Ecology of the Ocean Sunfish, *Mola mola*, in the southern California Current System

Tierney M. Thys*,a, John P. Ryan b, Heidi Dewar c, Christopher R. Perle d, Kady Lyons e, John O’Sullivan f, Charles Farwell f, Michael J. Howard f, Kevin C. Weng g, Bertha E. Laviniegos h, Gilberto Gaxiola-Castro h, Luis Erasmo Miranda Bojorquez h, Elliott L. Hazen i, Steven J. Bograd i

a California Academy of Sciences, San Francisco, CA 94118, USA
b Monterey Bay Aquarium Research Institute, Moss Landing, CA 95037, USA
c Florida State College, Jacksonville, FL 32256, USA
d University of Calgary, Calgary, AB T2N 1W4, Canada
e Monterey Bay Aquarium, Monterey, CA 93946 124
f Virginia Institute of Marine Science, Gloucester Point, VA 23062-1346, USA
h Centro de Investigación Científica y Educación Superior de Ensenada, Departamento de Oceánografía Biológica, Ensenada, Baja California C.P. 22860, Mexico
i Environmental Research Division, Southwest Fisheries Science Center, NOAA Fisheries, Pacific Grove, CA, USA

A R T I C L E I N F O

Article history:
Received 25 March 2015
Received in revised form 4 May 2015
Accepted 5 May 2015
Available online xxxx

Keywords:
California Current
Fronts
Gelatinous zooplankton
Ocean sunfish
Remote sensing
Satellite tagging

A B S T R A C T

The common ocean sunfish, *Mola mola*, occupies a unique position in the eastern Pacific Ocean and the California Current Large Marine Ecosystem (CCLME) as the world’s heaviest, most fecund bony fish, and one of the most abundant gelativeres. *M. mola* frequently occur as bycatch in fisheries worldwide and comprise the greatest portion of the bycatch in California’s large-mesh drift gillnet fishery. In this first long-term tagging study of any ocean sunfish species in the eastern Pacific, 15 *M. mola* (99 cm to 200 cm total length) were tagged in the southern California Bight (SCB) between 2003 and 2010 using 14 satellite pop-off archival tags (PATs) and one Fastloc Mk10 GPS tag. Ten tags provided positional data for a cumulative dataset of 349 tracking days during the months of July through March. Thirteen tags provided temperature and depth data. All *M. mola* remained within ~300 km of the coast, and nearly all exhibited seasonal movement between the SCB and adjacent waters off northern and central Baja California, Mexico. No tagged individuals were tracked north of the SCB. Tag depth data showed diel vertical migration and occasional deep (~500 m) dives. Data from the Fastloc GPS tag allowed close examination of the relationship between the movements of the largest tagged ocean sunfish (2 m TL) and fine-scale oceanographic features. Near-instantaneous satellite sea surface temperature images showed this individual associated with upwelling fronts along its migration path, which exceeded 800 km and ranged from 6 to 128 km from the coast. Tag depth data showed active use of the water column within the frontal zones. Synthetic aperture radar (SAR) images demonstrated that surface slicks, which often indicate convergent circulation, coincided with this type of front. Zooplankton tow s in the southern region of tracking off central Baja California, Mexico revealed dense populations of salps toward the warm side of these fronts. Satellite tag and ecosystem data suggest that biophysical interactions in coastal upwelling fronts create favorable foraging habitat.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Satellite tracking has allowed new insights into the behavioral ecology of a range of taxa including many marine megafauna such as turtles, whales, seals, fish and squid (Block et al., 2011; Costa et al., 2012). Such studies are providing valuable information for fisheries and the management of ecosystems. One species that has attracted attention, due in part to its diet and unique morphology, is *Mola mola* (Linnaeus, 1758), the common ocean sunfish. Inhabiting all tropical and temperate ocean regions, this species obtains the greatest adult mass of any teleost fish and has the greatest fecundity.
Ocean sunfish comprise a large percentage of bycatch in gillnet and trawl fisheries worldwide, e.g. 70–95% of total catch in the Mediterranean Sea drift gillnet fishery (DGN) which targets swordfish (genus Xiphias) (Silvani et al., 1999; Tudela et al., 2005) and 29–76% of total catch in the South African mid-water trawl fishery, which targets horse mackerel (family Carangidae) (Petersen, 2005; Petersen and McDonnell, 2007). In California’s DGN fishery, which targets swordfish (Xiphias gladius), M. mola comprise 14–61% of the total catch (National Oceanic and Atmospheric Administration (NOAA), unpublished data). Observers report that most individuals (~95%) are released alive (www.westcoast.fisheries.noaa.gov) although they also note that some fish (an estimated 40% (Cartamil, pers comm, Feb 18, 2015) show obvious signs of fishery-induced trauma, including loss of protective mucus, abrasions and bleeding (Cartamil and Lowe, 2004). Post-release survival rate for M. mola is unknown in all drift gillnet fisheries. Studies of M. mola ecology and behavior are thus motivated by the widespread distribution of the species in vastly different oceanic habitats, its trophic role, reproductive potential and prevalence as bycatch. M. mola is a seasonal inhabitant in the southern California Current Large Marine Ecosystem (CCLME) (Bass et al., 2005; Cartamil and Lowe, 2004). In contrast to the western Pacific where at least two subspecies have been suggested to occur, Mola sp. A and Mola sp. B (Sawai et al., 2011; Yoshita et al., 2009), no sub-species of the Mola genus have been reported in genetic studies of M. mola in the CCLME (Bass et al., 2005). Ocean sunfish have long been residents in this region. Molid fossils from the Miocene have been found along the California coast (Hakel and Stewart, 2002) and archeological sites dating back to 8500 yrs bp suggest a robust prehistoric ocean sunfish fishery once existed along the central and southern California coast (Joslin, 2012; Porcasi and Andrews, 2001). Currently, there are no commercial fishery operations targeting M. mola in this region.

The southern CCLME is a comprehensively studied oceanographic region with numerous long-term environmental datasets that are useful for understanding fish movements and behaviors. The longest running extant datasets include the California Cooperative Oceanic Fisheries Investigations (CalCOFI) records of hydrographic and plankton sampling off the California coast and the Investigaciones Mexicanas de la Corriente de California (IMECOCAL) operations off Baja California, Mexico. Recently the CCLME has been forecast to be impacted significantly by ocean acidification (Hofmann et al., 2014) and changing ocean temperatures (NOAA, 2014). This region thus provides an ideal location to investigate the relationships between M. mola ecology, oceanographic processes and fishery interactions within the context of broader human impacts.

Previous studies of M. mola have yielded valuable insights with regard to natural history, movements and behaviors (Pope et al., 2010). Cartamil and Lowe (2004) investigated short-term (up to 3 days) movements of M. mola in the SCB using acoustic tags and continuous manual tracking. This study found that individuals moved a mean distance of 26.8 ± 5.2 km d^{-1} and repeatedly dove below the thermocline during the day. Individuals remained above the thermocline at night and exhibited less overall vertical movement. Long-term (~3 months) pop-up satellite tagging studies of M. mola in the northwestern Pacific (Dewar et al., 2010) and 3 regions of the Atlantic (Sims et al., 2009a,b; Potter and Howell, 2011; Fig. 1B) show no evidence of M. mola movements across ocean basins, but rather protracted occupation within hemispheric ocean margins. In these studies, latitudinal movement patterns correlated with seasonal changes in temperature and productivity, which likely indicate favorable thermal and foraging habitats (Dewar et al., 2010; Potter et al., 2011; Sims et al., 2009a).

This study examines regional and seasonal movement patterns of M. mola tagged between 2003 and 2010. Fastloc GPS data from one tag were integrated with concurrent observations from satellite remote sensing to examine habitat use. These data were coupled with fine-scale ship sampling to explore forage species distributions in relation to habitat. The goal of this study was to provide a greater understanding of M. mola ecology, its relationships with oceanographic features and its seasonal movement patterns to help inform fisheries and ecosystem management.

2. Materials and methods

2.1. Tagging and species identification

M. mola were tagged in the SCB from July through October between 2003 and 2010 (Table 1). Fish were tagged either opportunistically during a research longline cruise (n = 4) or during dedicated tagging trips on a small vessel (n = 11). During the dedicated tagging trips, M. mola were located from a boat or from a spotter plane (pilot: D. Mauer, Carlsbad, CA, USA) that relayed fish locations via a hand-held radio to crew on a 7 m boat. Free-swimming fish were captured using a 1 m diameter salmon net, and only healthy individuals without obvious wounds or visibly heavy parasite loads were selected for tagging. Individuals were then brought next to the boat, measured to the nearest cm and tagged in the water. A small incision was made below the dorsal fin and a nylon dart, attached to the tags with 300-pound test monofilament line and stainless steel crimps (Fig. 1A), was inserted.
with a tag applicator. A pectoral fin clip was taken for genetic analysis before tagged fish were released: all species were later confirmed as *M. mola* using mitochondrial DNA analyses (S. Karl and J. Whitney, unpublished data). The entire process was completed in approximately 2–5 min. To ensure proper tag placement and active movements post-tagging, a snorkeler monitored fish visually for up to 5 min. All animals tagged in this manner exhibited strong, healthy swimming movements before tagged with no visible interference from the tag.

During the research cruises, *M. mola* were caught on a longline and nipped a clip was taken. The hook was then removed and the fish was released.

Tags deployed included several versions of pop-up satellite tags (PSAT: PAT, mini-PAT, MK10 PAT, MK10-AF PAT [Fastloc GPS], Wildlife Computers, Redmond, WA, U.S.A.) (Fig. 1A; Table 1). The tags were programmed to release after periods ranging from 1 to 9 months. PAT devices collected data on ambient temperature, depth and light intensity (measured as irradiance at 550 nm) every 1–2 min. Fastloc GPS tag collected and archived data every second. Archived PAT data were summarized on-board, and summaries were transmitted after the tag released from the animal. The Fastloc GPS tag data were transmitted along the track and post release.

Table 1

Tag deployment summary.

<table>
<thead>
<tr>
<th>Tag type Tag ID</th>
<th>Deploy Date</th>
<th>Size (cm)</th>
<th>Weight (kg)</th>
<th>Deploy Lat (°N)</th>
<th>Deploy Lon (°W)</th>
<th>Pop-off Lat (°N)</th>
<th>Pop-off Lon (°W)</th>
<th>Deployment Duration</th>
<th>Distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>41742 03P0266a</td>
<td>Sep 6 03</td>
<td>116</td>
<td>32.88</td>
<td>33.55</td>
<td>17b</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Sep 25 03</td>
<td>82</td>
<td>117.3</td>
<td>118.14</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>41749 03P0245a</td>
<td>Sep 6 03</td>
<td>117</td>
<td>32.97</td>
<td>32.86</td>
<td>14a</td>
<td>49.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Sep 25 03</td>
<td>84</td>
<td>117.5</td>
<td>118.11</td>
<td>8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>41752 03P0248</td>
<td>Sep 6 03</td>
<td>143</td>
<td>32.89</td>
<td>32.89</td>
<td>198</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 21 04</td>
<td>152</td>
<td>117.3</td>
<td>117.91</td>
<td>71</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>41756 03P0216</td>
<td>Sep 6 03</td>
<td>150</td>
<td>32.99</td>
<td>26.50</td>
<td>196a</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 21 04</td>
<td>175</td>
<td>117.5</td>
<td>114.39</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>41767 02P0201</td>
<td>Sep 6 03</td>
<td>117</td>
<td>32.91</td>
<td>27.15</td>
<td>198</td>
<td>600.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 22 04</td>
<td>84</td>
<td>117.4</td>
<td>116.19</td>
<td>58</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>61919 05P0157</td>
<td>Oct 5 06</td>
<td>131</td>
<td>32.92</td>
<td>31.01</td>
<td>174</td>
<td>212.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 28 07</td>
<td>117</td>
<td>117.5</td>
<td>117.59</td>
<td>34</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>61920 05P0158</td>
<td>Oct 1 06</td>
<td>133</td>
<td>32.85</td>
<td>31.17</td>
<td>181b</td>
<td>195.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 31 07</td>
<td>123</td>
<td>117.4</td>
<td>116.82</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>61922 05P0160</td>
<td>Oct 1 06</td>
<td>130</td>
<td>32.86</td>
<td>29.30</td>
<td>180</td>
<td>445.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 30 07</td>
<td>115</td>
<td>117.4</td>
<td>115.22</td>
<td>38</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>61924 05P0171</td>
<td>Oct 1 06</td>
<td>131</td>
<td>32.84</td>
<td>30.61</td>
<td>179</td>
<td>256.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 29 07</td>
<td>117</td>
<td>117.4</td>
<td>116.91</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63978 05P0245</td>
<td>Jul 6 06a</td>
<td>92a</td>
<td>32.83</td>
<td>28.62</td>
<td>24b</td>
<td>530.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 04 07</td>
<td>117.8</td>
<td>115.21</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63980 05P0247</td>
<td>Jul 12 06a</td>
<td>150</td>
<td>33.12</td>
<td>32.77</td>
<td>240</td>
<td>182.8</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 09 07</td>
<td>175</td>
<td>118.3</td>
<td>120.28</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>63983 05P0250</td>
<td>Jul 12 06a</td>
<td>132</td>
<td>33.12</td>
<td>31.62</td>
<td>240</td>
<td>185.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Mar 09 07</td>
<td>120</td>
<td>118.3</td>
<td>117.54</td>
<td>23</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>77160 07A0158</td>
<td>Jul 27 07</td>
<td>99</td>
<td>33.19</td>
<td>30.68</td>
<td>181</td>
<td>392.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>PAT</td>
<td>Jan 23 08</td>
<td>51</td>
<td>119.2</td>
<td>116.47</td>
<td>18</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>91973 09P0101</td>
<td>Aug 21 09a</td>
<td>127</td>
<td>33.40</td>
<td>28.25</td>
<td>90a</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MiniPAT</td>
<td>Nov 19 09</td>
<td>107</td>
<td>118.2</td>
<td>115.06</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>89297 10A0564</td>
<td>Aug 28 10</td>
<td>200</td>
<td>32.88</td>
<td>25.90</td>
<td>119</td>
<td>893.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fastloc</td>
<td>Dec 25 10</td>
<td>412</td>
<td>117.5</td>
<td>112.84</td>
<td>49</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

– insufficient data for track analysis.

a Premature release and presumed mortality.

b Insufficient data for tracking or omitted from Fig. 2 for clarity due to shortness of track.

c Tags deployed during longline trips.

d Pre-caudal length.

Tags providing fewer than 7 estimated geolocations were excluded from the horizontal analyses (Table 1). Transmitted data were decoded with Wildlife Computers DAP(R) Processor (www.wildlifecomputers.com). The geolocation routines Trackit (Nielsen and Sibert, 2007) and TrackitSST (Lam et al., 2010), executed in R Statistical Software (R Development Core Team, 2013) using default settings, were used to estimate geolocation. Results from TrackitSST were preferred because this routine combines sea surface temperature (SST) data with a Kalman-filter state space movement model to produce more precise geolocation estimates (Lam et al., 2010; Nielsen et al., 2006). If TrackitSST failed to converge on a resultant track (possibly as a result of unavailable SST data), Trackit was used. The geolocation results of estimated latitudes and longitudes and their associated uncertainties were then imported back into DAP Processor.

The Fastloc GPS electronic tag 89297 transmitted both GPS and Argos quality locations along its track whenever the tag was above the water for a sufficient time interval to turn on. Once data were decoded (as per above), the DAP Processor Fast-GPS solver used Receiver Independent Exchange Format (RINEX) files to post-process transmitted positions to improve accuracy. On days when GPS solutions were not available, Argos positions calculated from >4 uplinks were used to serve as possible along-track substitutes for missing GPS data (n = 2).

2.3. Vertical data

Mortalities were excluded from vertical analysis. Mortalities were presumed when depth remained constant for 72 h or when depth exceeded 1500 m, both of which trigger release of the tag. Vertical data were analyzed using transmitted time-at-depth (TAD) and time-
at-temperature (TAT) histograms and profiles of depth and temperature (PDT) data that consisted of 8 temperature and depth measurements over the depth range encountered in a given time interval (Table 2). Data were summarized over programmed time intervals set at 6, 12 and 24 h, depending on the tag. Diel patterns were examined when possible. Tags with bins set at 12 h (n = 3) or 24 h (n = 1) could not exclusively provide day or night intervals, so their data were excluded from diel analysis. Tag 77160 was also excluded since it used an alternate binning scheme. For the 9 tags set at 6 h intervals, the day intervals spanned from 9 am to 3 pm and night from 9 pm to 3 am.

The maximum and minimum temperatures and depths were calculated for each day and night separately and these daily values were averaged for each individual fish (Table 2). Temperature and depth histograms contained 11 to 14 bins based on the binning scheme programmed into the tag. Over the course of the study, tags were deployed with different binning schemes. Due to this inconsistency, histograms were calculated across schemes using methods described in Dewar et al. (2011). For example, temperature bins spread across odd numbers (13–15, 15–17) can be converted to even numbers (12–14, 14–16) by dividing the values for each of the odd bins in half. This provides an estimate for bins of 1 °C width. These bins were then summed accordingly to create common bins. This process assumes that distribution across bins is equal, which may not always be the case, and consequently normalizing in this manner may reduce precision. A separate time series contour plot was made for Fastloc tag 89297 since it provided the highest resolution combination of histogram and location data.

2.4. Satellite remote sensing data and analyses for Fastloc GPS tracking

The high temporal resolution and small error of Fastloc GPS position data (~0.1 km) compared to the fewer positions and larger error (tens to hundreds of kms depending on location class, www.argos-system.org), allowed examination of relationships between an individual fish (tag 89297) and fine-scale ocean features using satellite remote sensing data. These analyses were constrained to the period of August 30 through October 27, 2010, after which the tag provided only one location until its pop-off date of December 25, 2010.

2.4.1. Habitat occupation in relation to sea surface temperature (SST)

Data for examining fish movements in relation to physical oceanography were derived from archived CoastWatch SST (http://coastwatch.pfeg.noaa.gov/erddap/). To increase the potential for matchups between GPS positions and SST images, data from both the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua sensor were obtained. AVHRR data prior to application of cloud removal algorithms were examined to ensure that valid SST data were not lost by inaccurate cloud removal. When AVHRR and MODIS images were available for nearly the same time, the image having better coverage of the region occupied by the M. mola was selected.

2.4.2. Habitat characterization from synthetic aperture radar (SAR)

SAR data describes ocean surface roughness and can identify features such as slicks, internal waves and other physical phenomena (Apel, 2004; Holt, 2004; Lyzenga et al., 2004). Slicks identified by SAR images can indicate convergent frontal zones (Holt, 2004), and this capability has been useful in coastal plankton ecology research (e.g. Ryan et al., 2005, 2008, 2010). Archived SAR images from the European Space Agency were used to examine the nature of oceanic fronts in regions occupied by the Fastloc tagged fish. The SAR image search was conducted using the EOLI–SA interface (http://earth.esa.int/EOLI/EOLIhtml). The only sensor that had acquired SAR images in the region and period of the fish tracking was ENVISAT ASAR. These images had a spatial resolution of approximately 30 m. Although no SAR images could provide coverage exactly when and where the fish was located, two SAR images were matched with SST images to examine fronts detected in the greater study region during the tag deployment period.

2.5. Fine-scale habitat and forage species characterization

In situ oceanographic data were obtained from IMECOCAL cruise IM1010 (October 2010) including data from a profiling CTD with a dissolved oxygen sensor, an underway surface thermosalinograph, and bongo net macrozooplankton collections. Zooplankton displacement volume was measured from the complete sample and functional groups

Table 2

Table 2

<table>
<thead>
<tr>
<th>PTT</th>
<th>Bin Interval (h)</th>
<th>SST (°C) range</th>
<th>Min temp ± SD (°C)</th>
<th>Max depth (m)</th>
<th>Min depth ± SD (m)</th>
<th>Max depth ± SD (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>41752</td>
<td>12a</td>
<td>16</td>
<td>(13.8–21.0)</td>
<td>10 ± 1.4</td>
<td>11 ± 1.5</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8–14)</td>
<td>(8–15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41756</td>
<td>12a</td>
<td>19</td>
<td>(15.8–23.4)</td>
<td>10 ± 1.5</td>
<td>12 ± 2.6</td>
<td>556</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8–15)</td>
<td>(9–19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41767</td>
<td>12a</td>
<td>18</td>
<td>(15.0–21.1)</td>
<td>11 ± 1.5</td>
<td>12 ± 2.3</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8–16)</td>
<td>(9–17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61919</td>
<td>6</td>
<td>16</td>
<td>(14–19)</td>
<td>10 ± 1.5</td>
<td>15 ± 1.5</td>
<td>316</td>
</tr>
<tr>
<td>61920</td>
<td>6</td>
<td>15</td>
<td>(12–18)</td>
<td>10 ± 0.6</td>
<td>13 ± 1.3</td>
<td>360</td>
</tr>
<tr>
<td>61922</td>
<td>6</td>
<td>17</td>
<td>(15–23)</td>
<td>11 ± 2.1</td>
<td>15 ± 1.7</td>
<td>512</td>
</tr>
<tr>
<td>61924</td>
<td>6</td>
<td>18</td>
<td>(14–23)</td>
<td>10 ± 1.7</td>
<td>14 ± 2.4</td>
<td>400</td>
</tr>
<tr>
<td>62978</td>
<td>6</td>
<td>17</td>
<td>(18–23)</td>
<td>12 ± 2.3</td>
<td>14 ± 1.3</td>
<td>312</td>
</tr>
<tr>
<td>63980</td>
<td>6</td>
<td>21</td>
<td>(20–21)</td>
<td>11 ± 2.8</td>
<td>12 ± 0.4</td>
<td>336</td>
</tr>
<tr>
<td>63983</td>
<td>6</td>
<td>18</td>
<td>(7–24)</td>
<td>10 ± 1.0</td>
<td>13 ± 2.1</td>
<td>396</td>
</tr>
<tr>
<td>77160</td>
<td>6</td>
<td>19</td>
<td>(14–20)</td>
<td>9 ± 0.9</td>
<td>14 ± 2.1</td>
<td>504</td>
</tr>
<tr>
<td>89297</td>
<td>6</td>
<td>19</td>
<td>(16–22)</td>
<td>12 ± 3.2</td>
<td>14 ± 2.4</td>
<td>520</td>
</tr>
<tr>
<td>91973</td>
<td>24a</td>
<td>21</td>
<td>(20–24)</td>
<td>–</td>
<td>–</td>
<td>312</td>
</tr>
</tbody>
</table>

Note: Not included in Fig. 3 due to bin incompatibility.
were counted from a fraction (1/8) of selected samples. Collection methodologies are described in Lavaniegos et al. (2002) with the one exception being that macrozooplankton for cruise IM1010 were collected with a 71 cm instead of a 61 cm diameter bongo net.

3. Results and Discussion

3.1. Tag and Geolocation Performance

Thirteen out of the 15 tags remained attached for their set deployments with durations ranging from 90 to 241 days (Table 1). The two tags that released prematurely, 41742 (17 days) and 41749 (14 days), indicated fish mortality. Tag 41742 was retrieved and its data revealed it remained at 76–80 m for 3 days before releasing. Tag 41749 sank to a depth >980 m, released and initiated transmission at the surface after 3 days. The fact that both these animals died within similar periods following release suggests that tagging may have been a possible cause of death. With additional tagging and a large enough sample size, it may be feasible to estimate mortality within this population as has been suggested by previous studies on marine turtles (Hays et al., 2003). Tags 41756, 61920, 63978 and 91973 did not provide sufficient geolocation data for track analysis.

A total of 313 geolocation tracking days were obtained from all tags. From the 119 day track of the Fastloc GPS tagged fish (89297), 83 days provided 49 daily positions, and two additional days were supplemented with Argos positions. Positional uncertainty (mean ± SD) for longitudes using TrackitSST (29.1 ± 6.2 km) was similar to that for Trackit (29.3 ± 9.8 km), while for latitudes, TrackitSST (49.5 ± 12.5 km) yielded slightly increased precision over Trackit (52.7 ± 16.3 km). For all other tags, an average of 23% (median 20%) of the total possible tracking days resulted in 313 total geolocations with estimates of uncertainty provided by TrackitSST (n = 4 tags, 86 days) or Trackit (n = 8 tags, 227 days) methods.

3.2. Geographic Movements

Examination of *M. mola* geographic movement was constrained to the 9 tag deployments where fish survived and provided tracks of sufficient duration and temporal resolution (Table 2, Fig. 2). No tagged individuals moved north of the SCB. All *M. mola* were tracked southward into Mexican waters (Fig. 2A). Most fish (7 out of the 9) were in Mexican waters by October, and most of these did not return to US waters until February of the following year (Fig. 2A, B). All fish remained within 300 km of the shore with the majority of residence within 100 km of shore (Fig. 2A). Four fish exhibited southward migrations extending...
Further than the others (tags 41767, 61922, 63980 and 89297). The farthest and most rapid southward migration (~670 km in one month) was by the largest fish (tag 89297, 2 m TL), which was tracked as far south as Punta Abreojos, Baja California Sur. The extent and timing of southward and northward movements were variable [Fig. 2B]. However, 6 out of the 8 tags with records >4 months, reversed their southward movements to northward during the late fall and winter months of November–December [Fig. 2B].

Horizontal movements were similar to those documented for other *M. mola* long-term tagging studies: individuals tagged in coastal regions did not cross ocean basins but persistently inhabited the margins of their respective ocean basins [Dewar et al., 2010; Hays et al., 2009; Nakamura et al., 2015; Potter et al., 2011; Sims et al., 2009a,b]. Past studies report *M. mola* alternating between movement toward or away from the equator, presumably to take advantage of greater productivity in spring and summer at higher latitudes [Parsons et al., 1984]. For example, between spring and fall 2006, an ocean sunfish migrated 2619 km northeastward from coastal Japanese waters along the northwest Pacific margin [Dewar et al., 2010]. *M. mola* may also migrate to avoid cooler water temperatures. For example, as temperatures cooled between fall and winter 2005, an ocean sunfish migrated 2520 km from New England waters southward into much warmer water for depths colder than 59 ± 9 m (SE) compared to 174 ± 8 m during the day. Correspondingly, the average minimum nighttime temperature was 13 ± 0.2 °C (SE) compared to 11 ± 0.2 °C during the day. Occasional deep dives (>500 m) were recorded for 4 *M. mola*, extending into temperatures as cold as 6.6 °C [Table 2]. Deep dives could be due to a variety of factors as suggested by Houghton et al. [2008], including predator and ship evasion, thermoregulation and searching for prey. Ship evasion response could be explored in future studies by comparing deep dive locations with geospatially matched automatic identification system (AIS) data collected by vessel traffic services (VTC) to identify and locate vessels. More detailed dive profile data than what was available in this study is needed to explore any additional hypotheses.

Reasons underlying routine vertical movement have been linked to several factors. Vertical movement is likely used as a foraging strategy in search of patchily distributed prey as well as targeting the migration

3.3. Southern CCLME depth and temperature preferences

* *M. mola* occupied different depth and temperature ranges during the day versus night [Table 2, Fig. 3]. This pattern is consistent with diel vertical migrations (DVM), examples of which are presented for the Fastloc GPS tag in Section 3.4. During the day, individuals frequented deeper, cooler waters with 97% of occupancy below 50 m. During the night, they were in shallower, warmer water with 97% of occupancy in the upper 50 m. Average maximum nighttime depth across all fish was 59 ± 9 m (SE) compared to 174 ± 8 m during the day. Correspondingly, the average minimum nighttime temperature was 13 ± 0.2 °C (SE) compared to 11 ± 0.2 °C during the day. Occasional deep dives (>500 m) were recorded for 4 *M. mola*, extending into temperatures as cold as 6.6 °C [Table 2]. Deep dives could be due to a variety of factors as suggested by Houghton et al. [2008], including predator and ship evasion, thermoregulation and searching for prey. Ship evasion response could be explored in future studies by comparing deep dive locations with geospatially matched automatic identification system (AIS) data collected by vessel traffic services (VTC) to identify and locate vessels. More detailed dive profile data than what was available in this study is needed to explore any additional hypotheses.

Reasons underlying routine vertical movement have been linked to several factors. Vertical movement is likely used as a foraging strategy in search of patchily distributed prey as well as targeting the migration...
of the deep scattering layer (DSL) (Cartamil and Lowe, 2004; Dewar et al., 2010; Potter and Howell, 2011; Sims et al., 2009a,b). The bimodal depth distribution during the day (Fig. 3) is consistent with repetitive dives between the mixed layer and the DSL. In Japanese waters, Nakamura et al. (2015) show M. mola surface to warm-up following dives below the thermocline to the colder deep scattering layer.

Cartamil and Lowe (2004) also suggest that individuals in the SCB may be recovering after frequenting depths with decreased oxygen concentrations. Ocean hypoxic zones (oxygen levels <2.5 ml l\(^{-1}\)) are thought to induce avoidance responses in many fishes (Brill, 1994; Davis, 1975; Dewar et al., 2011). Over the past 30 years throughout the CCLME, the hypoxic boundary appears to be shoaling (Bograd et al., 2008). In this study, a cross-shelf section from the 2010 IMECOCAL cruise approached, in space and time, the GPS tracked M. mola and thus allowed examination of potential impacts of dissolved oxygen concentrations on M. mola vertical movements (Fig. 4A). Due to coastal upwelling, salinity and oxygen isopleths shoaled toward the coast (Fig. 4B, C). Low oxygen levels (<2.5 ml l\(^{-1}\)) were recorded ~60 m below the surface at the most inshore station (Fig. 4C), and the water column structure suggests that these low oxygen waters may have been even shallower closer to the coast. When the tagged individual was in the region of the inshore station, it spent 34% of its time below the shallow limit of the low oxygen detected during the Line 127 survey (<2.5 ml l\(^{-1}\), Fig. 4D). These findings suggest that M. mola may be able to tolerate low oxygen levels. Additional investigations into physiological tolerances of this species would be interesting, particularly in light of recent reports of ocean oxygen minima expanding both in the SCB and globally as a result of climate change (McClatchie et al., 2010; Stramma et al., 2010).

Fig. 5. Consistent association of a large sunfish (2 m total length) with upwelling fronts. (A) Mean sea surface temperature (SST) during August 30 through October 27, 2010, corresponding with the period of tracking shown for Fastloc tag #92977. Boxes identify individual synoptic SST image domains. (B–I) SST images from the domains labeled in (A). All images are nearly instantaneous, except for (C), which is a 1-day composite. Images B, C, F and H are from AVHRR; images D, E, G, and I are from MODIS Aqua. In each image, gray scale shading is adapted to the range of variation within the domain; darker shades represent relatively cold water associated with coastal upwelling. White scale bars in all images are 20 km. M. mola positions (red circles) are shown for available tracking data within ±1.5 days of each image acquisition time. In the time reference atop each image, position times (solid red circles) are shown relative to image time (open black circle) during a 3-day window centered on the image time.
3.4. Ecological insights from GPS tracking and ecosystem data

The high accuracy of the Fastloc GPS tag, 89297, coupled with the oceanographic and prey data, allowed closer examination of relationships between the largest of the tagged M. mola and the ecosystem. During late August to late October 2010, GPS tracking provided excellent temporal resolution as this sunfish traveled more than 800 km along a meandering trajectory from its release location off San Diego, California, to as far south as Punta Abreojos, Baja California, México (26.5°N, Fig. 2). For approximately half of this period, the individual remained close to the coast within a relatively small region off Baja California, south of Punta Eugenia (Fig. 2, between ~26.5°N and 27.7°N). It approached the southern end of this region from offshore and then migrated first northward then southward along that portion of the coast during October. This region was also occupied by the only other M. mola that was tracked this far south in 2003 (Fig. 2, tag 41767). Although the positional accuracy of tag 41767 is much less than that of tag 89297, the many consistent geolocations from tag 41767 in this region lend confidence to the interpretation of overlap in the geographic occupation of these sunfish.

Results suggest that the area off Punta Eugenia might be an ecologically important destination for M. mola in the southern CCLME and worthy of further investigation. Adjacent southern waters have been identified as a hotspot for numerous marine animals including several species of tuna, sharks, whales, sea turtles and seabirds (Etnoyer et al., 2006; Peckham et al., 2007; Schaefer et al., 2007; Wingfield et al., 2011; Wolf et al., 2009).

3.4.1. Association with fronts

Eight spatiotemporal matchups between GPS positions and satellite SST (described in Section 2.4.1) were possible. All matchups showed sunfish 89297 occupying a specific type of front that develops along the periphery of cold water generated by coastal upwelling (Fig. 5). Although the front was associated with upwelled water in each (Fig. 5B–I), the specifics of the frontal structures were variable. The first two cases showed association of the sunfish with relatively sharp frontal gradients close to the coast (Fig. 5B, C). The next two cases showed association with weaker fronts further offshore (Fig. 5D, E). The warmer temperatures and weaker frontal gradients of the filament offshore are consistent with warming during offshore transport, due to mixing and solar heating. The last 4 cases, in the region between Punta Eugenia and Punta Abreojos during October, again showed association with relatively sharp nearshore fronts (Fig. 5F–I). These findings suggest that frontal systems play a central role in M. mola habitat in the southern CCLME. Previous studies using a variety of techniques and datasets have indicated associations of M. mola with different types of fronts (Potter et al., 2011; Sims and Southall, 2002). The present study, however, is the first to match Fastloc GPS position data with near-instantaneous views of SST to reveal consistent occupancy of frontal habitats.

![Fig. 6. Depth and temperature occupation of tag 89297. Time-series contour plots represent the migration between San Diego, California and Mid-Baja California, Mexico for (A) depth envelope, (B) depth distribution, and (C) temperature distribution. The depth range in (B) is constrained relative to (A) to show detail of where the fish spent most of the time. Time reference is local, and tic marks for each day indicate midnight. Solid black circles at 400 m in (A) show the times for which statistical summaries within a 6-hour interval were received from the tag. In (B, C) depth and temperature axes represent the midpoint of a bin, and color represents the percent of time the fish spent in a depth or temperature bin within a 6-hour interval. Periods boxed in gray define the times during which tag summary data were available within ±1.5 days of a satellite SST image (Fig. 5). The open black circles at 500 m in (A) identify the times of the satellite images shown in Fig. 5; lower case labels at the bottom of (C) correspond to domain labels in Fig. 5A. The gray horizontal lines at 500 m in (A) define the time windows of Fastloc GPS coverage shown in each of the synoptic images in Fig. 5.](image-url)
Table 3

<table>
<thead>
<tr>
<th>Case study</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (h)</td>
<td>54</td>
<td>66</td>
<td>66</td>
<td>42</td>
<td>66</td>
<td>66</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>Depth range (m)</td>
<td>0–275</td>
<td>0–275</td>
<td>0–520</td>
<td>0–175</td>
<td>0–175</td>
<td>0–125</td>
<td>0–125</td>
<td>0–125</td>
</tr>
</tbody>
</table>

3.4.2. Water-column occupation in fronts

The association of an individual M. mola with upwelling fronts in the southern CCLME (Section 3.4.1) may be due to either (1) passive entrainment into frontal circulation jets while the fish resided near the surface, or (2) active use of frontal environments for a benefit, such as favorable foraging conditions. Fish depth occupation supports the latter explanation (Fig. 6). When the fish was tracked in these frontal environments, it exhibited extensive use of the upper water column, ranging from 125 m to 520 m (Table 3). The individual’s activity outside of fronts cannot be compared to activity within fronts because all available synoptic case studies occurred within frontal zones (Fig. 5). When tag

Fig. 7. Convergence in upwelling fronts. (A) AVHRR SST image from September 3, 2010 22:08 UTC approximately one week before the fish transited the region (Fig. 5C, note similar upwelling patterns in this region on September 3 and September 10). (B) ENVISAT synthetic aperture radar (SAR) image within this region from September 3, 2010 17:53 UTC. The arrow identifies a dark band (lower scattering, i.e., smoother ocean surface of a slick) with a similar scale, shape and orientation as the upwelling filament. (C) AVHRR SST image from September 16, 2010 17:43 UTC, approximately one month before the fish transited the region (Fig. 5F–G). (D) ENVISAT SAR image within this region from September 16, 2010 17:45 UTC. The white arrow identifies a dark band in the thermal front, again indicating surface convergence.

Frontal systems are highly variable in spatial scale, duration and physico-chemical and biological factors, and their effects extend across trophic levels (Belkin et al., 2014). Within the CCLME, aggregating and foraging behaviors around fronts have been observed for a variety of species including tuna (Fiedler and Bernard, 1987), cetaceans (Tynan et al., 2005) and leatherback turtles (Benson et al., 2007). Recently, studies of a CCLME thermal front revealed elevated abundances of gelatinous zooplankton (McClatchie et al., 2012). A growing number of studies are underscoring the importance of fronts to vertebrate species and motivating discussions around designating such habitats as priority conservation areas (Scales et al., 2014).
data were of sufficient temporal resolution, diel vertical migration (DVM) was evident. Observations of DVM were clearly evidenced over two time periods: (1) between ~10 m (nighttime) and 40 m (daytime) during September 1–4 (Fig. 6B), shortly after the fish was first associated with a front (Fig. 5B), and (2) between ~20 m (nighttime) and 200 m (daytime) during September 20–24 (Fig. 6B, C), during and following occupation in a frontal zone furthest offshore (Fig. 5D). Considering all remote sensing case studies, DVM was evident in depth and/or temperature data for cases c, d, g and i (Figs. 5, 6).

3.4.3. Frontal convergence zones

The observed association of sunfish 89297 with upwelling fronts (Fig. 5) motivated a more detailed investigation of the nature of this habitat. Combined SAR and SST coverage during the tag tracking period permitted examination of two slicks in frontal zones. The first was from the northern region of the fish track on September 3 (Fig. 7A, B), approximately one week before the fish transited the region (Fig. 5C). At that time, a coastal upwelling plume extended ~50 km from the coast near 31°N and was associated with strong thermal gradients (Fig. 7A). A SAR image acquired approximately 4 h before the SST image revealed a dark band having similar location and orientation as the upwelling front (arrow in Fig. 7B). Dark bands indicate slicks typically associated with convergence zones (Holt, 2004; Ryan et al., 2010). Although advection during the hours between the SAR and SST images precluded exact alignment of features in the SST and SAR images, the similarities of the thermal and surface roughness features support the interpretation of a convergent thermal front. The second slick was from the southern region of the track during mid-September (Fig. 7C, D), approximately one month before the fish transited the region (Fig. 5G). Nearly simultaneous SST and SAR images indicated a strong thermal front associated with coastal upwelling and an intense narrow slick in the frontal zone west of Punta Eugenia, Baja California (Fig. 7C, D).

The convergent circulation indicated by these two slicks has both physical and biological implications. When prey species swim upward against the downwelling flow in a convergence, their populations can accumulate (Franks, 1992). This mechanism can create favorable foraging habitats for predators such as *M. mola*.

3.4.4. Forage species in relation to fronts

Zooplankton sampling and environmental conditions within the southern region of the fish’s (89297) migration allows further exploration of the strong association between *M. mola* and upwelling fronts. The two highest zooplankton biovolumes were sampled near the coast (Fig. 8, stations near 26.5°N and 28°N), where the sunfish spent half of the total two-month tracking period. Zooplankton biovolume at both stations was dominated by *Salpa* species, a known prey item for *M. mola* particularly those >1 m (Cardona et al., 2012; Harrod et al., 2013; Nakamura and Sato, 2014; Syvaranta et al., 2012). In contrast, a near-coastal station sampled between these two high-abundance stations showed low biovolume (Fig. 8, station near 26.9°N). This difference in zooplankton biovolume was further related to frontal conditions. At the two near-coastal stations with high zooplankton biovolume, sampling occurred toward the warm side of strong thermal fronts (Fig. 9A, B, D). At the near-coastal station with low zooplankton biovolume, sampling occurred toward the cold side of a weaker thermal front (Fig. 9A, C). Although the zooplankton and environmental sampling were conducted on a prescribed grid, and thus not specifically designed to examine relationships between zooplankton and fronts, the available data...
support the interpretation that zooplankton biovolume was greater on the warm side of strong thermal fronts. Studies in the northeastern Atlantic report finding *M. mola* on the warm stratified side of fronts, both tidal and seasonal (Sims and Southall, 2002). The same may hold true for *M. mola* in the southern CCLME.

3.4.5. Swimming speeds

The high accuracy and temporal intervals of the Fastloc GPS tag data provided the opportunity to examine possible speed bursts of the large (2 m TL) Fastloc tagged individual. Two unusually high speeds were detected during very short bursts. Each was based on GPS locations derived from 6 satellites at one location and 4 satellites at the other. Recent examination of Fastloc GPS accuracy shows that for positions calculated using 6 GPS satellites, 50% of locations were within 18 m, and 95% were within 70 m of the true position (Dujon et al., 2014). Accuracy based on 4 GPS satellites was lower, with 50% of locations within 36 m, and 95% were within 724 m of the true position. The speed estimate for the first burst was 6.6 m s\(^{-1}\) during a 370 s interval with a corresponding error of ±0.15 (50% confidence) or ±2.1 (95% confidence). The speed estimate for the second burst was 2.2 m s\(^{-1}\) during a 342 s interval with a corresponding error of ±0.22 m s\(^{-1}\) (50% confidence) or ±3.2 m s\(^{-1}\) (95% confidence). Given this positional uncertainty, we interpret the highest speed calculation, 6.6 m s\(^{-1}\), with 95% confidence, as a reliable measure of a speed burst and not an outlier due to sampling or reporting error. Further, even with contribution to speed over ground from a strong flow in the California Current of ~0.5 m s\(^{-1}\) (Lynn and Simpson, 1987), this speed measurement remains anomalous. The uncertainty in the second measurement exceeds the speed estimate at the 95% confidence level and thus cannot be reliably interpreted as a speed burst. Nakamura and Sato (2014) report a maximum burst speed of ~2.1 m s\(^{-1}\) for a smaller individual (1 m TL). Our estimate for maximum speed burst (6.6 m s\(^{-1}\)) exceeds this by a factor of 3.

4. Conclusions

M. mola satellite telemetry studies in the southern CCLME between 2003 and 2010 show that the species uses coastal ocean margins and engages in seasonal latitudinal movements extending between Southern California and central Baja California, Mexico. Satellite and ship data coupled with a high accuracy GPS track suggest that *M. mola* consistently occupy frontal zones where potential prey species such as salps may be concentrated. Further, ship measurements of oxygen profiles show that a *M. mola* occupying near-coastal water likely spent time in hypoxic conditions. This observation motivates further physiological studies of the species and tag-based oxygen measurements.

Studying individual *M. mola* offers valuable insight into the species’ natural history and behavior in the eastern Pacific, yet important gaps still remain in our understanding of the species’ population ecology. Ongoing genetic surveys of the population coupled with citizen science observations (e.g. oceansunfish.org) and aerial and shipboard surveys that record ocean sunfish sightings opportunistically (e.g. Barlow and Fornes, 2007; Benson et al., 2007) can help fill gaps. In the western Atlantic, such opportunistic ocean sunfish observations have been used to estimate summer abundances and establish a baseline for population status assessments (Kenney, 1996). Similar work could be used to assess population status for the eastern Pacific *M. mola* population. Gaps also remain in our understanding of ocean sunfish recruitment. Despite high fecundity, with an estimated 300 million eggs reported for a 1.2 m TL individual (Schmidt, 1921), no data exist on *M. mola* reproductive
habits in the CCLME and beyond. While schools of small sunfish (20–30 cm TL) have been reported in the SCB and further north (www.oceansunfish.org) nothing is known regarding spawning locations, or larval recruitment into regional populations and the factors that control it.

Information on habitat preferences and vertical distribution may be of use to fisheries managers for reducing bycatch in DGN fisheries especially if efforts to move toward dynamic ocean management are successful. Additional long-term studies of more individuals encompassing a larger size range and tag deployments from Mexico to north of the SCB will allow further exploration of how this species uses the full extent of the CCLME. The cosmopolitan distribution of M. mola, its large size and capacity to carry instruments, coupled with its habit of surfacing provide a unique opportunity to compare behaviors and movements in vastly different ecosystems worldwide.

Acknowledgments

This work was funded by a grant to T.M.T. from the National Geographic Committee for Research and Exploration grant #7369-02 J.P.R. was supported by the David and Lucile Packard Foundation. The IMECCAL Mexican oceanographic program is funded by CICESE project #625114 and CONACYT project #129140. The Census of Marine Life, Tagging of Pacific Predators TOPP and the Monterey Bay Aquarium Foundation provided additional tag support. Special thanks to: J.D.R. Houghton, B. Robison, R. Vetter and two anonymous reviewers for comments on an earlier version of the manuscript; Dan Lawson for supplying information on the California offshore drift gillnet fishery; Mike Johnson for photos and tagging assistance; Eddie Kisfaludy, Daren Maurer, Suzanne Kohin and NOAA staff, the Rosenthal family, Thomas Behrend, Christina Karliczek from Blue Planet Film and the Block lab for additional tag assistance; M. Salisbury for help in the preparation of Fig 2 and Emily Nixon for assembling references. This paper is dedicated to the memory of Dave Foley, a great satellite oceanographer and friend. [SS]

References

Further Reading
