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Abstract
Background: Studies that attempt to measure shifts in species distributions often 
consider a single species in isolation. However, understanding changes in spatial 
overlap between predators and their prey might provide deeper insight into how spe‐
cies redistribution affects food web dynamics.
Predator–prey overlap metrics: Here, we review a suite of 10 metrics [range overlap, 
area overlap, the local index of collocation (Pianka's O), Hurlbert's index, biomass‐
weighted overlap, asymmetrical alpha, Schoener's D, Bhattacharyya's coefficient, the 
global index of collocation and the AB ratio] that describe how two species overlap 
in space, using concepts such as binary co‐occurrence, encounter rates, spatial niche 
similarity, spatial independence, geographical similarity and trophic transfer. We de‐
scribe the specific ecological insights that can be gained using each overlap metric, 
in order to determine which is most appropriate for describing spatial predator–prey 
interactions for different applications.
Simulation and case study: We use simulated predator and prey distributions to dem‐
onstrate how the 10 metrics respond to variation in three types of predator–prey 
interactions: changing spatial overlap between predator and prey, changing predator 
population size and changing patterns of predator aggregation in response to prey 
density. We also apply these overlap metrics to a case study of a predatory fish (ar‐
rowtooth flounder, Atheresthes stomias) and its prey (juvenile walleye pollock, Gadus 
chalcogrammus) in the Eastern Bering Sea, AK, USA. We show how the metrics can 
be applied to understand spatial and temporal variation in the overlap of species dis‐
tributions in this rapidly changing Arctic ecosystem.
Conclusions: Using both simulated and empirical data, we provide a roadmap for 
ecologists and other practitioners to select overlap metrics to describe particular 
aspects of spatial predator–prey interactions. We outline a range of research and 
management applications for which each metric may be suited.
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1  | INTRODUC TION

Global environmental change is causing species distributions to shift 
at an accelerating rate, with species moving into new areas and dis‐
appearing from their former ranges (Lawing & Polly, 2011). However, 
species are not moving one at a time or in isolation. Instead, the dis‐
tributions of entire communities are shifting, and there is a growing 
need to understand how these changes affect trophic interactions 
(Gilman, Urban, Tewksbury, Gilchrist, & Holt, 2010; Tylianakis, 
Didham, Bascompte, & Wardle, 2008). For example, climate‐induced 
changes in habitat and phenology may drive differential responses 
in the distributions of predators and their prey (Durant, Hjermann, 
Ottersen, & Stenseth, 2007; Pinsky, Worm, Fogarty, Sarmiento, & 
Levin, 2013; Schweiger et al., 2012; Siddon et al., 2013). This may 
result in increased (Vors & Boyce, 2009) or reduced (Asch, 2015; 
Schweiger, Settele, Kudrna, Klotz, & Kühn, 2008) predation oppor‐
tunities. These increased matches or mismatches in species distri‐
butions may have cascading effects, including directional changes in 
the abundance of predator or prey populations (Durant et al., 2007; 
Northfield, Barton, & Schmitz, 2017), predators switching prey types 
(Latham, Latham, Knopff, Hebblewhite, & Boutin, 2013), or changes in 
competition dynamics within predator guilds (Northfield et al., 2017). 
Understanding how predator–prey interactions respond to external 
pressures is therefore essential for predicting how ecosystems will 
respond to change (Araújo & Luoto, 2007) and for making informed 
ecosystem‐based management decisions (Pikitch et al., 2004).

Indices that summarize spatial overlap between co‐occurring 
species provide simple metrics that can describe the potential 
strength of their ecological interactions (Hurlbert, 1978). When ap‐
plied to predictions of species distributions, information on changes 
in overlap can increase our ability to project realistic ecological out‐
comes for interacting species (Guisan & Thuiller, 2005; Schweiger 
et al., 2012), thereby better informing resource management and 
spatial conservation planning. Overlap metrics can also add time‐
varying and spatially explicit attributes to ecological and ecosystem 
models (e.g., size‐spectrum models and multispecies stock assess‐
ment models). Within these models, spatial interactions between 
predator and prey species are often poorly resolved at resolutions 
most relevant to their ecology, which may complicate interpreta‐
tions of how spatial overlap influences ecosystem dynamics (Greer & 
Woodson, 2016). Likewise, temporal changes in overlap between life 
stages of cannibalistic or competitive conspecifics could bias esti‐
mates of density‐dependent controls on species productivity (Sigler 
et al., 2016). Incorporating an overlap metric can increase the capac‐
ity of these models to predict the impacts of future environmental 
change on ecosystem function more accurately (Greer & Woodson, 
2016).

A number of overlap metrics have been developed for ecological 
applications. These metrics have been applied to diverse ecological 
questions, including the examination of niche equivalency of species 
in environmental space (Broennimann et al., 2012; Warren, Glor, & 
Turelli, 2008), overlap of animal home ranges (Fieberg & Kochanny, 
2005), overlap in dietary niche among competitors (Woodward & 

Hildrew, 2002), and changes in resource partitioning among species 
after environmental perturbations (Fattorini et al., 2017). Several 
reviews of overlap metrics have discussed their mathematical and 
biological properties and have investigated sources of bias and error 
(e.g., Hurlbert, 1978; Krebs, 1989; Rödder & Engler, 2011). However, 
there remains a clear need to understand the specific ecological 
insights that can be gained using each overlap metric, in order to 
determine which is most appropriate for describing spatial predator–
prey interactions for different applications.

Here, we provide a review of metrics that can be used to quantify 
spatial overlap between two species. To determine how the metrics 
resolve spatial predator–prey dynamics, we examine the behaviour 
of the metrics when applied to simulations of varying predator and 
prey density distributions. Furthermore, we apply the metrics to 
spatial interactions between a predatory fish (arrowtooth flounder, 
Atheresthes stomias) and its prey (juvenile walleye pollock, Gadus 
chalcogrammus) in the Eastern Bering Sea, AK, USA. This case study 
demonstrates how the metrics can track changes in species over‐
lap driven by differential responses to environmental variability. By 
summarizing the properties of available overlap metrics and illus‐
trating their behaviour in response to various ecological scenarios, 
we aim to assist ecologists in the selection of appropriate metrics 
with which to quantify spatial predator–prey overlap for different 
purposes.

2  | METHODS

2.1 | Overlap metric description

Here we present 10 overlap metrics and their ecological interpre‐
tations (Table 1), separating them into descriptive categories to aid 
with ecological understanding. This is not a comprehensive suite of 
all available metrics, but instead represents a spectrum of metrics 
that are commonly used in ecology to measure horizontal overlap 
between two species distributions, including metrics that are par‐
ticularly relevant for understanding predator–prey interactions. The 
metrics we have chosen provide population‐level estimates of over‐
lap for non‐continuous survey data. Other scales of spatial overlap 
between species, such as patchiness, were not included within the 
scope of this paper (but see e.g., Fauchald & Erikstad, 2002; Greer, 
Woodson, Smith, Guigand, & Cowen, 2016; Saraux et al., 2014).

2.2 | Binary co‐occurrence

For some applications, a metric of the co‐occurrence of two 
species may be sufficient to describe changes in spatial overlap 
(Selden, Batt, Saba, & Pinsky, 2018). These metrics are particu‐
larly useful when data on occurrence but not biomass are avail‐
able, such as for rare species. Co‐occurrence can be described in 
many ways, including the proportion of one species’ range where 
the other species also occurs (“range overlap”; Araújo, Rozenfeld, 
Rahbek, & Marquet, 2011; Kernohan, Gitzen, & Millspaugh, 2001), 
or the proportion of a predefined study area where both species 
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co‐occur (“area overlap”; Saraux et al., 2014). These metrics both 
range from zero to one. Binary co‐occurrence metrics are simple 
to interpret but do not discriminate between areas with high and 
low population density and therefore provide limited insight into 
the potential strength of interactions between species where they 
co‐occur.

2.3 | Encounter

Where biomass or abundance data are available from standardized 
surveys, an alternative approach to the co‐occurrence metrics is the 
“local index of collocation” (also “Pianka's O”; Bez & Rivoirard, 2000; 
Pianka, 1973). This metric assesses the co‐occurrence of two popula‐
tions using the proportion of their total biomass found at each sam‐
pling point and determines the degree of correlation between two 
density distributions. This can broadly be thought of as describing 
the ratio of the probability of interspecific (predator–prey) encoun‐
ters to the probability of all intraspecific encounters (the product of 
both predator–predator and prey–prey encounters).

Similar metrics extend this approach, with the “asymmetrical 
alpha” reflecting the ratio of the probability of predator–prey en‐
counters to the probability of prey–prey encounters only (Levins, 
1968). This asymmetrical approach gives insight into the amount of 
pressure exerted by the predator on the prey. Another asymmetri‐
cal metric (“biomass‐weighted overlap”) is similar to the asymmetri‐
cal alpha but uses raw biomass rather than the proportion of total 
biomass located at each point. These values can be used to provide 
insight into the magnitude of predator biomass that can influence 
prey or can be scaled to the maximum values for predator and prey 
in a given year, in order to keep the range between zero and one. 
Biomass‐weighted overlap may be useful when estimating potential 
consumptive demand (Chasco et al., 2017).

“Hurlbert's index” (Hurlbert, 1978) can be used to assess whether 
two species use space in proportion to its availability. Accounting for 
spatial availability is particularly relevant when considering spatial 
overlap across an arena where spatial units differ in area, because it 
accounts explicitly for resources of unequal sizes. Hurlbert's overlap 
is zero when species do not share space at all, one where both species 
occupy space in proportion to its availability, and more than one where 
species demonstrate preferences for particular spatial areas and these 
preferences coincide. Hurlbert's index is also the only encounter met‐
ric that explicitly accounts for the size of the area occupied by either 
species (rather than the size of the entire domain), making it sensitive 
to changes in the total area occupied by predator and prey.

2.4 | Spatial niche similarity

“Schoener's D” determines whether there is equivalency between 
the spatial niches occupied by two species (Schoener, 1970). This 
metric can be used either on the modelled probability of occur‐
rence data or on estimates of abundance or density distributions to 
determine whether species occupy space in a similar way. In con‐
trast to Hurlbert's index, a potential drawback of Schoener's D as 

a predator–prey overlap metric is that it will return a high value of 
overlap in cases where both species co‐occur across large areas at 
low densities or probabilities of occurrence, where their interaction 
is unlikely (i.e., their niche similarity is high because the absolute 
difference between their densities across these locations is low). 
Equally, this metric returns a low value of overlap in cases where pre‐
dation pressure might be high, if there are many predators in some 
areas relative to the number of prey.

2.5 | Spatial independence

The “Bhattacharyya coefficient” is a statistical approach that can 
quantify the affinity between two probability density functions 
of spatial use, against the null assumption that the distributions 
are independent (Bhattacharyya, 1943). This approach is not de‐
rived from ecological theory but can be interpreted as assessing 
whether two populations use space independently of one another 
(Fieberg & Kochanny, 2005). In a similar fashion to Schoener's D, the 
Bhattacharyya coefficient can be applied to the modelled probabil‐
ity of occurrence data or on biomass‐density values.

2.6 | Geographical similarity

An alternative to measuring overlap as the interaction between 
populations at the grid‐cell level is to determine how geographically 
similar two distributions are across the entire study area (“global 
index of collocation”; Bez & Revoirard, 2000). This can be done using 
geographical coordinates weighted by biomass, in order to deter‐
mine the proximity of the centres of gravity of the two populations 
given the dispersion or “inertia” of individuals around that point. 
This approach describes spatial overlap at a regional scale, which 
may be useful for understanding broad patterns of overlap between 
two species, rather than fine‐scale interactions. For example, a high 
global index of collocation for two species may not translate to high 
encounter or consumption rates if the species do not also co‐occur 
at finer spatial scales (Saraux et al., 2014).

2.7 | Trophic transfer

Variability in predator density that can be explained by local prey 
density is a useful way of characterizing overlap, because it accounts 
for potential trophic transfer between species (“AB ratio”; Greer & 
Woodson, 2016). An AB ratio of zero indicates that the mean densi‐
ties of predator and prey across the whole survey area accurately 
represent predator–prey encounters, whereas a value of one indi‐
cates 100% higher production of the predator as a result of fine‐
scale spatial overlap with prey, assuming a “Holling type I” functional 
response. Negative values can indicate different habitat preferences 
between species, or predator avoidance by the prey, where minus 
one represents complete avoidance. This metric provides insight into 
how trophic processes are likely to translate local prey abundance 
into predator production.
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2.8 | Metric responses to simulated predator–prey 
interactions

2.8.1 | Simulated populations

To illustrate how various overlap metrics respond to shifting pred‐
ator–prey dynamics, we simulated interacting predator and prey 
populations on a 200 × 100 gridded spatial domain. We included 
two ways of manipulating predator density in relationship to prey 

density: changing “predator population size”, where predator den‐
sity increased uniformly, and changing “predator aggregation”, 
where predator biomass shifted from areas where there were no 
prey into areas of high prey density, keeping total predator abun‐
dance constant across the domain. Although these ecological pro‐
cesses occur at different time‐scales in the real world, we use the 
resulting distributions as snapshots to determine how different 
types of spatial interactions between predator and prey influence 
metric values.

F I G U R E  1  Schematic diagram showing three scenarios of spatial interaction between simulated populations of predator and prey: (S1) 
incremental change in the area of overlap between predator and prey (dashed lines), with predator density and aggregation response held 
constant; (S2) incremental change in predator density in response to prey density, with the overlap window and aggregation response held 
constant; and (S3) incremental change in the aggregation response of the predator to prey (density of predator increases in relationship to 
prey density only in the overlap window, while decreasing proportionally outside the overlap window), with the size of the overlap window 
and overall predator density held constant. In each panel, the predator is on the left and the prey on the right. The prey is shown in light 
grey, and the shade of the predator is manipulated to show increases or decreases in density. Areas where the predator and prey overlap are 
depicted using shades that are intermediate between the two densities, and hatched areas are where both species are absent
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On the gridded arena, we simulated unconditional Gaussian 
densities of a prey population (Dprey, i) with moderate spatial autocor‐
relation (patchiness), using a spherical variogram model (sill = 0.35, 
nugget = 0.05, range = 10) in the R package gstat (Pebesma, 2004). 
We took the exponent of these values to obtain a lognormal distri‐
bution, to match right‐skewed densities observed in natural popula‐
tions. We then allowed predator density (Dpred, i) to be influenced by 
three processes:

where α is a coefficient (ranging from zero to two) that controls the 
relationship between predator density and prey density (Dprey) in a 
given cell (i), and β is a coefficient (ranging from zero to two) that con‐
trols the response of predator density to mean prey density within 
a specified search area, representing the “aggregation” response of 
predators to mean prey density (D̄prey) within a neighbourhood of s 
grid cells around the cell of interest (i). The spatial variance term (δi) 
is a second log‐density value generated using a spherical variogram 
model (sill = 0.2, nugget = 0.1, range = 9), added to represent spatial 
processes, such as habitat selection, that influence predator density 
independently of prey density.

2.8.2 | Scenarios of predator–prey interaction

ᐃ Overlap window

After generating predator and prey distributions across the whole 
200 × 100 spatial domain using the above equation, we clipped the 
spatial domain into two distinct distributions of predator and prey, 
with dimensions of 100 × 100 each (Figure 1). We designated species 
as absent in the portion of the spatial domain outside their distribu‐
tion. Keeping the size of the predator and prey distributions constant 
at 100 × 100, we then manipulated the proportion of the distribution 
of the prey that was shared by the predator, from zero (where the 
two species shared no common cells) to one (where the two species 
overlapped completely), in 10% spatial increments. While changing 
the size of this overlap window, we left α (“population size” param‐
eter) and β (“aggregation response” parameter) constant at one, and 
fixed s (“search area”) to a window of nine cells (3 × 3), centred on 
the cell of interest.

ᐃ Predator population size

To simulate the influence of uniformly increasing predator density, 
we manipulated α from zero to two at intervals of 0.2. We left the 
overlap window constant at 0.5, search area at s = 9 and aggregation 
response at β = 1.

ᐃ Aggregation response of predator to prey

To simulate a change in the aggregative effect of prey on predator 
density, we manipulated the predator aggregation response from 
weaker to stronger (β from one to two at intervals of 0.1) within 
the overlap window, where predator and prey interacted directly. 
Simultaneously, we manipulated β from one to zero in the area 

outside the overlap window, to ensure that the overall sum of preda‐
tor densities was unchanged. For example, where predator density 
increased relative to prey density by a factor of 1.1 in the overlap 
window, it decreased by a factor of 0.9 across the rest of the range 
of the predator, to simulate the predator moving from areas of no 
prey to areas of high prey density. We fixed the overlap window at 
0.5, “bottom‐up” density response at α = 1, and the search window, 
s, at nine.

2.8.3 | Application of overlap metrics

We applied the suite of 10 overlap metrics to the predator and prey 
distributions in each of the three scenarios (changing overlap win‐
dow, changing predator population size and changing aggregation 
response) to characterize patterns of overlap. Given that the overlap 
metrics were influenced by the random variation in biomass distri‐
bution in each spatial model run, we calculated the mean value for 
each overlap metric for each of 500 iterations of predator and prey 
distributions in each of the three scenarios.

Functions to implement the predator–prey overlap metric equa‐
tions in R are included as Supporting Information.

2.9 | Metric responses to predator–prey dynamics 
in the Eastern Bering Sea

To evaluate the performance of the overlap metrics on real eco‐
logical data, we present a case study of spatial dynamics between 
a predator (arrowtooth flounder, Atheresthes stomias) and prey 
(juvenile walleye pollock, Gadus chalcogrammus) in the Eastern 
Bering Sea, AK, USA. The arrowtooth flounder is a bottom‐dwell‐
ing flatfish that has seen an eightfold increase in abundance on 
the Eastern Bering Sea shelf over the past 36 years (Wilderbuer, 
Nichol, & Aydin, 2010). It is a key predator of juvenile walleye pol‐
lock, an abundant forage fish in the Eastern Bering Sea ecosystem 
(Springer, 1992). The distributions of both species are influenced 
by the Eastern Bering Sea “cold pool” (Kotwicki & Lauth, 2013), a 
water mass on the seafloor that is defined by temperatures < 2°C 
and varies greatly in size between years as a function of sea ice 
extent during the previous winter (Stabeno et al., 2001). The study 
species have contrasting responses to the cold pool: juvenile pol‐
lock are more tolerant of cold water (Kotwicki & Lauth, 2013) and 
may use the cold pool as a refuge to avoid predation (Hollowed et 
al., 2012), whereas arrowtooth flounder are constrained to warmer 
water and generally avoid the cold pool (Ciannelli, Bartolino, & 
Chan, 2012; Spencer et al., 2016).

Previous work has demonstrated a potential increase in overlap 
between these two species as the biomass of flounder increases and 
the extent of the cold pool decreases (Hunsicker, Ciannelli, Bailey, 
Zador, & Stige, 2013). This results in increased predation pressure 
by arrowtooth flounder on juvenile pollock, affecting pollock re‐
cruitment and abundance, which creates a complex management 
issue for the Eastern Bering Sea (Hunsicker et al., 2013; Spencer 
et al., 2016). This relatively well‐characterized example of changes 

Dpred, i = 𝛼Dprey, i + 𝛽D̄prey, s + 𝛿i
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in predator–prey dynamics over a 36‐year time series provides an 
opportunity to explore the behaviour of the overlap metrics when 
estimating real‐world changes in spatial predator–prey dynamics.

2.9.1 | Arrowtooth and pollock distributions

Annual summer distributions of juvenile walleye pollock (<25 cm, ap‐
proximate age classes 1–2) and adult arrowtooth flounder (>30 cm) 
in the Eastern Bering Sea were estimated between 1982 and 2017, 
during annual summer fisheries‐independent trawl surveys con‐
ducted by the National Oceanic and Atmospheric Administration. 
These length classes reflect the size above which arrowtooth 
flounder begins to predate intensively on pollock (Livingston et al., 
2017). Catch per unit effort (CPUE; number of fish per square kilo‐
metre; Alverson & Pereyra, 1969) was determined for c. 376 sta‐
tions across the survey region using a standard trawl net (83–112 
eastern otter trawl) towing for c. 30 min at 1.54 m/s. Length classes 
were determined by measuring the fork length of a subsample of 
fish from each tow and expanding this to the entire catch in a given 
tow based on the ratio of sampled weight to total towed weight for 
each species.

We estimated the distribution and density of juvenile pollock 
and arrowtooth flounder using the Eastern Bering Sea shelf CPUE 
data, while accounting for sampling effort that was uneven in space 
and time. To do this, we applied two separate delta‐generalized lin‐
ear mixed models using the vector autoregressive spatio‐temporal 
(VAST) package in R (https​://github.com/james-thors​on/VAST). 
VAST has become a widely used tool for fisheries scientists and 
managers, and we used default model settings for model parameter‐
ization (Thorson, 2019; Thorson & Barnett, 2017). The delta model 
framework jointly estimated the probability of occurrence (binomial 
distribution) and the positive catch rate (lognormal distribution) for 
each species for each survey year (1982–2017). Model parameters 
were estimated for 250 locations (“knots”) that were selected by 
applying a k‐means clustering algorithm to the CPUE data to iden‐
tify geographical locations that reflect survey sampling intensity 
(Thorson & Barnett, 2017). Environmental covariates were the 
temperature at the depth of trawl (in degrees Celsius; measured by 
trawl gear) and bottom depth (in metres) and were included as qua‐
dratic forms in the model to allow for nonlinear responses (Thorson, 
Ianelli, & Kotwicki, 2017). Year was treated as a fixed effect (default 
VAST setting), whereas spatial variation (which does not change 
among years) and spatio‐temporal variation (which is estimated in‐
dependently in each year) were treated as random effects described 
by a Gaussian process. These random fields allow the modelling of 
multi‐dimensional factors that are not included directly in the model 
but that affect the density and distribution of the modelled species. 
Including spatial variation in the model allowed for correlations in 
CPUE between nearby locations, with spatial correlation declining 
with increasing distance. Species density was predicted at each knot 
by multiplying the probability of occurrence with positive catch rate 
estimates. Density estimates for each knot were then multiplied by 

the knot area (in square kilometres) to create annual surfaces of spe‐
cies abundance across the entire Eastern Bering Sea shelf.

In order to create “absences” for the binary cooccurrence met‐
rics, we determined that species were absent at knots where the 
probability of occurrence was less than the lower quartile of prob‐
ability of occurrence values across the total sampled area for that 
species in a given year. This approach to defining absences based on 
the distribution of probability values results in lower bias than using 
an arbitrary probability threshold, such as 0.5 (Liu, Berry, Dawson, & 
Pearson, 2005).

2.9.2 | Arrowtooth and pollock overlap

To illustrate differences in how the metrics characterize predator–
prey overlap, we applied the suite of 10 metrics to the estimated 
density surfaces for arrowtooth flounder and juvenile pollock for 
2012 and 2016, years when the cold pool extent was high and low, 
respectively. Given the contrasting preferences of each species for 
the cold pool, the overlap between flounder and pollock might be ex‐
pected to be low in 2012 and higher in 2016 (Hunsicker et al., 2013). 
We present spatially explicit estimates of each overlap metric, by 
decomposing the global metric values into their grid‐cell‐level com‐
ponents (i.e., we map the value for each cell without integrating or 
taking means across the whole spatial domain). For the global index 
of collocation, we map the position of the centre of gravity and iner‐
tia axes. Along with spatially explicit estimates, we show total metric 
values. We also present the full annual time series (1982–2017) of 
overlap values for each metric.

To visualize how spatially explicit overlap related to cold pool ex‐
tent in 2012 and 2016, we mapped the position of the cold pool (bot‐
tom waters < 2°C) from the bottom temperatures measured during 
the trawl surveys. We used ordinary kriging in the R package gstat 
(Pebesma, 2004) to estimate these temperatures at the same knots 
as the species abundance data.

3  | RESULTS

3.1 | Metric responses to simulated predator–prey 
interactions

3.1.1 | Sensitivity to changes in spatial overlap

Most overlap metrics demonstrated an increase in response to 
a larger window of overlap between the predator and prey popu‐
lations (Figure 2a). These responses were predominantly linear. 
However, the global index of collocation demonstrated a sigmoidal 
curve, and Hurlbert's index reached an asymptote as the overlap 
window shared by the distributions neared one. The AB ratio was 
by far the most sensitive metric to changes in the size of the over‐
lap window because it has the largest range. This simulation showed 
that when the distributions reached complete overlap, the preda‐
tor density was four times greater in areas where it overlapped with 

https://github.com/james-thorson/VAST
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F I G U R E  2  Overlap metric behaviour 
in response to different scenarios of 
predator–prey interaction: (a) change in 
area of overlap; (b) change in predator 
density [α is a coefficient (ranging from 
zero to two) that controls predator density 
in relationship to prey density]; and (c) 
changes in aggregative response [β is a 
coefficient (ranging from zero to two) 
that controls the aggregation response of 
the predator such that predator biomass 
moves from areas of no prey into areas 
of high overlap with prey]. Metric values 
are means taken over 500 simulations of 
predator–prey distribution [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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prey, relative to its mean density across the whole arena (where both 
species were largely absent).

3.1.2 | Sensitivity to changes in predator 
population size

Most overlap metrics increased slightly as predator density in‐
creased relative to prey density, in the absence of an aggregative 
response. These increases generally reached an asymptote as the 
ratio of predator density to prey density neared one (Figure 2b). 
Exceptions were the area and range overlaps and the global index of 
collocation, which remained constant because both the areas occu‐
pied by each species and their centres of gravity remained the same. 
Again, the AB ratio was the most sensitive in this scenario because 
predator density increased in areas where it overlapped with prey, 
relative to its mean across the domain.

3.1.3 | Sensitivity to changes in aggregative 
response of predator to prey

Most overlap metrics increased slightly in response to changes in the 
aggregative response of predator to prey within the area of overlap 
(Figure 2c). Unlike the previous scenario, the global index of colloca‐
tion increased, because the centre of gravity of the predator shifted 
incrementally towards that of the prey as its biomass in the over‐
lap window increased. Hurlbert's index was sensitive to changes in 
this parameter, because the predator distribution became increas‐
ingly less uniform and coincided more with the spatial niche occu‐
pied by the prey. The AB ratio was also sensitive to changes in this 
parameter, because predator density increased in areas where it 
overlapped with prey, relative to its mean across the domain. The 
biomass‐weighted overlap did not vary in response to this scenario, 
because predator density is scaled to its maximum value across the 
range, which did not increase. The binary co‐occurrence metrics did 
not change in response to this scenario either, because the size of 
the overlap window was held constant.

3.2 | Metric responses to predator–prey dynamics 
in the Eastern Bering Sea

3.2.1 | Pollock and arrowtooth overlap

The values of all metrics showed that the overlap between the distri‐
butions of arrowtooth flounder and juvenile walleye pollock (as de‐
termined by spatio‐temporal models, Table 2) was low in 2012, when 
the cold pool covered most of the shelf area (Figure 3). However, 
the overlap metrics demonstrated some differences in patterns of 
spatially explicit overlap. The centre of gravity and inertia for pollock 
(key components of the global index of collocation) showed that its 
distribution was centred in the middle of the shelf, in the cold pool. In 
contrast, the distribution of arrowtooth flounder was centred on the 
lower portion of the shelf, outside the cold pool. The co‐occurrence 
metrics showed that during this year, the species co‐occurred across 

the centre of the shelf, but did not co‐occur in shallower waters, 
owing to the absence of arrowtooth flounder from this area, or in the 
southeast portion of the shelf, owing to the absence of pollock from 
this area. Most other metrics (asymmetrical overlap, Bhattacharyya's 
coefficient, biomass‐weighted overlap, Hurlbert's index and the 
local index of collocation) showed that the highest area of overlap 
occurred in the northwest corner of the Eastern Bering Sea shelf, 
where relatively high densities of both flounder and pollock coin‐
cided. The AB ratio returned mostly negative values, indicating that 
there was general avoidance between juvenile pollock and arrow‐
tooth, probably caused by their different relationships with the cold 
pool rather than direct avoidance of arrowtooth by juvenile pollock. 
Values of the AB ratio were lower in areas where arrowtooth den‐
sity was most negatively associated with pollock density (e.g., where 
flounder density was high but pollock density was low). The highest 
values of the AB ratio were around zero, in places where the densi‐
ties of both species were predicted to be low. Likewise, Schoener's 
D showed higher values in areas where the difference in the propor‐
tion of flounder and pollock abundance was lower (i.e., where niche 
similarity was high), including large portions of the shelf where both 
species were present at very low densities.

During 2016, an unusually warm year in the Eastern Bering Sea, 
overlap between arrowtooth flounder and juvenile pollock was 
much higher than in 2012 (Figure 4). The centre of gravity and iner‐
tia of the distributions showed a shift westward by pollock towards 
the reduced cold pool area. Arrowtooth flounder shifted further 
up onto the shelf as it exploited a greater portion of available shelf 
habitat, owing to the absence of the cold pool, and potentially ex‐
perienced a density‐dependent expansion (Spencer, 2008). The co‐
occurrence metrics showed the least change between the two years, 
with only slightly more overlap in the middle portion of the shelf in 
2016, where arrowtooth flounder had expanded its occupation. The 
encounter metrics showed a small region of intense overlap in the 
westernmost part of the shelf on the periphery of the cold pool, with 
spatially explicit metric values in those cells an order of magnitude 
greater in 2016 than in 2012. In several cells in this part of the shelf 
region, the AB ratio indicated that the density of arrowtooth floun‐
der was 2.5 times greater than the mean, potentially as a result of its 
overlap with juvenile pollock.

The 36‐year time series showed substantial variability in the val‐
ues of the metrics between years (Figure 5). Perhaps unsurprisingly, 
the binary cooccurrence metrics showed the smallest range of vari‐
ation across the time series, with changes of c. 10% in the amount 
of the shelf area occupied by both arrowtooth flounder and juvenile 
pollock. The most sensitive metrics included the global index of col‐
location, which showed a relative shift in the weighted centres of 
gravity of both species of c. 20% of the total metric range. A gen‐
eral increasing trend in overlap was seen in some metrics, includ‐
ing Bhattacharyya's coefficient, Schoener's D and the global index 
of collocation. For most metrics, the last 3 years of the time series 
(2015–2017) showed higher overlap than the first 3  years (1982–
1984), and overlap was relatively low and high in 2012 and 2016, 
respectively.
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3.3 | Discussion

Here, we demonstrated the properties of a suite of overlap metrics 
and showed how they can describe different types of predator–prey 

interactions. Below, we briefly review the specific ecological insights 
that we gained from the metrics using the simulated populations and 
the Eastern Bering Sea case study. Based on these insights, we dis‐
cuss various applications for which the metrics may be suitable and 

F I G U R E  3   (a) Cold pool extent on the Eastern Bering Sea shelf in 2012, a cold year (grey areas reflect temperatures > 2°C); (b) estimate 
of arrowtooth flounder (predator) density distribution in 2012; and (c) estimate of juvenile walleye pollock (prey) distribution in 2012. 
Densities at locations where the probability of occurrence was less than the lower quartile across the survey area were deemed to be 
absences and are greyed out. Spatially explicit overlap calculated by the 10 overlap metrics (AB ratio, asymmetrical overlap, Bhattacharyya 
coefficient, biomass‐weighted overlap, Hurlbert's index, global index of collocation, local index of collocation, Schoener's D, area overlap 
and range overlap) are shown below. Total values of overlap for each metric for this period are displayed in the top right corner of each map 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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include a decision tree to help readers select a metric based on data 
types and ecological question (Figure 6).

3.3.1 | Insights into ecological interactions

The overlap metrics give a range of insights into spatial interactions 
between predators and their prey. This is important because there 
are different types of predator–prey interactions that practitioners 
may wish to quantify, such as total predation pressure exerted by a 
predator on a prey population (Spencer et al., 2016), spatial hotspots 
of predation (Eero et al., 2012) or the productivity of a predator pop‐
ulation that can be attributed to its overlap with a key prey species 
(Greer & Woodson, 2016). Understanding the specific insights that 
the metrics give into predator–prey interactions can allow appropri‐
ate metrics to be selected for different applications (Figure 6) and for 
metric values to be interpreted appropriately. Furthermore, tracking 
changes in metric values through time can provide important insight 
into how shifts in the spatial distribution of interacting species might 
be altering components of ecosystem function (Gilman et al., 2010; 
Tylianakis et al., 2008).

Using our simulation and case study, we show that the binary 
co‐occurrence metrics (area and range overlap) provide a simple and 
interpretable way of measuring spatial overlap between two spe‐
cies. However, these metrics cannot be used to quantify fine‐scale 
interspecific interactions, such as predation, which are a function of 
factors including species density and aggregation patterns (Hurlbert, 
1978). Specifically, because species can be designated “present” 
even at very low densities, the co‐occurrence metrics are likely to 
overestimate the probability of interspecific interactions. In most 
cases, using habitat models to calculate a spatially explicit proba‐
bility of occurrence surface provides more information than simply 
a “presence” or “absence” and can deal with biases associated with 
the detection of species or variability in sampling. Estimated proba‐
bility values can then be fed into overlap metrics, such as Schoener's 

D or Bhattacharyya's coefficient, providing insight into the relative 
preferences of both species for shared spatial resources (Fieberg & 
Kochanny, 2005).

Many studies have demonstrated the efficacy of Schoener's D 
for understanding niche overlap between species in environmental 
space (e.g., Broennimann et al., 2012; Warren et al., 2008). We took 
a purely spatial approach to understanding overlap between preda‐
tor and prey without explicitly testing the underlying environmental 
mechanisms driving their distributions. Used in this way, Schoener's 
D provides insight into whether species share preferences for par‐
ticular areas, which is important for understanding whether they 
might be affected in similar ways by anthropogenic or environmen‐
tal processes. Bhattacharyya's coefficient is not derived from either 
ecological or spatial theory, but it provides an objective statistical 
approximation of whether two populations use space independently 
of one another. Although Schoener's D and Bhattacharyya's coef‐
ficient quantify similarities and differences in the use of space be‐
tween two populations, they are not designed to provide insight into 
the strength of potential interactions between two species. They 
may therefore be more appropriate for quantifying overlap in gen‐
eral, rather than as tools to understand specific elements of spatial 
predator–prey dynamics.

The encounter metrics (asymmetrical alpha, biomass‐weighted 
overlap, Hurlbert's index and the local index of collocation) pro‐
vide the most intuitive definition of overlap as a proxy for pred‐
ator–prey interactions. The insights from each of the encounter 
metrics are similar, but Hurlbert's index is sensitive to both the 
size of the area over which two species occur and the variability in 
the size of spatial sampling units. Explicitly accounting for changes 
in the size of the area occupied by predator and prey incorporates 
useful information on species’ range expansions or contractions 
and better captures the potentially increasing impacts of a preda‐
tor on its prey as it occupies a larger proportion of the range of the 
prey (Hurlbert, 1978).

TA B L E  2  Model parameter estimates and significance terms for the probability of occurrence and positive catch rate of juvenile walleye 
pollock and arrowtooth flounder. Modelled probability of occurrence and positive catch rate were estimated using a vector autoregressive 
spatio‐temporal (VAST) model, parameterised with a lognormal distribution, and spatial and spatio‐temporal variation. Environmental 
covariates (temperature and depth) were defined as quadratic functions

Parameter

Pollock occurrence Pollock catch rate Flounder occurrence Flounder catch rate

Estimate Significance Estimate Significance Estimate Significance Estimate Significance

Year µ = 1.8 p < .05*  µ = 2.70 p < .001 µ = −0.38 p < .05*  µ = 1.13 p < .05* 

Temperature −0.06 p = .48 0.27 p < .001 2.66 p < .001 1.40 p < .001

Temperature2 0.07 p = .06 −0.03 p = .2 −1.14 p < .001 −0.52 p < .001

Depth −0.11 p = .49 −0.26 p < .05 3.49 p < .001 1.28 p < .001

Depth2 −0.42 p < .001 −0.28 p < .001 −0.89 p < .001 −0.32 p < .001

Spatial variation σ = 1.01 p < .001 σ = 0.61 p < .001 σ = 1.48 p < .001 σ = 0.73 p < .001

Spatio‐temporal variation σ = 1.02 p < .001 σ = 0.88 p < .001 σ = 1.05 p < .001 σ = 0.52 p < .001

Note: The mean (µ) gives the average results for all years between 1982 and 2017.
*Indicates that only some years were significant; and σ is the standard deviation of the spatial and spatio‐temporal processes. 
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3.3.2 | Applications of overlap metrics

There are many applications for which overlap metrics can provide 
important information about spatial relationships between preda‐
tors and their prey. The choice of overlap metric for each application 

depends on both the data types and the scale of inference that is re‐
quired (Figure 6).

The binary co‐occurrence metrics describe broad spatial patterns 
relating to the potential for two populations to be in the same area. 
This may be desirable for some applications where only occurrence 

F I G U R E  4   (a) Cold pool extent on the Eastern Bering Sea shelf in 2016, an anomalously warm year (grey areas reflect 
temperatures > 2°C); (b) estimate of arrowtooth flounder (predator) density distribution in 2016; and (c) estimate of juvenile walleye pollock 
(prey) distribution in 2016. Densities at locations where the probability of occurrence was less than the lower quartile across the survey 
area were deemed to be absences and are greyed out. Spatially explicit overlap calculated by the 10 overlap metrics (AB ratio, asymmetrical 
overlap, Bhattacharyya coefficient, biomass‐weighted overlap, Hurlbert's index, global index of collocation, local index of collocation, 
Schoener's D, area overlap and range overlap) are shown below. Total values of overlap for each metric for this period are displayed in the 
top right corner of each map [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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data are available and where a simple approach is required for de‐
fining spatial boundaries. For example, binary metrics may be ap‐
propriate for conservatively managing interactions with rare species 
(Hazen et al., 2018) or for projecting spatial overlap in future envi‐
ronmental conditions where the precision of estimated distribution 
shifts is assumed to be low (Selden et al., 2018).

Within this category of metrics, the choice of whether the area or 
range overlap metric is preferred depends on whether a study aims 
to determine the directional influence of one species on another 
(range overlap) or the overlap between two species across a given 
spatial area (area overlap) (Figure 6). For example, the range overlap 
metric could be used to quantify how much of the future range of a 
predator will overlap with that of its prey, using predictions of spe‐
cies distributions made onto climate forecasts (e.g., Schweiger et al., 
2008; Selden et al., 2018). The area overlap metric could be used to 
quantify the proportion of a predefined management area (e.g., park, 

region, state or continent) that might continue to see the co‐occur‐
rence of two species under future conditions.

The encounter metrics and the AB ratio can be used to add spatial 
information to non‐spatial models. For example, non‐spatial ecosys‐
tem models (e.g., Ecosim) aggregate information about species’ bio‐
mass and calculate estimates of consumption and mortality across a 
whole region. However, these models often assume constant pro‐
portions of prey biomass available to a predator (e.g., 100%), which 
may result in overestimates of consumption rates if two species do 
not overlap at ecologically relevant spatial or temporal scales (Greer 
& Woodson, 2016). Conversely, consumption rates can be under‐
estimated in cases where prey is highly aggregated and therefore 
more readily accessible to predators, such as at fronts in the open 
ocean (Bost et al., 2009) or at water sources in terrestrial systems (de 
Boer et al., 2010). The encounter metrics and the AB ratio provide 
information about correlations between the densities of two species 

F I G U R E  5  Thirty‐six‐year time series (1982–2017) of overlap between juvenile walleye pollock and arrowtooth flounder in the Eastern 
Bering Sea, Alaska, calculated using 10 overlap metrics (AB ratio, asymmetrical overlap, Bhattacharyya's coefficient, biomass‐weighted 
overlap, global index of collocation, Hurlbert's index, local index of collocation, Schoener's D, area overlap and range overlap). The years 
2012 and 2016 (highlighted in spatial analyses) are shown with red triangles [Colour figure can be viewed at wileyonlinelibrary.com]
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across sampling points, which relates to the probability of their in‐
teraction or production. These metrics therefore provide a useful 
time‐varying estimate of the potential strength of predator–prey in‐
teractions that can be included in ecological models.

Spatially, the encounter metrics can illustrate areas of more or 
less intense interaction between predator and prey. In our Eastern 
Bering Sea case study, the northwest portion of the survey area 
demonstrated high overlap between arrowtooth flounder and juve‐
nile pollock using the encounter metrics, with overlap increasing in 
this area in warmer conditions (Figures 3 and 4). This information 
may be useful for managing resources in a spatially explicit way, in 
cases where mitigation of the influence of one species on another 
is desired for ecosystem‐based management. For example, targeted 
culling of a “problem” predator in areas of high overlap (i.e., high 
putative predation pressure) may prove an efficient and cost‐ef‐
fective means of boosting the abundance of a prey species that is 

commercially important or of conservation concern (Burrows et al., 
2003; Eero et al., 2012; Persson et al., 2007).

The global index of collocation can be applied to define overlap 
at the broad scale of the ranges of stocks, populations or species; the 
scales at which spatial conservation and management decisions are 
usually made. Furthermore, the centre of gravity and inertia, from 
which the global index of collocation is calculated, provide simple 
and interpretable spatial metrics that can aid in understanding the 
mechanisms underlying changes in patterns of spatial overlap. For 
example, these can be used to highlight differential rates of pole‐
ward shifts by predator and prey in response to climate change (Le 
Roux & McGeoch, 2008). Unlike any of the other metrics examined 
in this paper, the global index of collocation does not include infor‐
mation on co‐occurrence or the correlation of the biomass of species 
at the grid‐scale level, making it less useful for understanding inter‐
actions between species at scales that are more relevant to their 

F I G U R E  6  A decision tree to help readers select a predator–prey overlap metric based on considerations such as the types of species 
distribution data available and the types of predator–prey interactions that are of interest. Colours represent the metric categories, with red 
= “spatial independence”, dark blue = “niche similarity”, green = “binary co‐occurrence”, orange = “geographical similarity”, yellow = “trophic 
transfer” and light blue = “encounter” [Colour figure can be viewed at wileyonlinelibrary.com]
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ecology. However, the global index of collocation can provide a use‐
ful complement to the encounter metrics, to understand processes 
governing the overlap of species at nested spatial scales (Saraux et 
al., 2014).

3.4 | Overlap between arrowtooth flounder and 
juvenile pollock

The metrics that we investigated gave new insight into changes in 
spatial overlap between juvenile walleye pollock and adult arrow‐
tooth flounder, a predator that has been growing in abundance in 
the Eastern Bering Sea over the past 30 years. We showed that spa‐
tial overlap between these two species was very low in 2012, when 
the presence of an intense Eastern Bering Sea cold pool restricted 
flounder from moving up onto the shelf. We then showed that in 
an anomalously warm year (2016), overlap estimated using all 10 
metrics was much higher than in 2012, mirroring previous work that 
showed an increase in predation pressure by arrowtooth flounder on 
juvenile pollock associated with warm conditions (Hunsicker et al., 
2013; Spencer et al., 2016).

By mapping areas of high and low overlap of these species, we 
show how the metrics can identify important shared habitat. We 
also highlight areas that may be of management interest during the 
stanzas of anomalously warm temperatures that have increasingly 
been impacting the Eastern Being Sea ecosystem (Stabeno et al., 
2017). The full 36‐year time series of overlap between juvenile pol‐
lock and flounder showed an overall increasing trend in overlap for 
some metrics. This trend is of concern to managers, because juvenile 
walleye pollock is a species of great commercial importance for the 
USA, and predation pressure may have an increasing effect on the 
population as the Eastern Bering Sea warms (Hunsicker et al., 2013; 
Spencer et al., 2016). This case study highlights how overlap metrics 
can be used to track species interactions both in space and through 
time in varying environmental conditions.

3.5 | Conclusions

The diverse suite of overlap metrics examined in this paper quantify 
spatial predator–prey interactions and can track how these interac‐
tions change through time. Our simulations and case study show 
that no single metric emerges as being most useful across all sce‐
narios. Instead, we recommend that the overlap metric(s) chosen for 
a particular study should reflect the types of data available and the 
desire to understand particular elements of ecological and spatial 
relationships between species (Figure 6). In many cases, the use of a 
combination of several metrics may deliver the most comprehensive 
assessment of spatial predator–prey overlap. For example, the global 
index of collocation could be chosen to give insight into broad pat‐
terns of distribution, Schoener's D to understand niche equivalency 
across habitat types that may drive overlap, and Hurlbert's index to 
estimate interspecific encounter, accounting for variability in spatial 
resource availability. In such a combination, these metrics provide 
complementary information regarding the use of shared space and 

probability of interaction between predators and prey at nested 
scales of distribution and behaviour.
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