(D), Ls/2f ∈ L2(D)

}
,

(64)

with continuous, in fact compact, injections H̃s ⊂ H̃t for s > t. An important property of the scale
{H̃s(D)}s is the following:

Theorem 21. ⋂
s∈R

H̃s(D) = C∞(D)

Proof. The inclusion ⊃ is clear, since a smooth function f is such that for all n ≥ 0, Lnf ∈ L2(D).
The proof of the inclusion ⊂ is based on the next two lemmas, proved in [Mon20, Appendix].

Lemma 22. For all α > 3/2, we have the continuous injection H̃α(D)→ C(D).

Lemma 23. There exists ` > 0 such that for every α ≥ `, the operators

∂ : H̃α(D)→ H̃α−`(D) and ∂ : H̃α(D)→ H̃α−`(D)

are bounded. The index ` can be chosen as 2 + ε for every ε > 0.
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To prove the inclusion ⊂, it is enough to show that if f ∈ ∩s≥0H̃
s(D), then for any p, q ≥ 0,

∂p∂
q
f ∈ C(D). With ` a constant as in Lemma 23, since f ∈ H̃(p+q)`+3(D), repeated use of Lemma

23 gives that ∂p∂
q
f ∈ H̃3(D), and by Lemma 22, this implies that ∂p∂

q
f ∈ C(D). Hence the

result.

Moreover, it is immediate to establish the property, for all s ≥ 0

‖I∗0I0f‖H̃s+1 = 4π‖f‖
H̃s , ∀f ∈ H̃s, (65)

which is both a continuity and stability estimate.

Mapping properties of I0. We also fully understand the mapping properties of I0 : L2(M) →
L2

+(∂+SD): if f =
∑

n≥0

∑n
k=0 fn,kẐn,k, then

I0f =
∑
n≥0

n∑
k=0

fn,k

√
4π√
n+ 1

ψ̂n,k.

The intertwining property (52) suggests that I0 translates regularity w.r.t. to L into regularity
as described by the vector field T only. This justifies that, similar to the case of the Radon transform
where the Sobolev scale on Z was only describing regularity w.r.t. d/ds, one should construct an
anisotropic Sobolev scale on ∂+SD describing regularity w.r.t. T . Indeed let’s define

Hs
T,+(∂+SD) =

{
g =

∞∑
n=0

∑
k∈Z

gn,kψ̂n,k,

∞∑
n=0

(n+ 1)2s
∑
k∈Z
|gn,k|2 <∞

}
=
{
g ∈ L2

+(∂+SD), (−T 2)s/2g ∈ L2
+(∂+SD)

}
,

in which the following identity is immediate:

‖If‖
H
s+1/2
T,+

=
√

4π‖f‖
H̃s , ∀f ∈ H̃s. (66)

Exercise 28. What do d/ds and ∂/∂θ look like in fan-coordinates ?

Exercise 29. Show (65) and (66).

Unlike I∗0I0 which is surjective from H̃s to H̃s+1, and although (66) holds, this does not say
that I0 is surjective, as equality (66) is indexed by f and says nothing as to whether If exhausts
the codomain.

And indeed, functions on the range of I0 are seen to be linear combinations of ψn,k for n ∈ N0

and 0 ≤ k ≤ 0. In particular, for every n ∈ N0, k misses the set Z\{0, . . . , n}.
In [Mon20, Appendix], one defines an operator C− : L2(∂+SD) → L2(∂+SD) that is Hs

T,+ →
Hs
T,+-continuous for every s, that acts diagonally on each ψn,k, and such that C−ψn,k = 0 if and

only if n ∈ N0 and 0 ≤ k ≤ n. This allow the final mapping refinement:

I0(H̃s(D)) = H
s+ 1

2
T,+ (SD) ∩ kerC−. (67)
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Going further. . .

� In the case of the Euclidean X-ray transform on D, we have shown that one could construct
special Sobolev scales modeled after differential operators, which in turned sharply captured
the mapping properties of I0. A natural question to ask, in the context of the geodesic X-ray
transform on simple Riemannian surfaces, is:

Given (M, g) a simple Riemannian surface and I0 the geodesic X-ray transform defined on
it, how to design appropriate Sobolev scales that sharply capture the mapping properties of
I0 ? Does the functional link between I∗0I0 and degenerate elliptic operators persist on other

surfaces ?

A positive answer to the last question in the case of simple geodesic disks in constant curvature
spaces was given in [Mon20], though the borderline cases remain to be established.

� The Sobolev scale introduced in (64) is adapted to other operators such as weighted X-ray
transforms on the Euclidean disk (or constant curvature disks). Denoting IΘ the attenuated
X-ray transform in [MNP21] with attenuation Θ ∈ C∞c (Dint), it is shown that I∗ΘIΘ is a
relatively compact perturbation of I∗0I0 on the scale (64), and this allows to sharply capture
the mapping properties of these operators as well.

� Even in the case of the unit disk, there is a way to slightly perturb the story told above, where
the construction of a Sobolev scale remains possible yet it does not isometrically capture the
mapping properties of the X-ray transform23. The main results are in [MMZ22].

On D, let d := 1 − ρ2, a boundary defining function. For γ > −1, one may show that the
“singularly weighted” X-ray transform I0d

γ : L2(D, dγ) → L2(∂+SD, µ−2γ) is bounded, with
adjoint I∗0µ

−2γ . (note here that the notations may slightly differ from [MMZ22] since our
definition of I∗0 also contains another µ−1 in it). It is then found that there exist natural
self-adjoint operators Lγ and Tγ , whose spectral decomposition is well-understood, and with
the intertwining relations

I∗0µ
−2γ ◦ Tγ = Lγ ◦ I∗0µ−2γ , I∗0µ

−2γ ◦ ∂β = ∂ω ◦ I∗0µ−2γ ,

Then the method of intertwining differential operators applies, and we can compute the SVD
of I∗0µ

−2γI0d
γ , which in passing can be proved to be an isomorphism of C∞(D).

However unless γ = 0, the eigendecomposition of I∗0µ
−2γI0d

γ is such that its eigenvalues
depend on n AND on k (the same spectral parameters as in the case γ = 0), while those
of Lγ depend on n only, and as such one can no longer write a relation between the two
operators, which in turn would capture the mapping properties of I∗0µ

−2γI0d
γ using Sobolev

spaces defined after Lγ . One could wonder whether another operator than Lγ would do,
although given everything being so explicit (spectral decomposition, spaces, etc.), it is hard
to imagine.

23in the sense that the smoothing exponent will not match with the ill-posedness exponent.
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� The method of intertwining differential operators seems to require lots of symmetries to even
be applicable, which might limit its applicability in the context of general manifolds. On the
other hand, it might be the case that this method could apply to symmetric spaces as covered
in Helgason’s book [Hel10], which was largely written in cases without boundary.
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