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Abstract. The oceans are changing more rapidly than ever before. Unprecedented climatic variability is
interacting with unmistakable long-term trends, all against a backdrop of intensifying human activities.
What remains unclear, however, is how to evaluate whether conditions have changed sufficiently to pro-
voke major responses of species, habitats, and communities. We developed a framework based on multi-
model inference to define ecosystem-based thresholds for human and environmental pressures in the
California Current marine ecosystem. To demonstrate how to apply the framework, we explored two dec-
ades of data using gradient forest and generalized additive model analyses, screening for nonlinearities
and potential threshold responses of ecosystem states (n = 9) across environmental (n = 6) and human
(n = 10) pressures. These analyses identified the existence of threshold responses of five ecosystem states
to four environmental and two human pressures. Both methods agreed on threshold relationships in two
cases: (1) the winter copepod anomaly and habitat modification, and (2) sea lion pup production and the
summer mode of the Pacific Decadal Oscillation (PDO). Considered collectively, however, these alternative
analytical approaches imply that as many as five of the nine ecosystem states may exhibit threshold
changes in response to negative PDO values in the summer (copepods, scavengers, groundfish, and marine
mammals). This result is consistent with the idea that the influence of the PDO extends across multiple
trophic levels, but extends current knowledge by defining the nonlinear nature of these responses. This
research provides a new way to interpret changes in the intensities of human and environmental pressures
as they relate to the ecological integrity of the California Current ecosystem. These insights can be used to
make more informed assessments of when and under what conditions intervention, preparation, and miti-
gation may enhance progress toward ecosystem-based management goals.
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INTRODUCTION

Any performance management system—
whether it is focused on health care, national
security, business, or the environment—rests first
and foremost upon a reliable set of measure-
ments. These measurements, or indicators, can
be used to evaluate a system’s status (Otley
1999). The rise of ecosystem-based management
(EBM) of the ocean is no exception to this
generality. As scientists and managers have tried
to move marine EBM from theory to practice
(Pikitch et al. 2004, Arkema et al. 2006, Levin
et al. 2009, Samhouri et al. 2013, Link and
Browman 2014), a frequent first step has been to
identify and report on indicators of ocean condi-
tions (Kershner et al. 2011, Halpern et al. 2012,
Andrews et al. 2015). In marine EBM and else-
where, however, indicators are necessary but not
sufficient for successful performance manage-
ment (Otley 1999). Useful indicators must
describe a system in relation to the objectives set
for it (Melnyk et al. 2004). Reference points pro-
vide just such a basis for comparison of an indi-
cator’s value to an internal or external standard.
(See Appendix S1: Table S1 for definition of indi-
cator, reference point, and other terms used in
the text.) Thus, they are a critical component of
advancing EBM from concept to commonplace.

An increasing variety of environmental perfor-
mance management approaches are built around
reference points, from global to local scales (Hal-
pern et al. 2012, Hamel et al. 2015, UMCES
2016). For example, the most familiar reference
point in fisheries science is the concept of maxi-
mum sustainable yield, which is calculated based
on estimates of population size, carrying capac-
ity, and growth rates (Hilborn and Walters 1992).
One of the most informative techniques to estab-
lish reference points relies upon thresholds in
ecosystem state. Following Groffman et al.
(2006), we define an ecosystem threshold as a
large, nonlinear change in an ecosystem state
indicator (e.g., biodiversity of a key species or

functional group) in response to an incremental
change in an anthropogenic or environmental
pressure(s), such as pollution or temperature
(Lackey 1998, Methratta and Link 2006, Martin
et al. 2009, Samhouri et al. 2012).
Determining where ecosystem thresholds

occur, and how large a shift may be induced by
crossing them, is key for informing management
that prepares for and is designed to avoid abrupt
and undesired changes (Doak et al. 2008). For
instance, the concept of rising variance, where
the variability in an ecosystem state(s) can pro-
vide advance warning of an ecosystem shift, has
led to new insights about both terrestrial and
marine systems (Carpenter and Brock 2006,
Sydeman et al. 2013, Litzow and Hunsicker
2016). Many analytical techniques for identifying
ecosystem thresholds based on state–pressure
relationships have also been proposed (Samhouri
et al. 2010, Large et al. 2013, 2015a, b, Hunsicker
et al. 2016), leaving an open question: Which is
most appropriate, and under what conditions?
Here, we propose a framework centered on

multimodel inference (MMI), rather than a single
statistical tool, to define ecosystem thresholds for
environmental and human pressures. To illus-
trate how our MMI framework can be used, we
apply it to the U.S. California Current System
(CCS), which supports more than $23 billion in
revenue from fisheries, tourism, and recreation
(data source: NOAA Coastal Services Center,
2013 GDP data for living resources and tourism
and recreation sectors; http://www.oceaneco
nomics.org/). The vast majority of ocean condi-
tion reports for the CCS focus on ecosystem
states, as well as environmental and human pres-
sures, relative to internal standards—long-term
averages of conditions (Halpern et al. 2014, Har-
vey et al. 2014, Leising et al. 2014, ONMS 2015,
Zador 2015). Here, we seek to enhance these
assessments by directly connecting variability in
environmental and human pressures to the
potential for nonlinear ecosystem responses.
Such nonlinear ecosystem responses are common
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in many ecosystems (Hunsicker et al. 2016) and
can alter the human-derived benefits of a system
(Selkoe et al. 2015). As such, we believe our MMI
framework that identifies ecosystem thresholds
has broad application to other regions in the pro-
cess of operationalizing EBM.

METHODS

Analytical framework
We developed an analytical approach to define

ecosystem thresholds for environmental and
human pressures. The goal was to represent the
value of a pressure relative to an inflection point
in its relationship to one or more ecosystem states,
and to quantify the magnitude of ecosystem
change associated with crossing that value. This
pressure–state approach is distinct from one that
focuses on changes in state or pressure variables
over time, or the time at which a threshold was
crossed (Bestelmeyer et al. 2011, Scheffer et al.

2012). The workflow (Fig. 1) can be summarized
in four parts, including (1) pre-treatment, (2)
screening, (3) functional form identification, and
(4) threshold identification.
Step 1: Pre-treatment: Which data?—The first step

in this workflow represents scoping, winnowing,
and data preparation. Scoping precisely defines
the focus of the analysis in terms of ecosystem
state and pressure indicators. It is important to
clarify whether the focus of the analysis will be on
univariate or multivariate ecosystem indicators,
and on bivariate pressure–state relationships or
associations between univariate ecosystem indica-
tors and multiple pressures.
The goal of pre-treatment is to narrow the

universe of possibilities to a manageable subset
of time series, a suite of spatial data from a lim-
ited time period, or a spatio-temporal data set.
This winnowing of data sources can be accom-
plished via expert opinion, reference to pre-
established indicator frameworks (e.g., European
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Fig. 1. Analytical framework for defining ecosystem-based thresholds for environmental and human pressures.
S = ecosystem state indicator(s); E = environmental pressure indicator(s); H = human pressure indicator(s);
DFA = dynamic factor analysis; mag = magnitude of ecosystem response across a threshold. Note that the tools
listed here are intended as examples, rather than an exhaustive list. GAM, generalized additive model.
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Marine Strategy Framework Directive, Tett et al.
2013, California Current Integrated Ecosystem
Assessment, Harvey et al. 2014, the Puget Sound
Partnership Science Update, PSP 2011), or multi-
variate analyses intended to reduce dimensional-
ity for large data sets (e.g., dynamic factor
analysis; Zuur et al. 2003). This step helps to
reduce the occurrence of statistically spurious
results. The process of winnowing also provides
an opportunity to ensure that the state and
pressure variable data are derived at spatial
scales that allow for biologically plausible rela-
tionships. While it is difficult to provide prescrip-
tive guidelines about requirements without a
priori knowledge of effect sizes, variances,
and other characteristics of the data, a minimum
of ten matched state–pressure data points is
recommended.

After winnowing, any data preparation such
as the interpolation or extrapolation of missing
data points should be completed. (We caution
against using interpolated missing values when
they occur at the beginning or end of time series).
Decisions about whether and how to consider
time lags and spatial-scale mismatches in pres-
sure–state relationships should be made at this
stage. For example, are large-scale indicators of
the intensity of human activities appropriate for
identifying threshold changes in an ecosystem
state measured at a smaller spatial scale? Simi-
larly, are thresholds in a pressure–state relation-
ship expected to occur simultaneously, or would
thresholds be more likely to be observed when
ecosystem state data are lagged?

Step 2: Screening: Are there nonlinearities?—The
second step explores the potential for nonlinear
relationships between ecosystem states and pres-
sures and seeks to identify the potential existence
of thresholds. This portion of the analysis relies
on MMI, rather than a single statistical tool.
Broadly defined, MMI is the application of sev-
eral quantitative representations of a system to
learn how the system works (Townsend et al.
2014). As this step is intended to eliminate
pressure–state relationships from the analysis
that are unlikely to show evidence for thresh-
olds, we recommend comparing model results
qualitatively (rather than developing a quantita-
tive model consensus). Strongest inferences
can be made where models agree on the exis-
tence and location of thresholds, and quantitative

descriptors of the identity and magnitude of the
threshold can be developed in the following
steps.
Common approaches for identifying the pres-

ence of thresholds include gradient forest, gener-
alized additive and generalized additive mixed
models (GAMs and GAMMs), and specified
functional form analyses (Samhouri et al. 2010,
Large et al. 2013, 2015a, b, Baker and Hollowed
2014, Hunsicker et al. 2016). Importantly, the
choice of methods may be influenced by the com-
pleteness of the indicator data, as some methods
use all ecosystem and pressure indicators simul-
taneously and require complete data sets (e.g.,
gradient forest), while other methods evaluate
individual pressure–state relationships and can
reasonably handle missing values in a time series
(e.g., GAM).
Step 3: Functional form identification: What type

of nonlinearity exists?—For relationships identified
as nonlinear in the preceding screening step, the
next stage of analysis derives relevant statistics
from the models to describe their signs and func-
tional forms. The outcome of this analysis should
be a quantitative description of whether a pres-
sure is positively or negatively correlated with
an ecosystem state, and at a minimum a qualita-
tive description of the shape of the relationship
(e.g., hockey stick, sigmoidal, parabolic). While
many statistical models will allow such a quanti-
tative description (e.g., GAMs, specified func-
tional forms), others will not (gradient forest
analysis).
Step 4: Threshold identification: How strong are

the nonlinearities?—For relationships that emerge
as nonlinear, a final set of analyses is used to
determine the location (inflection point) and
strength of the threshold. This step provides (1) a
quantitative estimate of the threshold level(s) of
a pressure corresponding to an abrupt change in
the direction of its relationship with an ecosys-
tem state, typically defined as the point of inflec-
tion where the second derivative changes sign
(Samhouri et al. 2010, Large et al. 2013), and (2)
the magnitude of change in an ecosystem state
associated with breaching the threshold level of a
pressure. Several statistical tools can be used to
locate the threshold, estimate the uncertainty
around its location, and describe the magnitude
or effect size corresponding to the threshold
(Andersen et al. 2009, Foley et al. 2015).
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California current application
We applied the MMI framework described

above to the CCS. A comprehensive assessment of
the conditions within this coupled social–ecologi-
cal system is reported in NOAA’s California Cur-
rent Integrated Ecosystem Assessment (CCIEA;
Harvey et al. 2014). The following section repre-
sents the pre-treatment steps for application of
our MMI framework for identifying thresholds.

The CCS is an eastern boundary current
ecosystem, with seasonal periods of upwelling of
cold nutrient-rich waters along the coast that
drive primary and secondary productivity and
affect the dynamics of the diverse resident and
migratory species throughout the food web
(Bograd et al. 2009, Hazen et al. 2014). In addi-
tion to fluctuations in the oceanographic and bio-
physical environment, the CCS is affected by a
variety of human uses that include fisheries and
other marine activities, as well as land-based
activities that result in localized (i.e., point
source) and broadscale (i.e., nonpoint source)
transfer of materials to the coastal zone (Halpern
et al. 2009, Andrews et al. 2015).

Changes in environmental pressures in the CCS
can be abrupt. Some vary at relatively short time-
scales, including short-term variability in upwel-
ling strength as tracked by the North Pacific High
(Schroeder et al. 2013) and the Northern Oscilla-
tion Index (NOI; Schwing et al. 2002). Other pro-
cesses act at interdecadal scales; for example, the
strength of transport by the North Pacific Gyre is
indexed by the North Pacific Gyre Oscillation
(NPGO; Di Lorenzo et al. 2008), and decadal

changes in sea surface temperature regimes in the
northeast Pacific are tracked by the Pacific Deca-
dal Oscillation (PDO; Mantua and Hare 2002).
When warmer-than-average temperatures and
weak upwelling dominate the CCS (e.g., positive
PDO and negative NOI), large ecosystem state
changes have been observed (King et al. 2011),
including shifts in planktonic communities (Peter-
son et al. 2014) and lower trophic-level fishes
(Chavez et al. 2003), as well as higher trophic-
level fishes (Lindley et al. 2009), seabirds, and
mammals (Leising et al. 2014).
Human activities within the CCS are also quite

dynamic (Andrews et al. 2015). Economic shocks
(e.g., McKenna et al. 2012), emerging technolo-
gies (Kim et al. 2012, Plummer and Feist 2016),
and regulatory shifts (e.g., in fisheries; Hilborn
et al. 2012, Lubchenco et al. 2016) have caused
rapid changes in ocean uses. As with variability
in the environment, these changes have both
direct and indirect effects on various components
of the ecosystem (Halpern et al. 2009). Here, we
drew from the 19 human activities presented in
the CCIEA (Harvey et al. 2014) and focused on
the 10 that provided available data across most
of the period of interest (Table 1).
Data sources.—Our analysis centered on the

identification of levels of pressures likely to
induce the crossing of a threshold for one or more
indicators of ecological integrity and was based
on time series data. While spatial variability is
certainly a key feature of the California Current,
an analysis of whether and how relationships
between ecosystem states and pressures differ

Table 1. Indicators of environmental and human pressures in the California Current System.

Component Pressure Indicator Time series

Environmental Basin-scale sea surface temperature PDO summer and winter indices 1900–2014
Basin-scale atmospheric forcing NOI summer and winter indices 1948–2014

Changes in source waters NPGO summer and winter indices 1950–2014

Human Atmospheric pollution Deposition of sulfate 1994–2014
Commercial shipping activity Volume of water disturbed 2001–2012

Dredging Dredge volumes 1997–2014
Groundfish fisheries removals Commercial groundfish landings 1981–2014

Habitat modification Distance trawled 1999–2012
Inorganic pollution Toxicity-weighted chemical releases 1988–2012
Invasive species Tons of cargo 1993–2013
Nutrient input Nitrogen and phosphorus input 1945–2010

Organic pollution Toxicity-weighted concentrations of pesticides 1993–2010
Total fisheries removals Total commercial and recreational landings 1981–2014

Note: Further details of data sets can be found in Appendix S1: Table S2.

 ❖ www.esajournals.org 5 June 2017 ❖ Volume 8(6) ❖ Article e01860

SAMHOURI ET AL.



from place to place was beyond the scope of this
study.

The CCIEA defines ecological integrity as the
species composition, biodiversity, and functional
organization of an ecosystem and includes nine
coast-wide indicators: a mean trophic index, spe-
cies density, species richness, Simpson diversity,
scavenger biomass, the Northern copepod anom-
aly (winter and summer), and California sea lion
(Zalophus californianus) pup abundance and pup
growth rate (Table 2; Williams et al. 2014). These
ecosystem state time series were derived from
three fishery-independent data sets that span
several major taxonomic groups (invertebrates,
fishes, and mammals), and summarized at the
largest spatial domain possible given the data set
(see Williams et al. 2014 for details).

There are a wide variety of pressures with the
potential to effect change in these ecosystem
states. Although there are regional differences
within the CCS in physical forcing, climatic vari-
ability, and ecosystem responses (Mendelssohn
et al. 2003, Garc�ıa-Reyes and Largier 2012), we
focused on six basin-scale environmental pres-
sures in the North Pacific (Table 2; Appendix S1:
Table S2). These environmental pressures are the
primary basin-wide indicators of oceanography
and climate in the CCIEA (Hazen et al. 2014) and

include the winter and summer anomalies in the
NOI (NOIw and NOIs, respectively), NPGO
(NPGOw and NPGOs, respectively), and PDO
(PDOw and PDOs, respectively). We include both
winter and summer indicators because two modes
of upwelling in the CCS drive different compo-
nents of biological productivity. While the stron-
gest upwelling occurs in the summertime, the
winter mode (upwelling at the beginning of the
season) can be equally important for growth and
reproduction in some species (Black et al. 2011).
As with the environmental pressures, many

human activities are likely to be associated with
variability in ecological integrity in the CCS.
Here, we focus on ten human activities that have
received global (Halpern et al. 2008, 2015) and
regional (Halpern et al. 2009, Andrews et al.
2015) attention in relation to changes in marine
ecological integrity (Table 1; Appendix S1:
Table S2). Four activities relate to pollution
(atmospheric, inorganic, nutrients, and organic),
three pertain to habitat disturbance (commercial
shipping, habitat modification, and dredging),
two concern extraction (total fisheries and
groundfish landings), and one is associated with
invasive species. The intensities of all of these
activities were summarized at the scale of the full
CCS (see Andrews et al. 2015 for details).

Table 2. Ecosystem states assessed in the case study of the California Current System.

Ecosystem
attribute Indicator

Taxonomic
group Community

Definition and source
of data Time series

Sampling
frequency

Species
composition

Northern copepod
anomaly, winter
and summer

Invertebrates Pelagic Monthly anomalies in the
relative biomass of
copepods with cold-water
affinities off Newport, OR
(Peterson et al. 2015, NOAA)

1996–2014 Biweekly;
summarized
as winter and
summer
anomalies

Biodiversity Species richness,
Species density,
Simpson’s index

Groundfish Benthic Index of groundfish community
composition (Bradburn
et al. 2011, NWFSC)

2003–2014 Summers,
annual

Functional
organization

Mean trophic index Groundfish Benthic Trophic structure of groundfish
community (Bradburn
et al. 2011, NWFSC)

2003–2014 Summers,
annual

Functional
organization

Scavenger biomass Groundfish
and
invertebrates

Benthic Relative biomass of scavengers,
as defined by esp. Brand et al.
(2007), from fishery-independent
surveys (Bradburn
et al. 2011, NWFSC)

2003–2014 Summers,
annual

Functional
organization

California sea lion
pup production
and growth

Marine
mammals

Top
predators

Average no. of pups on
San Miguel Island in late July
and predicted daily growth
rate of pups between June
and October (Melin et al. 2012,
Wells et al. 2013, NMML)

1997–2014 July and
June–October,
respectively;
annual

Notes: These “Ecological integrity” indicators are used by NOAA’s Integrated Ecosystem Assessment for the California Current with detailed
descriptions in Williams et al. (2014). Note that the California sea lion pup growth time series was missing data for a single year (2011). Prelimi-
nary investigation suggested that a simple mean interpolation was the most parsimonious way to fill this gap. NOAA = National Oceanic and
Atmospheric Administration; NMML = National Marine Mammal Laboratory; NWFSC = Northwest Fisheries Science Center.
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Implementation of the analytical framework.—To
embrace the MMI philosophy of the framework
described above, we used gradient forest, GAM,
and GAMM analyses to screen for nonlinearities
and potential threshold responses of ecosystem
states (Liaw and Wiener 2002, Ellis et al. 2012,
Baker and Hollowed 2014, Large et al. 2015b,
Hunsicker et al. 2016). We tested for nonlinearities
in all possible pressure–state relationships, but
subsequently excluded those without plausible
mechanistic relationships. While this approach
increased the possibility that we would detect sig-
nificant thresholds and nonlinearities, our interest
was in the precautionary identification of poten-
tial thresholds rather than statistical significance
(White et al. 2014), especially given the limitations
of inferences based on P-values (Barber and Ogle
2014).

We implemented the gradient forest, GAM,
and GAMM analyses on a subset of the full time
series. When considered collectively, the time ser-
ies of ecosystem states spanned a 19-yr period
from 1996 to 2014 (Table 2), but the span of over-
lap among all ecosystem and pressure time series
was 10 yr (2003–2012). For the gradient forest
analyses, missing data for any time series is
problematic; we truncated each time series to this
10-yr period for the purposes of MMI (hereafter,
truncated analyses). We removed two human
pressures (organic pollution and nutrient input)
from the truncated analyses due to missing data
in 2011–2012.

While the truncated analyses allowed for
direct comparison of results among models, this
approach had the obvious drawback of not using
all the available data. Therefore, we also con-
ducted GAM/GAMM analyses on the longest
time series available for each pressure–state pair
(hereafter, full GAM analyses).

Detailed description of the gradient forest
analyses.—The gradient forest analysis quantified
the ability of each environmental or human pres-
sure to predict variation in the time series of mul-
tiple ecosystem states (Breiman 2001, Large et al.
2015b). Gradient forest analysis is an ensemble of
random forest models, each of which splits
ecosystem states into two groups at specific val-
ues of an environmental or human pressure. Par-
titions are further made until one group becomes
a terminal node. The R2-importance of each value
of the pressure—in other words, the possibility

that it represented a threshold—was calculated
based on maximizing the homogeneity of vari-
ance of the ecosystem state values within each
subsequent partition. Ecosystem states with zero
variance explained by random forests were not
included in the final gradient forest models.
We estimated the aggregate response of all

ecosystem indicators, called the cumulative
ecosystem response, to each pressure. The cumu-
lative ecosystem response was calculated from
the cumulative importance distributions of split
improvement for each ecosystem state, scaled for
each ecosystem indicator by R2-importance and
standardized by the density of observations.
Though the gradient forest analysis identified
potential thresholds wherever splits in the pres-
sure improved the homogeneity of variance of
the cumulative ecosystem response values, we
focused only on improvements in cumulative
ecosystem response R2-importance that exceeded
0.01.
For pressures that increased cumulative

ecosystem response R2-importance by ≥0.01, we
identified individual ecosystem state thresholds
based on a range of pressure values. This range
was defined in relation to significant increases in
the cumulative R2-importance values of each
ecosystem state given a split at specific values of
the pressure (Large et al. 2015b). We used the R
packages “randomForest” (Liaw and Wiener
2002, R Core Team 2016) and “gradientForest”
(Ellis et al. 2012) for all calculations.
Detailed description of the GAM/GAMM

analyses.—We used a model selection approach to
determine whether a nonlinear GAM or GAMM
provided a more parsimonious explanation of
pressure–state relationships than a linear model
(Sonderegger et al. 2009, Bestelmeyer et al. 2011,
Samhouri et al. 2012). However, because our anal-
yses focused on time series data, we first used a
log-likelihood ratio test adapted from the meth-
ods described in Gilman et al. (2012) to determine
whether a generalized additive mixed model with
autocorrelated error structure (GAMM) was more
appropriate than a GAM with normal error struc-
ture. The log-likelihood ratio test was based on a
comparison of (1) the fit of residuals from the
GAMM in a linear model with autocorrelated
structure in the residual covariance matrix to (2)
the fit of residuals in a simple linear model.
Where temporal autocorrelation was determined

 ❖ www.esajournals.org 7 June 2017 ❖ Volume 8(6) ❖ Article e01860

SAMHOURI ET AL.



to be significant, we used Akaike’s Information
Criterion (corrected for small sample sizes; AICc)
to select between GAMM (“gamm” function in R)
and linear models with autocorrelated structure
in the residual covariance matrices (Eqs. 1–3).
Where temporal autocorrelation was deemed
nonsignificant, we used AICc to select between
simple GAM (gam() function in the mgcv() pack-
age in R) and linear models (Eqs. 1, 2 and 4).

Formally, let Ey be the value of the ecological
indicator in year y, a a fixed intercept effect, Py

the value of the pressure in year y, s() the smooth-
ing function, e a normally distributed random
error term, and Rac and R the structures of the
residual covariance matrices (represented here
for a three-year period), with and without auto-
correlation, respectively, yielding:

Ey ¼ aþ sðPyÞ þ ey (1)

Ey ¼ aþ Py þ ey (2)

Rac ¼ r2
1 q q2

q 1 q
q2 q 1

2
4

3
5 (3)

R ¼ r2
1 0 0
0 1 0
0 0 1

2
4

3
5 (4)

The formulation of Eq. 3 implies that the most
recent values of a pressure have the greatest
influence on the response of the ecosystem indi-
cator, and the previous influence of a pressure
diminishes quickly according to the autocorrela-
tion coefficient q. In contrast, the formulation of
Eq. 4 implies that values of a pressure in a previ-
ous year have zero influence on the response of
an ecosystem indicator.

We determined whether there was more evi-
dence for linearity or nonlinearity based on the
following three criteria: (1) The estimated degrees
of freedom, which increases with a curve’s nonlin-
earity, was ≥2.0 (Zuur et al. 2009, Hunsicker et al.
2016); (2) the generalized cross validation score
(GCV; Wood 2004b) was minimized in the GAM
compared to the LM (GCV is not a calculated cri-
terion for GAMMs); and (3) the difference in AICc

values was ≥2.0 units in favor of the nonlinear
model (Burnham and Anderson 2002). For both
GAM and GAMM, we used thin plate regression

spline smoothing terms, the “mgcv” (Wood
2004a) package, and set the size of the basis
dimension to 4 to reduce the possibility of over-
fitting (Large et al. 2013).
For pressure–state relationships identified as

nonlinear, we defined the location of the threshold
as the inflection point, that is, the value of the pres-
sure where the second derivative changed sign
(Fewster et al. 2000, Bestelmeyer et al. 2011, Sam-
houri et al. 2012, Large et al. 2013). For these anal-
yses, we calculated the 95% CI of the smoothing
function itself, along with its second derivative,
via bootstrapping of the residuals in order to allow
for autocorrelation. This procedure generated a
range of pressure values where a threshold might
occur. Because location of the inflection point on
the second derivative function is based on a statis-
tical fit and cannot be determined exactly, we
defined that location as the place where the second
derivative is most different from zero. Thus, we
are most confident that the second derivative
changed from zero to nonzero at this point.
We determined the functional form and mag-

nitude of change in ecosystem state variables
associated with crossing a threshold based on the
full GAM/GAMM analyses only. The functional
form of the nonlinear GAM/GAMMs was
defined based on the sign of the smoother coeffi-
cient on each pressure, the number of inflection
points, and visual inspection of the shape of each
pressure–state relationship. The magnitude of
change associated with crossing a threshold was
estimated based on the proportional difference in
ecosystem indicator values on either side of the
threshold, bounded as the maximum, minimum,
and best estimate of the threshold value (as
defined in the preceding paragraph).
Model output.—In the interest of using MMI to

detect thresholds, we report the results of each of
the three analyses (gradient forest analysis, full
GAM analyses, and truncated GAM analyses).
Note that for both the full and truncated GAM
analyses, model selection criteria never identified
GAMs with autocorrelated error structure
(GAMM) as the most parsimonious model; thus,
the following results are based on output from
GAMs.
For relationships with identified thresholds and

plausible mechanistic explanations, we mapped
the range of threshold values for each ecosystem
indicator to the corresponding pressure time
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series to identify the relative frequency with
which the pressure exceeded the ecosystem-based
threshold.

RESULTS

Our analysis reveals effects of both environmen-
tal and human pressures as major predictors of
individual and aggregated ecosystem states in the
CCS. These threshold relationships were evident
for individual ecosystem indicators as well as the
cumulative ecosystem response, though the types
and magnitudes of nonlinearities varied among
ecosystem states. Encouragingly, while the impor-
tance of many of these pressures for the CCS was
previously known, we identified several novel
nonlinear pressure–state relationships with poten-
tial utility for EBM. Below we present the results
such that they parallel the MMI framework intro-
duced in Fig. 1 (except for pre-treatment steps
described in Methods). We also demonstrate how
the ecosystem thresholds can be mapped to time
series of pressures, providing new insights into
how variability in the environment and human
activities may influence ecological integrity.

Screening for nonlinearities
We identified two pressure–state relationships

as potentially nonlinear via multiple methods.
Both the truncated and full GAM analyses sug-
gested that the relationships between (1) the win-
ter copepod anomaly and habitat modification,
and (2) sea lion pup production and PDOs, were
characterized by thresholds. In addition, we
flagged nine other potential nonlinear pressure–
state relationships based on a single method
(Figs. 2–4, Table 3; Appendix S1: Table S3).

PDOs and PDOw both showed evidence for
nonlinear relationships with three ecosystem
states and the cumulative ecosystem response,
underlining the potential importance of environ-
mental conditions for the CCS. In contrast,
NPGOw, NOIs, and habitat modification each
only showed evidence for nonlinear relationships
with a single ecosystem state. While both gradi-
ent forest and GAM analyses pointed to individ-
ual ecosystem thresholds in relation to PDOs and
PDOw, only gradient forest analysis highlighted
a potential ecosystem threshold in relation to
commercial shipping activity (Fig. 2, Table 3;
Appendix S1: Tables S3 and S4).

There was no evidence for nonlinear responses
of groundfish species density, species richness, or
Simpson diversity to the environmental and
human pressures we tested. Of the five ecosystem
states with nonlinear responses, four showed evi-
dence for thresholds in relation to more than one
pressure (Table 3; Appendix S1: Table S3).

Functional form identification
The truncated and full GAM analyses allowed

identification of functional forms of relationships
between three ecosystem states and five pres-
sures. California sea lion pup production showed
evidence for hockey stick and inverse parabolic
relationships with three environmental pres-
sures. First, it declined precipitously with initial
increases in PDOs but thereafter was relatively
invariant (Figs. 3 and 4). This ecosystem state
also showed an inverse parabolic relationship
with PDOw, increasing initially to a peak at a
value of around �0.5, and then declining with
large positive values of this pressure (Fig. 3).
Finally, California sea lion pup production exhib-
ited little change associated with increases in
NOIs until NOIs values of 0.25, whereby increas-
ing NOIs values were associated with anoma-
lously low pup production rates (Fig. 4).
We also determined the functional form of

nonlinear relationships between the summer and
winter copepod anomalies and both environ-
mental and human pressures. The relationship
between the summer copepod anomaly and the
NPGOw was best described as a hockey stick,
such that this ecosystem state was associated
positively and linearly with NPGOw when
NPGOw was negative, but was relatively invari-
ant for positive values of NPGOw (Fig. 4). The
winter copepod anomaly showed a parabolic
relationship with habitat modification, with max-
imum values at low and high values of this pres-
sure, according to the truncated GAM analysis
(Fig. 3). However, the full GAM analysis indi-
cated precipitous declines in the winter copepod
anomaly associated with initial increases in habi-
tat modification, followed by small increases at
intermediate values of habitat modification, and
finally a second set of declines associated with
high levels of habitat modification (similar to a
sinusoidal relationship; Fig. 4). The contrast in
the functional form of this pressure–state rela-
tionship demonstrates the potential for strong
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Fig. 2. Gradient forest analysis of nine ecosystem states, six environmental pressures, and eight human
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leverage of a small number of extreme data
points when time series are relatively short.

Quantifying the strength of nonlinearities
We quantified the location of thresholds that

emerged from both the gradient forest and GAM
analyses, and the magnitude of change in ecosys-
tem states associated with breaching threshold
levels of pressures based on the GAM analyses.
The values of environmental pressures associ-
ated with threshold changes in ecosystem states
corresponded to changes from positive to nega-
tive anomalies in some cases (winter copepod
anomaly and California sea lion pup production
vs. PDOw; summer copepod anomaly, scavenger
ratio, and groundfish mean trophic index vs.
PDOs; California sea lion pup production vs.
NOIs), but not in all comparisons (summer cope-
pod anomaly vs. NPGOw and PDOw; California
sea lion pup production vs. PDOs; Table 3, Fig. 5;
Appendix S1: Figs. S4 and S5). One nonlinear
relationship did not meet our definition of hav-
ing a distinct threshold (CA sea lion pup produc-
tion vs. PDOs full GAM analysis).

For the thresholds related to human pressures
(Table 3, Fig. 5; Appendix S1: Figs. S4 and S5),
the truncated and full GAM analyses agreed on
the location of the threshold for the winter cope-
pod anomaly in relation to habitat modification.
The threshold for commercial shipping activity
determined by the gradient forest analysis
occurred at intermediate values of this activity.

We observed a range of magnitudes in the
response of ecosystem states across the associ-
ated thresholds. At the low end, California sea
lion pup production changed by ~10% across the
threshold found with NOIs (Fig. 4, Table 3). At
the high end, the winter northern copepod
anomaly changed by 180% across the threshold
found with NPGOw (Fig. 4, Table 3).

Mapping ecosystem threshold values onto
pressure time series
A useful way to visualize how the temporal

changes in the California Current pressures
relate to ecosystem states is to plot the values of
pressures relative to ecosystem thresholds
(Fig. 6). This approach complements one that
relies strictly on anomalous variation to deter-
mine whether conditions in any particular year
are “good” or “bad.” We focus here on threshold
values of pressures based on the full GAM analy-
ses, which harnesses all of the data available to
us. For example, in 10 of 19 yr between 1996 and
2014 the NPGOw suggested conditions distant
from the threshold corresponding to an abrupt
decline in the summer copepod anomaly (blue
shading), one year in which the NPGOw was in
the range of the threshold for the summer cope-
pod anomaly (yellow shading), and 6 yr in
which the NPGOw had exceeded this threshold
(red shading; Fig. 6a). In nine of 19 yr between
1996 and 2014 the NOIs index suggested condi-
tions distant from the threshold corresponding to
an abrupt decline in CA sea lion pup production
(blue shading), one year in which the NOIs was
in the range of this ecosystem threshold, and one
year in which the NOIs exceeded the threshold
corresponding to an abrupt decline in CA sea
lion pup production (1998; Fig. 6b).

DISCUSSION

The quantitative identification of abrupt
changes in ecosystems is an essential step toward
forecasting and preparing for the accelerating
changes of the Anthropocene (Rockstr€om et al.
2009, Steffen et al. 2011, Scheffer et al. 2012). In
marine environments, the consequences of cross-
ing thresholds—for population extinctions, anox-
ia, and acidification, for instance—are often

pressures using data from 2003 to 2012. Top: importance of environmental and human pressures weighted across
all ecosystem states. Pressures with R2-importance ≥0.01 were considered capable of predicting variation in
ecosystem states. Cumulative importance (in R2-importance units) of the aggregate response of all ecosystem
states (middle) and four individual ecosystem states that were predicted by the best model for this set of
pressures (bottom) across the gradient of each pressure. Each plot is scaled to the maximum cumulative response
to allow for direct comparison of ecosystem responses to each pressure. PDO, Pacific Decadal Oscillation; NOI,
Northern Oscillation Index; NGPO, North Pacific Gyre Oscillation; N copepod anom_s, Northern copepod
anomaly summer; N copepod anom_w, Northern copepod anomaly winter.

(Fig. 2. Continued)
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difficult to reverse (deYoung et al. 2008, Selkoe
et al. 2015). Anticipating, mitigating for, or
avoiding (when possible) these thresholds may
reduce the risk of unwanted collapses and buffer

coupled social–ecological systems from dramatic
change (e.g., Groffman et al. 2006). Even in cases
where environmental changes beyond the con-
trol of resource managers cause threshold
ecosystem responses, such recognition provides
crucial context for decisions about human uses of
the marine environment that are subject to
manipulation. The quantitative framework out-
lined here can help to define ecosystem-based
thresholds for human and environmental pres-
sures, an issue with potentially broad application
to other regions in the process of operationaliz-
ing EBM. Indeed, our application of the frame-
work to the CCS revealed novel nonlinear
ecosystem responses, consistent with well-under-
stood oceanographic forcing mechanisms.

Multimodel inference for ecosystem thresholds
Using indicators developed by NOAA’s CCIEA,

we screened all bivariate state–pressure relation-
ships for nonlinearities using multiple analytical
approaches. This strategy has clear strengths, as
well as, arguably, some weaknesses. To its advan-
tage, our framework introduces a common, step-
wise, accessible, and data-driven approach to
characterizing thresholds in state–pressure rela-
tionships (cf. Bestelmeyer et al. 2011). As such, it
can provide multiple lines of evidence for associa-
tions between certain pressures (e.g., PDO) and
threshold responses in an array of ecosystem
states. Our comprehensive exploration of thresh-
olds also supports the concept that some ecosys-
tem states are more prone to threshold responses
than others (e.g., the northern copepod biomass
anomaly; Fig. 5). Furthermore, employing multi-
ple statistical approaches helped to identify ecosys-
tem thresholds that individual methodologies
might have missed. As an example, only the full
GAM detected a nonlinear, threshold response of
California sea lion pup production to NOIs (Fig. 4).
Though beyond the scope of the current study, we
further suggest that this MMI approach could be
used (1) to harness the power of spatio-temporal
data sets to test for threshold changes in ecosystem
states across spatial gradients in pressures, and (2)
to determine whether there are nonlinear relation-
ships between ecosystem states, such as in the case
of trophic relationships between the abundance of
prey and their predators.
While our multimodel approach helped identify

thresholds, using multiple lines of evidence

Fig. 3. Truncated GAM analyses (data from 2003 to
2012) of ecosystem responses to environmental or
human pressures, where the dashed line is the GAM
smoother, gray polygon is 95% CI, points are raw data,
thick solid line indicates the threshold range where the
95% CI of the second derivative does not include 0,
and red dotted arrow indicates the best estimate of
the location of the threshold (i.e., where the second
derivative is most difference from zero within the
threshold range). See Appendix S1: Fig. S4 for addi-
tional details.
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sometimes led to inconsistent conclusions. For
example, there was only one pressure–ecosystem
state relationship for which thresholds were iden-
tified by multiple analyses (northern copepod
anomaly in the winter with habitat modification
—full and truncated GAM analyses; Table 3). As
mentioned above, a small number of extreme data
points caused the functional form of this pres-
sure–state relationship to differ in the analysis of
the shorter and longer data sets. Furthermore, the
mechanistic underpinnings for this relationship
are unclear, though it is possible that indirect
effects cause habitat modification (trawling) to lag
changes in the northern copepod anomaly
(ecosystem productivity). In addition, we tested
>100 state–pressure relationships, increasing the
possibility of making conclusions about thresh-
olds that were statistically spurious. This choice
was sensible because our interest was in the iden-
tification of potential thresholds rather than statis-
tical significance (White et al. 2014), but may not
be appropriate for all applications. We caution
against using this exploratory approach to identify
novel causal relationships. Instead, it is best used

for generating new hypotheses or confirming
existing ones regarding mechanistic links between
ecosystem pressures and states. Lastly, we did not
specifically examine threshold responses of multi-
variate ecosystem indicators or the potential for
thresholds to emerge from multivariate predictors
(Large et al. 2015a), though we did identify
threshold changes in the cumulative ecosystem
response using gradient forest analysis (Fig. 2).
These avenues are ripe for future research, with
multivariate thresholds providing context for eval-
uating tradeoffs. We caution that it may be chal-
lenging to use multivariate thresholds to inform
management decisions (Fay et al. 2015).
Given these strengths and weaknesses, we

believe the MMI approach may be particularly
useful as a precautionary framework for identify-
ing ecosystem components and relationships
worthy of further detailed analyses. We contend
that the risks of identifying spurious thresholds
and over-interpreting a limited data set are coun-
terbalanced by the need to anticipate, prepare
for, and, if necessary, avoid crossing ecosystem
thresholds (sensu Jacquet et al. 2015).

Fig. 4. Full GAM analyses (data from 1996 to 2014) of ecosystem responses to environmental or human pres-
sures. See Fig. 3 caption and Appendix S1: Fig. S5 for additional details.
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Fig. 5. Location of thresholds for multiple ecosystem indicators related to (a) the summer mode and (b) the
winter mode of the Pacific Decadal Oscillation (PDO). Open circles: gradient forest; closed circles: GAM. Note
that for CA sea lion pup production in relation to the PDO winter, there are two key thresholds at both cold and
warm anomalies (also see Table 3).

Table 3. Nonlinear ecosystem state–pressure relationships as identified by gradient forest (GF), truncated gener-
alized additive model (GAM), or full GAM analyses including functional form, location of threshold range,
and magnitude of change in ecosystem state across the threshold range.

Ecosystem state Driver/Pressure Analysis
Functional
form(s)

Location of
threshold(s)

Best estimate
of threshold
location(s)

Magnitude of
response(s)

(%)

Copepod anomaly
winter

PDO winter GF – �0.5 to �0.2 – –

Copepod anomaly
winter

Habitat
modification

Truncated GAM Parabolic 143–234 208 70
Full GAM Sinusoidal 138–252 227 30

Copepod anomaly
summer

NPGO winter GAM Hockey stick 0.2–0.8 0.2 180

Copepod anomaly
summer

PDO summer GF – �1.2 to 0.5 – –

Copepod anomaly
summer

PDO winter GF – 0.7–0.8 – –

Scavenger ratio Commercial
shipping activity

GF – 14.7–15.2 – –

Scavenger ratio PDO summer GF – �0.6 to 0.1 – –
Groundfish mean
trophic index

PDO summer GF – �0.3 to 0 – –

CA sea lion pup
production

NOI summer GAM Hockey stick �0.4 to 1.2 0.2 10

CA sea lion pup
production

PDO summer Truncated GAM Sigmoidal �1.5 to �0.2 �0.8 10
Full GAM Hockey stick NTI NTI NTI

CA sea lion pup
production

PDO winter Truncated GAM Sigmoidal 0.7–1.5 0.9 30
Truncated GAM �1.4 to 0.2 �0.8 0

Note: NTI, no threshold identified by CI of the second derivative; –, information not determined from the model.
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Ecosystem thresholds in the California Current
In the CCS, we identified the existence of

threshold responses of five ecosystem states to
four environmental and two human pressures.
These results broadly corroborate existing evi-
dence for the importance of physical forcing in
the CCS (Di Lorenzo et al. 2008, Bograd et al.
2009, Black et al. 2011). Previous studies have
established the strong influence of human activi-
ties in this system (Halpern et al. 2009, Hilborn

et al. 2012, Andrews et al. 2015). Our results add
to this literature by demonstrating that while
ecosystem states have changed in response to
human activities over the relatively short length
of our time series, there is little evidence that
these changes have been nonlinear. However,
this result does not imply that linear relation-
ships between ecosystem states and human
activities are inconsequential. Indeed, some may
require increased attention by resource managers
when environmental conditions are poor. For
example, given that sea lion pup production
declines precipitously when NPGO winter is
negative, it may be important to provide
increased scrutiny on human activities like fish-
ing that affect sea lion prey during those periods
(Chasco et al. 2017).
Nonetheless, the analyses presented here stand

in contrast to results from other systems. For
instance, in the Northwest Atlantic fisheries-
related pressures were associated with substantial
threshold responses in the ecosystem (Large et al.
2013, 2015b). It is important to note that the North-
west Atlantic analysis focused specifically on
ecosystem responses to fishing and that the
lengths of the CCS time series we used were com-
paratively short. This latter point is a limiting fac-
tor in identifying ecosystem thresholds for many
statistical methods and may explain why we did
not observe nonlinear associations between
ecosystem states and fisheries landings in the CCS.
Notwithstanding such limitations, we found

two significant threshold relationships in the full
GAM analyses with plausible mechanistic under-
pinnings. First, the summer northern copepod
anomaly showed a positive, linear increase before
asymptoting at values >0.2 with the winter mode
of the NPGO (Fig. 4). Increasingly positive values
of the NPGOw are associated with greater upwel-
ling strength, nutrient transport into the photic
zone, and primary productivity (Di Lorenzo et al.
2008), which could fuel the increased secondary
productivity we observed. Second, California sea
lion pup production showed a precipitous decline
when values of the summer mode of the NOI
exceeded 0.2 (Fig. 4). This threshold response is
counter to the assumption that highly positive
NOIs values (La Ni~na conditions) should be good
for pup production. However, the NOIs also cap-
tures the quick transition between El Ni~no and La
Ni~na conditions experienced in the North Pacific,

Fig. 6. Time series of (a) the winter Northern Pacific
Gyre Oscillation (NPGO) and (b) the summer North-
ern Oscillation Index (NOI), relative to confidence
intervals for thresholds in ecosystem states (horizontal
gray lines). The NPGO winter is shown in relation to
the summer copepod anomaly, while the NOI summer
time series is shown in relation to thresholds for Cali-
fornia sea lion pup production (note that pup produc-
tion is higher when values of NOI summer are lower).
Blue shading indicates that the value of the environ-
mental pressure was associated with more positive
values of the ecosystem state, while red shading indi-
cates the opposite. Yellow shading indicates that the
value of the environmental pressure was within the
confidence interval of the threshold for the relationship
between it and the ecosystem state.
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especially between 1998–99 and 2009–10. Thus,
the 1998 and 2010 NOIs values were the most pos-
itive values in the time series and represent the
subsequent La Ni~na conditions of the following
years. It was curious that the winter mode of the
NOI did not identify this nonlinear response in
the hypothesized direction. These relationships
highlight the importance of considering time lags
between the pressure and the ecological response,
which should be the subject of further research.

Perhaps the most interesting outcome of apply-
ing the MMI framework to the California Current
data is the strong evidence for threshold ecosys-
tem responses to both modes of the PDO. Previ-
ous studies have identified climate-driven
“regime shifts” as recently as 1998, as the PDO
reversed sign and many ecosystem components
including salmon and anchovy responded (Peter-
son and Schwing 2003). While the importance of
PDO in the California Current has a long history
(Hare et al. 1999, Mantua and Hare 2002), evi-
dence for associated nonlinear ecosystem
responses is more limited. For example, Bestel-
meyer et al. (2011) provided evidence for a linear
relationship between euphausiid abundance and
the PDO in the Southern California Current, and
this conclusion has been complemented more
recently by analyses showing that copepod spe-
cies and coho salmon in the Northern California
Current linearly track shifts in the PDO (Litzow
and Hunsicker 2016). In contrast, our analyses
imply that as many as five of the nine ecosystem
states we evaluated exhibited threshold increases
in response to negative PDOs values (copepods,
scavengers, groundfish, and marine mammals;
Fig. 5a, Table 3), a result consistent with the idea
that the influence of the PDO extends across mul-
tiple trophic levels (Hare et al. 1999, Mantua and
Hare 2002). The location of thresholds associated
with PDOw for copepods and marine mammals
ranged more widely (Fig. 5b, Table 3), suggesting
taxon-specific responses. These interpretations are
supported by results from the gradient forest
analyses, which show that the aggregate ecosys-
tem state in the CCS demonstrates a threshold
relationship with both modes of the PDO (Fig. 2).

Recognition of taxon-specific vs. ecosystem-
wide threshold responses is a novel insight that
can be tailored to sector-specific or full-ecosys-
tem management needs. Instead of categorizing
all anomalously positive (or negative) pressure

values as “good” or “bad” across all ecosystem
components, taxon-specific thresholds allow a
more refined evaluation of variability in environ-
mental pressures (e.g., Fig. 6). On the other hand,
cross-taxa agreement on the location of threshold
values of a pressure provides insights into
ecosystem-wide responses to changing ocean
conditions. In our application, gradient forest
analysis identified a threshold cumulative
ecosystem response to PDOs (Fig. 2) that
spanned the same range of values as thresholds
for individual ecosystem states identified via
GAMs (Figs. 3–5) and gradient forest analysis
(Figs. 2 and 5). These results clearly point to
important nonlinearities in ecosystem dynamics
across a range of trophic levels.

CONCLUSION

This paper outlined a quantitative framework
based on MMI that allows for precautionary
screening of threshold relationships between
ecosystem states and environmental or human
pressures. Establishment of quantitative ecosys-
tem-based thresholds allows for direct ecological
interpretation of variability in environmental
pressures and the intensity of human activities.
This approach provides a foundation for evaluat-
ing the status of ecosystems and informing pre-
cautionary management of the multitude of
human activities occurring within them. The
most successful applications of this framework
will provide advice to managers charged with
developing ecosystem monitoring priorities, pre-
pare ocean users for major shifts in ecosystem
conditions, and indicate when human activity
levels risk imposing critical transitions in indi-
vidual or collective ecosystem states.
Applied to the CCS, we demonstrated how the

MMI framework highlights potentially nonlinear
ecosystem state–pressure relationships. The CCS is
a system increasingly crowded with human uses
(Halpern et al. 2009), yet our results suggest that
while such activities may be associated with linear
changes in the ecosystem over the time period of
our study, broadscale oceanographic indices such
as the PDO, the NPGO, and the NOI are primarily
responsible for threshold changes. These findings
provide support for emphasizing the importance
of these particular environmental pressures to
resource managers of the California Current. In
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particular, the PDO appears to be more associated
with nonlinear ecosystem responses than the other
pressures we examined. While resource managers
cannot directly and easily control large-scale envi-
ronmental pressures, tracking their status and
strength provides critical context for decisions
about human activities that can be managed.
Along with parallel analyses in other regions of
the United States (Large et al. 2013, 2015b; Tam
et al., unpublished manuscript), our results under-
score the importance of long-term monitoring data
to capture ecosystem-wide changes driven by
environmental and anthropogenic pressures.
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