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Abstract
Background: Studies	 that	 attempt	 to	measure	 shifts	 in	 species	distributions	often	
consider	 a	 single	 species	 in	 isolation.	 However,	 understanding	 changes	 in	 spatial	
overlap	between	predators	and	their	prey	might	provide	deeper	insight	into	how	spe‐
cies	redistribution	affects	food	web	dynamics.
Predator–prey overlap metrics: Here,	we	review	a	suite	of	10	metrics	[range	overlap,	
area	overlap,	 the	 local	 index	of	collocation	 (Pianka's	O),	Hurlbert's	 index,	biomass‐
weighted	overlap,	asymmetrical	alpha,	Schoener's	D,	Bhattacharyya's	coefficient,	the	
global	index	of	collocation	and	the	AB	ratio]	that	describe	how	two	species	overlap	
in	space,	using	concepts	such	as	binary	co‐occurrence,	encounter	rates,	spatial	niche	
similarity,	spatial	independence,	geographical	similarity	and	trophic	transfer.	We	de‐
scribe	the	specific	ecological	insights	that	can	be	gained	using	each	overlap	metric,	
in	order	to	determine	which	is	most	appropriate	for	describing	spatial	predator–prey	
interactions	for	different	applications.
Simulation and case study: We	use	simulated	predator	and	prey	distributions	to	dem‐
onstrate	how	the	10	metrics	 respond	 to	variation	 in	 three	 types	of	predator–prey	
interactions:	changing	spatial	overlap	between	predator	and	prey,	changing	predator	
population	size	and	changing	patterns	of	predator	aggregation	in	response	to	prey	
density.	We	also	apply	these	overlap	metrics	to	a	case	study	of	a	predatory	fish	(ar‐
rowtooth	flounder,	Atheresthes stomias)	and	its	prey	(juvenile	walleye	pollock,	Gadus 
chalcogrammus)	in	the	Eastern	Bering	Sea,	AK,	USA.	We	show	how	the	metrics	can	
be	applied	to	understand	spatial	and	temporal	variation	in	the	overlap	of	species	dis‐
tributions	in	this	rapidly	changing	Arctic	ecosystem.
Conclusions: Using	 both	 simulated	 and	 empirical	 data,	we	 provide	 a	 roadmap	 for	
ecologists	 and	 other	 practitioners	 to	 select	 overlap	metrics	 to	 describe	 particular	
aspects	 of	 spatial	 predator–prey	 interactions.	We	outline	 a	 range	of	 research	 and	
management	applications	for	which	each	metric	may	be	suited.

K E Y W O R D S

arrowtooth	flounder,	climate	change,	cold	pool,	Eastern	Bering	Sea,	ecosystem	models,	
predator–prey	overlap,	spatial	overlap,	species	distribution	models,	species	interactions,	
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1  | INTRODUC TION

Global	environmental	change	is	causing	species	distributions	to	shift	
at	an	accelerating	rate,	with	species	moving	into	new	areas	and	dis‐
appearing	from	their	former	ranges	(Lawing	&	Polly,	2011).	However,	
species	are	not	moving	one	at	a	time	or	in	isolation.	Instead,	the	dis‐
tributions	of	entire	communities	are	shifting,	and	there	is	a	growing	
need	 to	understand	how	 these	 changes	 affect	 trophic	 interactions	
(Gilman,	 Urban,	 Tewksbury,	 Gilchrist,	 &	 Holt,	 2010;	 Tylianakis,	
Didham,	Bascompte,	&	Wardle,	2008).	For	example,	climate‐induced	
changes	 in	habitat	 and	phenology	may	drive	differential	 responses	
in	 the	distributions	of	predators	and	 their	prey	 (Durant,	Hjermann,	
Ottersen,	 &	 Stenseth,	 2007;	 Pinsky,	Worm,	 Fogarty,	 Sarmiento,	 &	
Levin,	 2013;	 Schweiger	 et	 al.,	 2012;	 Siddon	et	 al.,	 2013).	 This	may	
result	 in	 increased	 (Vors	 &	 Boyce,	 2009)	 or	 reduced	 (Asch,	 2015;	
Schweiger,	Settele,	Kudrna,	Klotz,	&	Kühn,	2008)	predation	oppor‐
tunities.	 These	 increased	matches	 or	mismatches	 in	 species	 distri‐
butions	may	have	cascading	effects,	including	directional	changes	in	
the	abundance	of	predator	or	prey	populations	(Durant	et	al.,	2007;	
Northfield,	Barton,	&	Schmitz,	2017),	predators	switching	prey	types	
(Latham,	Latham,	Knopff,	Hebblewhite,	&	Boutin,	2013),	or	changes	in	
competition	dynamics	within	predator	guilds	(Northfield	et	al.,	2017).	
Understanding	how	predator–prey	interactions	respond	to	external	
pressures	 is	 therefore	essential	 for	predicting	how	ecosystems	will	
respond	to	change	(Araújo	&	Luoto,	2007)	and	for	making	informed	
ecosystem‐based	management	decisions	(Pikitch	et	al.,	2004).

Indices	 that	 summarize	 spatial	 overlap	 between	 co‐occurring	
species	 provide	 simple	 metrics	 that	 can	 describe	 the	 potential	
strength	of	their	ecological	interactions	(Hurlbert,	1978).	When	ap‐
plied	to	predictions	of	species	distributions,	information	on	changes	
in	overlap	can	increase	our	ability	to	project	realistic	ecological	out‐
comes	 for	 interacting	 species	 (Guisan	&	Thuiller,	 2005;	 Schweiger	
et	 al.,	 2012),	 thereby	 better	 informing	 resource	management	 and	
spatial	 conservation	 planning.	Overlap	metrics	 can	 also	 add	 time‐
varying	and	spatially	explicit	attributes	to	ecological	and	ecosystem	
models	 (e.g.,	 size‐spectrum	models	 and	multispecies	 stock	 assess‐
ment	 models).	Within	 these	 models,	 spatial	 interactions	 between	
predator	and	prey	species	are	often	poorly	resolved	at	resolutions	
most	 relevant	 to	 their	 ecology,	 which	may	 complicate	 interpreta‐
tions	of	how	spatial	overlap	influences	ecosystem	dynamics	(Greer	&	
Woodson,	2016).	Likewise,	temporal	changes	in	overlap	between	life	
stages	of	 cannibalistic	or	 competitive	 conspecifics	 could	bias	esti‐
mates	of	density‐dependent	controls	on	species	productivity	(Sigler	
et	al.,	2016).	Incorporating	an	overlap	metric	can	increase	the	capac‐
ity	of	these	models	to	predict	the	impacts	of	future	environmental	
change	on	ecosystem	function	more	accurately	(Greer	&	Woodson,	
2016).

A	number	of	overlap	metrics	have	been	developed	for	ecological	
applications.	These	metrics	have	been	applied	to	diverse	ecological	
questions,	including	the	examination	of	niche	equivalency	of	species	
in	environmental	space	(Broennimann	et	al.,	2012;	Warren,	Glor,	&	
Turelli,	2008),	overlap	of	animal	home	ranges	(Fieberg	&	Kochanny,	
2005),	 overlap	 in	 dietary	 niche	 among	 competitors	 (Woodward	&	

Hildrew,	2002),	and	changes	in	resource	partitioning	among	species	
after	 environmental	 perturbations	 (Fattorini	 et	 al.,	 2017).	 Several	
reviews	of	overlap	metrics	have	discussed	 their	mathematical	 and	
biological	properties	and	have	investigated	sources	of	bias	and	error	
(e.g.,	Hurlbert,	1978;	Krebs,	1989;	Rödder	&	Engler,	2011).	However,	
there	 remains	 a	 clear	 need	 to	 understand	 the	 specific	 ecological	
insights	 that	 can	be	 gained	using	 each	overlap	metric,	 in	 order	 to	
determine	which	is	most	appropriate	for	describing	spatial	predator–
prey	interactions	for	different	applications.

Here,	we	provide	a	review	of	metrics	that	can	be	used	to	quantify	
spatial	overlap	between	two	species.	To	determine	how	the	metrics	
resolve	spatial	predator–prey	dynamics,	we	examine	the	behaviour	
of	the	metrics	when	applied	to	simulations	of	varying	predator	and	
prey	 density	 distributions.	 Furthermore,	 we	 apply	 the	 metrics	 to	
spatial	interactions	between	a	predatory	fish	(arrowtooth	flounder,	
Atheresthes stomias)	 and	 its	 prey	 (juvenile	 walleye	 pollock,	Gadus 
chalcogrammus)	in	the	Eastern	Bering	Sea,	AK,	USA.	This	case	study	
demonstrates	 how	 the	metrics	 can	 track	 changes	 in	 species	 over‐
lap	driven	by	differential	responses	to	environmental	variability.	By	
summarizing	 the	 properties	 of	 available	 overlap	metrics	 and	 illus‐
trating	their	behaviour	 in	response	to	various	ecological	scenarios,	
we	aim	 to	assist	ecologists	 in	 the	selection	of	appropriate	metrics	
with	which	 to	quantify	 spatial	 predator–prey	overlap	 for	 different	
purposes.

2  | METHODS

2.1 | Overlap metric description

Here	we	present	10	overlap	metrics	and	 their	ecological	 interpre‐
tations	(Table	1),	separating	them	into	descriptive	categories	to	aid	
with	ecological	understanding.	This	is	not	a	comprehensive	suite	of	
all	 available	metrics,	but	 instead	 represents	a	 spectrum	of	metrics	
that	 are	 commonly	used	 in	ecology	 to	measure	horizontal	overlap	
between	 two	 species	distributions,	 including	metrics	 that	 are	par‐
ticularly	relevant	for	understanding	predator–prey	interactions.	The	
metrics	we	have	chosen	provide	population‐level	estimates	of	over‐
lap	for	non‐continuous	survey	data.	Other	scales	of	spatial	overlap	
between	species,	such	as	patchiness,	were	not	included	within	the	
scope	of	this	paper	(but	see	e.g.,	Fauchald	&	Erikstad,	2002;	Greer,	
Woodson,	Smith,	Guigand,	&	Cowen,	2016;	Saraux	et	al.,	2014).

2.2 | Binary co‐occurrence

For	 some	 applications,	 a	 metric	 of	 the	 co‐occurrence	 of	 two	
species	may	 be	 sufficient	 to	 describe	 changes	 in	 spatial	 overlap	
(Selden,	 Batt,	 Saba,	 &	 Pinsky,	 2018).	 These	metrics	 are	 particu‐
larly	 useful	when	data	on	occurrence	but	not	biomass	 are	 avail‐
able,	such	as	for	rare	species.	Co‐occurrence	can	be	described	in	
many	ways,	including	the	proportion	of	one	species’	range	where	
the	other	species	also	occurs	(“range	overlap”;	Araújo,	Rozenfeld,	
Rahbek,	&	Marquet,	2011;	Kernohan,	Gitzen,	&	Millspaugh,	2001),	
or	the	proportion	of	a	predefined	study	area	where	both	species	
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co‐occur	(“area	overlap”;	Saraux	et	al.,	2014).	These	metrics	both	
range	from	zero	to	one.	Binary	co‐occurrence	metrics	are	simple	
to	interpret	but	do	not	discriminate	between	areas	with	high	and	
low	population	density	and	therefore	provide	limited	insight	into	
the	potential	strength	of	interactions	between	species	where	they	
co‐occur.

2.3 | Encounter

Where	biomass	or	abundance	data	are	available	from	standardized	
surveys,	an	alternative	approach	to	the	co‐occurrence	metrics	is	the	
“local	index	of	collocation”	(also	“Pianka's	O”;	Bez	&	Rivoirard,	2000;	
Pianka,	1973).	This	metric	assesses	the	co‐occurrence	of	two	popula‐
tions	using	the	proportion	of	their	total	biomass	found	at	each	sam‐
pling	point	and	determines	the	degree	of	correlation	between	two	
density	distributions.	This	can	broadly	be	thought	of	as	describing	
the	ratio	of	the	probability	of	interspecific	(predator–prey)	encoun‐
ters	to	the	probability	of	all	intraspecific	encounters	(the	product	of	
both	predator–predator	and	prey–prey	encounters).

Similar	 metrics	 extend	 this	 approach,	 with	 the	 “asymmetrical	
alpha”	 reflecting	 the	 ratio	 of	 the	 probability	 of	 predator–prey	 en‐
counters	 to	 the	 probability	 of	 prey–prey	 encounters	 only	 (Levins,	
1968).	This	asymmetrical	approach	gives	insight	into	the	amount	of	
pressure	exerted	by	the	predator	on	the	prey.	Another	asymmetri‐
cal	metric	(“biomass‐weighted	overlap”)	is	similar	to	the	asymmetri‐
cal	alpha	but	uses	raw	biomass	rather	than	the	proportion	of	total	
biomass	located	at	each	point.	These	values	can	be	used	to	provide	
insight	 into	 the	magnitude	of	predator	biomass	 that	 can	 influence	
prey	or	can	be	scaled	to	the	maximum	values	for	predator	and	prey	
in	a	given	year,	 in	order	 to	keep	the	range	between	zero	and	one.	
Biomass‐weighted	overlap	may	be	useful	when	estimating	potential	
consumptive	demand	(Chasco	et	al.,	2017).

“Hurlbert's	index”	(Hurlbert,	1978)	can	be	used	to	assess	whether	
two	species	use	space	in	proportion	to	its	availability.	Accounting	for	
spatial	 availability	 is	 particularly	 relevant	 when	 considering	 spatial	
overlap	across	an	arena	where	spatial	units	differ	in	area,	because	it	
accounts	explicitly	for	resources	of	unequal	sizes.	Hurlbert's	overlap	
is	zero	when	species	do	not	share	space	at	all,	one	where	both	species	
occupy	space	in	proportion	to	its	availability,	and	more	than	one	where	
species	demonstrate	preferences	for	particular	spatial	areas	and	these	
preferences	coincide.	Hurlbert's	index	is	also	the	only	encounter	met‐
ric	that	explicitly	accounts	for	the	size	of	the	area	occupied	by	either	
species	(rather	than	the	size	of	the	entire	domain),	making	it	sensitive	
to	changes	in	the	total	area	occupied	by	predator	and	prey.

2.4 | Spatial niche similarity

“Schoener's	D”	 determines	whether	 there	 is	 equivalency	between	
the	 spatial	 niches	 occupied	 by	 two	 species	 (Schoener,	 1970).	 This	
metric	 can	 be	 used	 either	 on	 the	 modelled	 probability	 of	 occur‐
rence	data	or	on	estimates	of	abundance	or	density	distributions	to	
determine	whether	 species	occupy	 space	 in	 a	 similar	way.	 In	 con‐
trast	 to	Hurlbert's	 index,	 a	potential	drawback	of	Schoener's	D	 as	

a	predator–prey	overlap	metric	 is	that	 it	will	return	a	high	value	of	
overlap	in	cases	where	both	species	co‐occur	across	large	areas	at	
low	densities	or	probabilities	of	occurrence,	where	their	interaction	
is	 unlikely	 (i.e.,	 their	 niche	 similarity	 is	 high	 because	 the	 absolute	
difference	 between	 their	 densities	 across	 these	 locations	 is	 low).	
Equally,	this	metric	returns	a	low	value	of	overlap	in	cases	where	pre‐
dation	pressure	might	be	high,	if	there	are	many	predators	in	some	
areas	relative	to	the	number	of	prey.

2.5 | Spatial independence

The	 “Bhattacharyya	 coefficient”	 is	 a	 statistical	 approach	 that	 can	
quantify	 the	 affinity	 between	 two	 probability	 density	 functions	
of	 spatial	 use,	 against	 the	 null	 assumption	 that	 the	 distributions	
are	 independent	 (Bhattacharyya,	 1943).	 This	 approach	 is	 not	 de‐
rived	 from	 ecological	 theory	 but	 can	 be	 interpreted	 as	 assessing	
whether	two	populations	use	space	 independently	of	one	another	
(Fieberg	&	Kochanny,	2005).	In	a	similar	fashion	to	Schoener's	D,	the	
Bhattacharyya	coefficient	can	be	applied	to	the	modelled	probabil‐
ity	of	occurrence	data	or	on	biomass‐density	values.

2.6 | Geographical similarity

An	 alternative	 to	 measuring	 overlap	 as	 the	 interaction	 between	
populations	at	the	grid‐cell	level	is	to	determine	how	geographically	
similar	 two	 distributions	 are	 across	 the	 entire	 study	 area	 (“global	
index	of	collocation”;	Bez	&	Revoirard,	2000).	This	can	be	done	using	
geographical	 coordinates	weighted	 by	 biomass,	 in	 order	 to	 deter‐
mine	the	proximity	of	the	centres	of	gravity	of	the	two	populations	
given	 the	 dispersion	 or	 “inertia”	 of	 individuals	 around	 that	 point.	
This	 approach	 describes	 spatial	 overlap	 at	 a	 regional	 scale,	which	
may	be	useful	for	understanding	broad	patterns	of	overlap	between	
two	species,	rather	than	fine‐scale	interactions.	For	example,	a	high	
global	index	of	collocation	for	two	species	may	not	translate	to	high	
encounter	or	consumption	rates	if	the	species	do	not	also	co‐occur	
at	finer	spatial	scales	(Saraux	et	al.,	2014).

2.7 | Trophic transfer

Variability	 in	predator	density	 that	 can	be	explained	by	 local	prey	
density	is	a	useful	way	of	characterizing	overlap,	because	it	accounts	
for	potential	trophic	transfer	between	species	(“AB	ratio”;	Greer	&	
Woodson,	2016).	An	AB	ratio	of	zero	indicates	that	the	mean	densi‐
ties	of	predator	and	prey	across	 the	whole	survey	area	accurately	
represent	predator–prey	encounters,	whereas	a	value	of	one	 indi‐
cates	100%	higher	 production	of	 the	predator	 as	 a	 result	 of	 fine‐
scale	spatial	overlap	with	prey,	assuming	a	“Holling	type	I”	functional	
response.	Negative	values	can	indicate	different	habitat	preferences	
between	species,	or	predator	avoidance	by	 the	prey,	where	minus	
one	represents	complete	avoidance.	This	metric	provides	insight	into	
how	trophic	processes	are	 likely	to	translate	 local	prey	abundance	
into	predator	production.
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2.8 | Metric responses to simulated predator–prey 
interactions

2.8.1 | Simulated populations

To	illustrate	how	various	overlap	metrics	respond	to	shifting	pred‐
ator–prey	dynamics,	we	 simulated	 interacting	predator	 and	prey	
populations	on	a	200	×	100	gridded	spatial	domain.	We	included	
two	ways	of	manipulating	predator	density	in	relationship	to	prey	

density:	changing	“predator	population	size”,	where	predator	den‐
sity	 increased	 uniformly,	 and	 changing	 “predator	 aggregation”,	
where	predator	biomass	shifted	from	areas	where	there	were	no	
prey	into	areas	of	high	prey	density,	keeping	total	predator	abun‐
dance	constant	across	the	domain.	Although	these	ecological	pro‐
cesses	occur	at	different	time‐scales	in	the	real	world,	we	use	the	
resulting	 distributions	 as	 snapshots	 to	 determine	 how	 different	
types	of	spatial	interactions	between	predator	and	prey	influence	
metric	values.

F I G U R E  1  Schematic	diagram	showing	three	scenarios	of	spatial	interaction	between	simulated	populations	of	predator	and	prey:	(S1)	
incremental	change	in	the	area	of	overlap	between	predator	and	prey	(dashed	lines),	with	predator	density	and	aggregation	response	held	
constant;	(S2)	incremental	change	in	predator	density	in	response	to	prey	density,	with	the	overlap	window	and	aggregation	response	held	
constant;	and	(S3)	incremental	change	in	the	aggregation	response	of	the	predator	to	prey	(density	of	predator	increases	in	relationship	to	
prey	density	only	in	the	overlap	window,	while	decreasing	proportionally	outside	the	overlap	window),	with	the	size	of	the	overlap	window	
and	overall	predator	density	held	constant.	In	each	panel,	the	predator	is	on	the	left	and	the	prey	on	the	right.	The	prey	is	shown	in	light	
grey,	and	the	shade	of	the	predator	is	manipulated	to	show	increases	or	decreases	in	density.	Areas	where	the	predator	and	prey	overlap	are	
depicted	using	shades	that	are	intermediate	between	the	two	densities,	and	hatched	areas	are	where	both	species	are	absent
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On	 the	 gridded	 arena,	 we	 simulated	 unconditional	 Gaussian	
densities	of	a	prey	population	(Dprey, i)	with	moderate	spatial	autocor‐
relation	(patchiness),	using	a	spherical	variogram	model	(sill	=	0.35,	
nugget	=	0.05,	range	=	10)	in	the	R	package	gstat	(Pebesma,	2004).	
We	took	the	exponent	of	these	values	to	obtain	a	lognormal	distri‐
bution,	to	match	right‐skewed	densities	observed	in	natural	popula‐
tions.	We	then	allowed	predator	density	(Dpred, i)	to	be	influenced	by	
three	processes:

where	α	is	a	coefficient	(ranging	from	zero	to	two)	that	controls	the	
relationship	between	predator	density	and	prey	density	(Dprey) in a 
given	cell	(i),	and	β	is	a	coefficient	(ranging	from	zero	to	two)	that	con‐
trols	the	response	of	predator	density	to	mean	prey	density	within	
a	specified	search	area,	representing	the	“aggregation”	response	of	
predators	to	mean	prey	density	(D̄prey)	within	a	neighbourhood	of	s 
grid	cells	around	the	cell	of	interest	(i).	The	spatial	variance	term	(δi) 
is	a	second	log‐density	value	generated	using	a	spherical	variogram	
model	(sill	=	0.2,	nugget	=	0.1,	range	=	9),	added	to	represent	spatial	
processes,	such	as	habitat	selection,	that	influence	predator	density	
independently	of	prey	density.

2.8.2 | Scenarios of predator–prey interaction

ᐃ Overlap window

After	generating	predator	and	prey	distributions	across	 the	whole	
200	×	100	spatial	domain	using	the	above	equation,	we	clipped	the	
spatial	domain	into	two	distinct	distributions	of	predator	and	prey,	
with	dimensions	of	100	×	100	each	(Figure	1).	We	designated	species	
as	absent	in	the	portion	of	the	spatial	domain	outside	their	distribu‐
tion.	Keeping	the	size	of	the	predator	and	prey	distributions	constant	
at	100	×	100,	we	then	manipulated	the	proportion	of	the	distribution	
of	the	prey	that	was	shared	by	the	predator,	from	zero	(where	the	
two	species	shared	no	common	cells)	to	one	(where	the	two	species	
overlapped	completely),	in	10%	spatial	increments.	While	changing	
the	size	of	this	overlap	window,	we	left	α	(“population	size”	param‐
eter) and β	(“aggregation	response”	parameter)	constant	at	one,	and	
fixed	s	 (“search	area”)	to	a	window	of	nine	cells	(3	×	3),	centred	on	
the	cell	of	interest.

ᐃ Predator population size

To	simulate	the	influence	of	uniformly	 increasing	predator	density,	
we	manipulated	α	from	zero	to	two	at	intervals	of	0.2.	We	left	the	
overlap	window	constant	at	0.5,	search	area	at	s	=	9	and	aggregation	
response	at	β	=	1.

ᐃ Aggregation response of predator to prey

To	simulate	a	change	in	the	aggregative	effect	of	prey	on	predator	
density,	 we	 manipulated	 the	 predator	 aggregation	 response	 from	
weaker	 to	 stronger	 (β	 from	 one	 to	 two	 at	 intervals	 of	 0.1)	 within	
the	 overlap	window,	where	 predator	 and	 prey	 interacted	 directly.	
Simultaneously,	 we	 manipulated	 β	 from	 one	 to	 zero	 in	 the	 area	

outside	the	overlap	window,	to	ensure	that	the	overall	sum	of	preda‐
tor	densities	was	unchanged.	For	example,	where	predator	density	
increased	relative	to	prey	density	by	a	factor	of	1.1	 in	the	overlap	
window,	it	decreased	by	a	factor	of	0.9	across	the	rest	of	the	range	
of	 the	predator,	 to	simulate	the	predator	moving	from	areas	of	no	
prey	to	areas	of	high	prey	density.	We	fixed	the	overlap	window	at	
0.5,	“bottom‐up”	density	response	at	α	=	1,	and	the	search	window,	
s,	at	nine.

2.8.3 | Application of overlap metrics

We	applied	the	suite	of	10	overlap	metrics	to	the	predator	and	prey	
distributions	 in	each	of	the	three	scenarios	 (changing	overlap	win‐
dow,	 changing	 predator	 population	 size	 and	 changing	 aggregation	
response)	to	characterize	patterns	of	overlap.	Given	that	the	overlap	
metrics	were	influenced	by	the	random	variation	in	biomass	distri‐
bution	in	each	spatial	model	run,	we	calculated	the	mean	value	for	
each	overlap	metric	for	each	of	500	iterations	of	predator	and	prey	
distributions	in	each	of	the	three	scenarios.

Functions	to	implement	the	predator–prey	overlap	metric	equa‐
tions	in	R	are	included	as	Supporting	Information.

2.9 | Metric responses to predator–prey dynamics 
in the Eastern Bering Sea

To	evaluate	the	performance	of	the	overlap	metrics	on	real	eco‐
logical	data,	we	present	a	case	study	of	spatial	dynamics	between	
a	 predator	 (arrowtooth	 flounder,	 Atheresthes stomias)	 and	 prey	
(juvenile	 walleye	 pollock,	 Gadus chalcogrammus)	 in	 the	 Eastern	
Bering	Sea,	AK,	USA.	The	arrowtooth	flounder	is	a	bottom‐dwell‐
ing	 flatfish	 that	 has	 seen	 an	 eightfold	 increase	 in	 abundance	 on	
the	Eastern	Bering	Sea	shelf	over	the	past	36	years	(Wilderbuer,	
Nichol,	&	Aydin,	2010).	It	is	a	key	predator	of	juvenile	walleye	pol‐
lock,	an	abundant	forage	fish	in	the	Eastern	Bering	Sea	ecosystem	
(Springer,	1992).	The	distributions	of	both	species	are	influenced	
by	the	Eastern	Bering	Sea	“cold	pool”	(Kotwicki	&	Lauth,	2013),	a	
water	mass	on	the	seafloor	that	is	defined	by	temperatures	<	2°C	
and	varies	greatly	 in	 size	between	years	as	a	 function	of	 sea	 ice	
extent	during	the	previous	winter	(Stabeno	et	al.,	2001).	The	study	
species	have	contrasting	responses	to	the	cold	pool:	juvenile	pol‐
lock	are	more	tolerant	of	cold	water	(Kotwicki	&	Lauth,	2013)	and	
may	use	the	cold	pool	as	a	refuge	to	avoid	predation	(Hollowed	et	
al.,	2012),	whereas	arrowtooth	flounder	are	constrained	to	warmer	
water	 and	 generally	 avoid	 the	 cold	 pool	 (Ciannelli,	 Bartolino,	 &	
Chan,	2012;	Spencer	et	al.,	2016).

Previous	work	has	demonstrated	a	potential	increase	in	overlap	
between	these	two	species	as	the	biomass	of	flounder	increases	and	
the	extent	of	 the	cold	pool	decreases	 (Hunsicker,	Ciannelli,	Bailey,	
Zador,	&	Stige,	2013).	This	 results	 in	 increased	predation	pressure	
by	 arrowtooth	 flounder	 on	 juvenile	 pollock,	 affecting	 pollock	 re‐
cruitment	 and	 abundance,	 which	 creates	 a	 complex	 management	
issue	 for	 the	 Eastern	 Bering	 Sea	 (Hunsicker	 et	 al.,	 2013;	 Spencer	
et	al.,	2016).	This	relatively	well‐characterized	example	of	changes	

Dpred, i = 𝛼Dprey, i + 𝛽D̄prey, s + 𝛿i
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in	predator–prey	dynamics	over	 a	36‐year	 time	 series	provides	an	
opportunity	to	explore	the	behaviour	of	the	overlap	metrics	when	
estimating	real‐world	changes	in	spatial	predator–prey	dynamics.

2.9.1 | Arrowtooth and pollock distributions

Annual	summer	distributions	of	juvenile	walleye	pollock	(<25	cm,	ap‐
proximate	age	classes	1–2)	and	adult	arrowtooth	flounder	(>30	cm)	
in	the	Eastern	Bering	Sea	were	estimated	between	1982	and	2017,	
during	 annual	 summer	 fisheries‐independent	 trawl	 surveys	 con‐
ducted	by	the	National	Oceanic	and	Atmospheric	Administration.	
These	 length	 classes	 reflect	 the	 size	 above	 which	 arrowtooth	
flounder	begins	to	predate	intensively	on	pollock	(Livingston	et	al.,	
2017).	Catch	per	unit	effort	(CPUE;	number	of	fish	per	square	kilo‐
metre;	Alverson	&	Pereyra,	1969)	was	determined	 for	c.	376	sta‐
tions	across	the	survey	region	using	a	standard	trawl	net	(83–112	
eastern	otter	trawl)	towing	for	c.	30	min	at	1.54	m/s.	Length	classes	
were	determined	by	measuring	the	fork	 length	of	a	subsample	of	
fish	from	each	tow	and	expanding	this	to	the	entire	catch	in	a	given	
tow	based	on	the	ratio	of	sampled	weight	to	total	towed	weight	for	
each	species.

We	 estimated	 the	 distribution	 and	 density	 of	 juvenile	 pollock	
and	arrowtooth	flounder	using	the	Eastern	Bering	Sea	shelf	CPUE	
data,	while	accounting	for	sampling	effort	that	was	uneven	in	space	
and	time.	To	do	this,	we	applied	two	separate	delta‐generalized	lin‐
ear	mixed	models	using	 the	vector	autoregressive	spatio‐temporal	
(VAST)	 package	 in	 R	 (https	://github.com/james‐thors	on/VAST).	
VAST	 has	 become	 a	 widely	 used	 tool	 for	 fisheries	 scientists	 and	
managers,	and	we	used	default	model	settings	for	model	parameter‐
ization	(Thorson,	2019;	Thorson	&	Barnett,	2017).	The	delta	model	
framework	jointly	estimated	the	probability	of	occurrence	(binomial	
distribution)	and	the	positive	catch	rate	(lognormal	distribution)	for	
each	species	for	each	survey	year	 (1982–2017).	Model	parameters	
were	 estimated	 for	 250	 locations	 (“knots”)	 that	 were	 selected	 by	
applying	a	k‐means	clustering	algorithm	to	the	CPUE	data	to	iden‐
tify	 geographical	 locations	 that	 reflect	 survey	 sampling	 intensity	
(Thorson	 &	 Barnett,	 2017).	 Environmental	 covariates	 were	 the	
temperature	at	the	depth	of	trawl	(in	degrees	Celsius;	measured	by	
trawl	gear)	and	bottom	depth	(in	metres)	and	were	included	as	qua‐
dratic	forms	in	the	model	to	allow	for	nonlinear	responses	(Thorson,	
Ianelli,	&	Kotwicki,	2017).	Year	was	treated	as	a	fixed	effect	(default	
VAST	 setting),	 whereas	 spatial	 variation	 (which	 does	 not	 change	
among	years)	and	spatio‐temporal	variation	(which	is	estimated	in‐
dependently	in	each	year)	were	treated	as	random	effects	described	
by	a	Gaussian	process.	These	random	fields	allow	the	modelling	of	
multi‐dimensional	factors	that	are	not	included	directly	in	the	model	
but	that	affect	the	density	and	distribution	of	the	modelled	species.	
Including	 spatial	 variation	 in	 the	model	 allowed	 for	 correlations	 in	
CPUE	between	nearby	 locations,	with	spatial	 correlation	declining	
with	increasing	distance.	Species	density	was	predicted	at	each	knot	
by	multiplying	the	probability	of	occurrence	with	positive	catch	rate	
estimates.	Density	estimates	for	each	knot	were	then	multiplied	by	

the	knot	area	(in	square	kilometres)	to	create	annual	surfaces	of	spe‐
cies	abundance	across	the	entire	Eastern	Bering	Sea	shelf.

In	order	to	create	“absences”	for	the	binary	cooccurrence	met‐
rics,	we	 determined	 that	 species	were	 absent	 at	 knots	where	 the	
probability	of	occurrence	was	less	than	the	lower	quartile	of	prob‐
ability	of	occurrence	values	across	 the	 total	 sampled	area	 for	 that	
species	in	a	given	year.	This	approach	to	defining	absences	based	on	
the	distribution	of	probability	values	results	in	lower	bias	than	using	
an	arbitrary	probability	threshold,	such	as	0.5	(Liu,	Berry,	Dawson,	&	
Pearson,	2005).

2.9.2 | Arrowtooth and pollock overlap

To	illustrate	differences	 in	how	the	metrics	characterize	predator–
prey	overlap,	we	 applied	 the	 suite	 of	 10	metrics	 to	 the	 estimated	
density	 surfaces	 for	 arrowtooth	 flounder	 and	 juvenile	 pollock	 for	
2012	and	2016,	years	when	the	cold	pool	extent	was	high	and	low,	
respectively.	Given	the	contrasting	preferences	of	each	species	for	
the	cold	pool,	the	overlap	between	flounder	and	pollock	might	be	ex‐
pected	to	be	low	in	2012	and	higher	in	2016	(Hunsicker	et	al.,	2013).	
We	 present	 spatially	 explicit	 estimates	 of	 each	 overlap	metric,	 by	
decomposing	the	global	metric	values	into	their	grid‐cell‐level	com‐
ponents	(i.e.,	we	map	the	value	for	each	cell	without	integrating	or	
taking	means	across	the	whole	spatial	domain).	For	the	global	index	
of	collocation,	we	map	the	position	of	the	centre	of	gravity	and	iner‐
tia	axes.	Along	with	spatially	explicit	estimates,	we	show	total	metric	
values.	We	also	present	the	full	annual	time	series	 (1982–2017)	of	
overlap	values	for	each	metric.

To	visualize	how	spatially	explicit	overlap	related	to	cold	pool	ex‐
tent	in	2012	and	2016,	we	mapped	the	position	of	the	cold	pool	(bot‐
tom	waters	<	2°C)	from	the	bottom	temperatures	measured	during	
the	trawl	surveys.	We	used	ordinary	kriging	in	the	R	package	gstat 
(Pebesma,	2004)	to	estimate	these	temperatures	at	the	same	knots	
as	the	species	abundance	data.

3  | RESULTS

3.1 | Metric responses to simulated predator–prey 
interactions

3.1.1 | Sensitivity to changes in spatial overlap

Most	 overlap	 metrics	 demonstrated	 an	 increase	 in	 response	 to	
a	 larger	window	of	overlap	between	 the	predator	 and	prey	popu‐
lations	 (Figure	 2a).	 These	 responses	 were	 predominantly	 linear.	
However,	the	global	index	of	collocation	demonstrated	a	sigmoidal	
curve,	 and	Hurlbert's	 index	 reached	 an	 asymptote	 as	 the	 overlap	
window	shared	by	 the	distributions	neared	one.	The	AB	ratio	was	
by	far	the	most	sensitive	metric	to	changes	in	the	size	of	the	over‐
lap	window	because	it	has	the	largest	range.	This	simulation	showed	
that	when	 the	 distributions	 reached	 complete	 overlap,	 the	 preda‐
tor	density	was	four	times	greater	in	areas	where	it	overlapped	with	

https://github.com/james-thorson/VAST
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F I G U R E  2  Overlap	metric	behaviour	
in	response	to	different	scenarios	of	
predator–prey	interaction:	(a)	change	in	
area	of	overlap;	(b)	change	in	predator	
density	[α	is	a	coefficient	(ranging	from	
zero	to	two)	that	controls	predator	density	
in	relationship	to	prey	density];	and	(c)	
changes	in	aggregative	response	[β	is	a	
coefficient	(ranging	from	zero	to	two)	
that	controls	the	aggregation	response	of	
the	predator	such	that	predator	biomass	
moves	from	areas	of	no	prey	into	areas	
of	high	overlap	with	prey].	Metric	values	
are	means	taken	over	500	simulations	of	
predator–prey	distribution	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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prey,	relative	to	its	mean	density	across	the	whole	arena	(where	both	
species	were	largely	absent).

3.1.2 | Sensitivity to changes in predator 
population size

Most	 overlap	 metrics	 increased	 slightly	 as	 predator	 density	 in‐
creased	 relative	 to	 prey	 density,	 in	 the	 absence	of	 an	 aggregative	
response.	 These	 increases	 generally	 reached	 an	 asymptote	 as	 the	
ratio	 of	 predator	 density	 to	 prey	 density	 neared	 one	 (Figure	 2b).	
Exceptions	were	the	area	and	range	overlaps	and	the	global	index	of	
collocation,	which	remained	constant	because	both	the	areas	occu‐
pied	by	each	species	and	their	centres	of	gravity	remained	the	same.	
Again,	the	AB	ratio	was	the	most	sensitive	in	this	scenario	because	
predator	density	increased	in	areas	where	it	overlapped	with	prey,	
relative	to	its	mean	across	the	domain.

3.1.3 | Sensitivity to changes in aggregative 
response of predator to prey

Most	overlap	metrics	increased	slightly	in	response	to	changes	in	the	
aggregative	response	of	predator	to	prey	within	the	area	of	overlap	
(Figure	2c).	Unlike	the	previous	scenario,	the	global	index	of	colloca‐
tion	increased,	because	the	centre	of	gravity	of	the	predator	shifted	
incrementally	 towards	 that	of	 the	prey	as	 its	biomass	 in	 the	over‐
lap	window	increased.	Hurlbert's	index	was	sensitive	to	changes	in	
this	parameter,	because	 the	predator	distribution	became	 increas‐
ingly	 less	uniform	and	coincided	more	with	the	spatial	niche	occu‐
pied	by	the	prey.	The	AB	ratio	was	also	sensitive	to	changes	in	this	
parameter,	 because	 predator	 density	 increased	 in	 areas	 where	 it	
overlapped	with	prey,	 relative	 to	 its	mean	across	 the	domain.	The	
biomass‐weighted	overlap	did	not	vary	in	response	to	this	scenario,	
because	predator	density	is	scaled	to	its	maximum	value	across	the	
range,	which	did	not	increase.	The	binary	co‐occurrence	metrics	did	
not	change	 in	response	to	this	scenario	either,	because	the	size	of	
the	overlap	window	was	held	constant.

3.2 | Metric responses to predator–prey dynamics 
in the Eastern Bering Sea

3.2.1 | Pollock and arrowtooth overlap

The	values	of	all	metrics	showed	that	the	overlap	between	the	distri‐
butions	of	arrowtooth	flounder	and	juvenile	walleye	pollock	(as	de‐
termined	by	spatio‐temporal	models,	Table	2)	was	low	in	2012,	when	
the	 cold	pool	 covered	most	of	 the	 shelf	 area	 (Figure	3).	However,	
the	overlap	metrics	demonstrated	some	differences	 in	patterns	of	
spatially	explicit	overlap.	The	centre	of	gravity	and	inertia	for	pollock	
(key	components	of	the	global	index	of	collocation)	showed	that	its	
distribution	was	centred	in	the	middle	of	the	shelf,	in	the	cold	pool.	In	
contrast,	the	distribution	of	arrowtooth	flounder	was	centred	on	the	
lower	portion	of	the	shelf,	outside	the	cold	pool.	The	co‐occurrence	
metrics	showed	that	during	this	year,	the	species	co‐occurred	across	

the	 centre	 of	 the	 shelf,	 but	 did	 not	 co‐occur	 in	 shallower	waters,	
owing	to	the	absence	of	arrowtooth	flounder	from	this	area,	or	in	the	
southeast	portion	of	the	shelf,	owing	to	the	absence	of	pollock	from	
this	area.	Most	other	metrics	(asymmetrical	overlap,	Bhattacharyya's	
coefficient,	 biomass‐weighted	 overlap,	 Hurlbert's	 index	 and	 the	
local	 index	of	collocation)	showed	that	the	highest	area	of	overlap	
occurred	 in	 the	northwest	 corner	of	 the	Eastern	Bering	Sea	 shelf,	
where	 relatively	 high	densities	 of	 both	 flounder	 and	pollock	 coin‐
cided.	The	AB	ratio	returned	mostly	negative	values,	indicating	that	
there	was	general	 avoidance	between	 juvenile	pollock	and	arrow‐
tooth,	probably	caused	by	their	different	relationships	with	the	cold	
pool	rather	than	direct	avoidance	of	arrowtooth	by	juvenile	pollock.	
Values	of	the	AB	ratio	were	lower	in	areas	where	arrowtooth	den‐
sity	was	most	negatively	associated	with	pollock	density	(e.g.,	where	
flounder	density	was	high	but	pollock	density	was	low).	The	highest	
values	of	the	AB	ratio	were	around	zero,	in	places	where	the	densi‐
ties	of	both	species	were	predicted	to	be	low.	Likewise,	Schoener's	
D	showed	higher	values	in	areas	where	the	difference	in	the	propor‐
tion	of	flounder	and	pollock	abundance	was	lower	(i.e.,	where	niche	
similarity	was	high),	including	large	portions	of	the	shelf	where	both	
species	were	present	at	very	low	densities.

During	2016,	an	unusually	warm	year	in	the	Eastern	Bering	Sea,	
overlap	 between	 arrowtooth	 flounder	 and	 juvenile	 pollock	 was	
much	higher	than	in	2012	(Figure	4).	The	centre	of	gravity	and	iner‐
tia	of	the	distributions	showed	a	shift	westward	by	pollock	towards	
the	 reduced	 cold	 pool	 area.	 Arrowtooth	 flounder	 shifted	 further	
up	onto	the	shelf	as	it	exploited	a	greater	portion	of	available	shelf	
habitat,	owing	to	the	absence	of	the	cold	pool,	and	potentially	ex‐
perienced	a	density‐dependent	expansion	(Spencer,	2008).	The	co‐
occurrence	metrics	showed	the	least	change	between	the	two	years,	
with	only	slightly	more	overlap	in	the	middle	portion	of	the	shelf	in	
2016,	where	arrowtooth	flounder	had	expanded	its	occupation.	The	
encounter	metrics	showed	a	small	 region	of	 intense	overlap	 in	the	
westernmost	part	of	the	shelf	on	the	periphery	of	the	cold	pool,	with	
spatially	explicit	metric	values	in	those	cells	an	order	of	magnitude	
greater	in	2016	than	in	2012.	In	several	cells	in	this	part	of	the	shelf	
region,	the	AB	ratio	indicated	that	the	density	of	arrowtooth	floun‐
der	was	2.5	times	greater	than	the	mean,	potentially	as	a	result	of	its	
overlap	with	juvenile	pollock.

The	36‐year	time	series	showed	substantial	variability	in	the	val‐
ues	of	the	metrics	between	years	(Figure	5).	Perhaps	unsurprisingly,	
the	binary	cooccurrence	metrics	showed	the	smallest	range	of	vari‐
ation	across	the	time	series,	with	changes	of	c.	10%	in	the	amount	
of	the	shelf	area	occupied	by	both	arrowtooth	flounder	and	juvenile	
pollock.	The	most	sensitive	metrics	included	the	global	index	of	col‐
location,	which	 showed	a	 relative	 shift	 in	 the	weighted	centres	of	
gravity	of	both	species	of	c.	20%	of	the	total	metric	range.	A	gen‐
eral	 increasing	 trend	 in	overlap	was	 seen	 in	 some	metrics,	 includ‐
ing	Bhattacharyya's	coefficient,	Schoener's	D	and	the	global	 index	
of	collocation.	For	most	metrics,	the	last	3	years	of	the	time	series	
(2015–2017)	 showed	 higher	 overlap	 than	 the	 first	 3	 years	 (1982–
1984),	 and	overlap	was	 relatively	 low	and	high	 in	2012	and	2016,	
respectively.
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3.3 | Discussion

Here,	we	demonstrated	the	properties	of	a	suite	of	overlap	metrics	
and	showed	how	they	can	describe	different	types	of	predator–prey	

interactions.	Below,	we	briefly	review	the	specific	ecological	insights	
that	we	gained	from	the	metrics	using	the	simulated	populations	and	
the	Eastern	Bering	Sea	case	study.	Based	on	these	insights,	we	dis‐
cuss	various	applications	for	which	the	metrics	may	be	suitable	and	

F I G U R E  3   (a)	Cold	pool	extent	on	the	Eastern	Bering	Sea	shelf	in	2012,	a	cold	year	(grey	areas	reflect	temperatures	>	2°C);	(b)	estimate	
of	arrowtooth	flounder	(predator)	density	distribution	in	2012;	and	(c)	estimate	of	juvenile	walleye	pollock	(prey)	distribution	in	2012.	
Densities	at	locations	where	the	probability	of	occurrence	was	less	than	the	lower	quartile	across	the	survey	area	were	deemed	to	be	
absences	and	are	greyed	out.	Spatially	explicit	overlap	calculated	by	the	10	overlap	metrics	(AB	ratio,	asymmetrical	overlap,	Bhattacharyya	
coefficient,	biomass‐weighted	overlap,	Hurlbert's	index,	global	index	of	collocation,	local	index	of	collocation,	Schoener's	D,	area	overlap	
and	range	overlap)	are	shown	below.	Total	values	of	overlap	for	each	metric	for	this	period	are	displayed	in	the	top	right	corner	of	each	map	
[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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include	a	decision	tree	to	help	readers	select	a	metric	based	on	data	
types	and	ecological	question	(Figure	6).

3.3.1 | Insights into ecological interactions

The	overlap	metrics	give	a	range	of	insights	into	spatial	interactions	
between	predators	and	their	prey.	This	is	important	because	there	
are	different	types	of	predator–prey	interactions	that	practitioners	
may	wish	to	quantify,	such	as	total	predation	pressure	exerted	by	a	
predator	on	a	prey	population	(Spencer	et	al.,	2016),	spatial	hotspots	
of	predation	(Eero	et	al.,	2012)	or	the	productivity	of	a	predator	pop‐
ulation	that	can	be	attributed	to	its	overlap	with	a	key	prey	species	
(Greer	&	Woodson,	2016).	Understanding	the	specific	insights	that	
the	metrics	give	into	predator–prey	interactions	can	allow	appropri‐
ate	metrics	to	be	selected	for	different	applications	(Figure	6)	and	for	
metric	values	to	be	interpreted	appropriately.	Furthermore,	tracking	
changes	in	metric	values	through	time	can	provide	important	insight	
into	how	shifts	in	the	spatial	distribution	of	interacting	species	might	
be	altering	components	of	ecosystem	function	(Gilman	et	al.,	2010;	
Tylianakis	et	al.,	2008).

Using	our	 simulation	 and	 case	 study,	we	 show	 that	 the	binary	
co‐occurrence	metrics	(area	and	range	overlap)	provide	a	simple	and	
interpretable	way	 of	measuring	 spatial	 overlap	 between	 two	 spe‐
cies.	However,	these	metrics	cannot	be	used	to	quantify	fine‐scale	
interspecific	interactions,	such	as	predation,	which	are	a	function	of	
factors	including	species	density	and	aggregation	patterns	(Hurlbert,	
1978).	 Specifically,	 because	 species	 can	 be	 designated	 “present”	
even	at	very	 low	densities,	 the	co‐occurrence	metrics	are	 likely	to	
overestimate	 the	 probability	 of	 interspecific	 interactions.	 In	 most	
cases,	 using	 habitat	models	 to	 calculate	 a	 spatially	 explicit	 proba‐
bility	of	occurrence	surface	provides	more	information	than	simply	
a	“presence”	or	“absence”	and	can	deal	with	biases	associated	with	
the	detection	of	species	or	variability	in	sampling.	Estimated	proba‐
bility	values	can	then	be	fed	into	overlap	metrics,	such	as	Schoener's	

D	or	Bhattacharyya's	coefficient,	providing	insight	into	the	relative	
preferences	of	both	species	for	shared	spatial	resources	(Fieberg	&	
Kochanny,	2005).

Many	studies	have	demonstrated	 the	efficacy	of	Schoener's	D 
for	understanding	niche	overlap	between	species	in	environmental	
space	(e.g.,	Broennimann	et	al.,	2012;	Warren	et	al.,	2008).	We	took	
a	purely	spatial	approach	to	understanding	overlap	between	preda‐
tor	and	prey	without	explicitly	testing	the	underlying	environmental	
mechanisms	driving	their	distributions.	Used	in	this	way,	Schoener's	
D	provides	 insight	 into	whether	species	share	preferences	for	par‐
ticular	 areas,	 which	 is	 important	 for	 understanding	 whether	 they	
might	be	affected	in	similar	ways	by	anthropogenic	or	environmen‐
tal	processes.	Bhattacharyya's	coefficient	is	not	derived	from	either	
ecological	or	 spatial	 theory,	but	 it	provides	an	objective	statistical	
approximation	of	whether	two	populations	use	space	independently	
of	 one	 another.	Although	Schoener's	D	 and	Bhattacharyya's	 coef‐
ficient	quantify	similarities	and	differences	 in	the	use	of	space	be‐
tween	two	populations,	they	are	not	designed	to	provide	insight	into	
the	 strength	 of	 potential	 interactions	 between	 two	 species.	 They	
may	therefore	be	more	appropriate	for	quantifying	overlap	in	gen‐
eral,	rather	than	as	tools	to	understand	specific	elements	of	spatial	
predator–prey	dynamics.

The	encounter	metrics	(asymmetrical	alpha,	biomass‐weighted	
overlap,	Hurlbert's	 index	and	 the	 local	 index	of	collocation)	pro‐
vide	the	most	 intuitive	definition	of	overlap	as	a	proxy	for	pred‐
ator–prey	 interactions.	 The	 insights	 from	 each	 of	 the	 encounter	
metrics	 are	 similar,	 but	Hurlbert's	 index	 is	 sensitive	 to	 both	 the	
size	of	the	area	over	which	two	species	occur	and	the	variability	in	
the	size	of	spatial	sampling	units.	Explicitly	accounting	for	changes	
in	the	size	of	the	area	occupied	by	predator	and	prey	incorporates	
useful	 information	 on	 species’	 range	 expansions	 or	 contractions	
and	better	captures	the	potentially	increasing	impacts	of	a	preda‐
tor	on	its	prey	as	it	occupies	a	larger	proportion	of	the	range	of	the	
prey	(Hurlbert,	1978).

TA B L E  2  Model	parameter	estimates	and	significance	terms	for	the	probability	of	occurrence	and	positive	catch	rate	of	juvenile	walleye	
pollock	and	arrowtooth	flounder.	Modelled	probability	of	occurrence	and	positive	catch	rate	were	estimated	using	a	vector	autoregressive	
spatio‐temporal	(VAST)	model,	parameterised	with	a	lognormal	distribution,	and	spatial	and	spatio‐temporal	variation.	Environmental	
covariates	(temperature	and	depth)	were	defined	as	quadratic	functions

Parameter

Pollock occurrence Pollock catch rate Flounder occurrence Flounder catch rate

Estimate Significance Estimate Significance Estimate Significance Estimate Significance

Year µ	=	1.8 p	<	.05*  µ	=	2.70 p	<	.001 µ	=	−0.38 p	<	.05*  µ	=	1.13 p	<	.05* 

Temperature −0.06 p	=	.48 0.27 p	<	.001 2.66 p	<	.001 1.40 p	<	.001

Temperature2 0.07 p	=	.06 −0.03 p	=	.2 −1.14 p	<	.001 −0.52 p	<	.001

Depth −0.11 p	=	.49 −0.26 p	<	.05 3.49 p	<	.001 1.28 p	<	.001

Depth2 −0.42 p	<	.001 −0.28 p	<	.001 −0.89 p	<	.001 −0.32 p	<	.001

Spatial	variation σ	=	1.01 p	<	.001 σ	=	0.61 p	<	.001 σ	=	1.48 p	<	.001 σ	=	0.73 p	<	.001

Spatio‐temporal	variation σ	=	1.02 p	<	.001 σ	=	0.88 p	<	.001 σ	=	1.05 p	<	.001 σ	=	0.52 p	<	.001

Note: The	mean	(µ)	gives	the	average	results	for	all	years	between	1982	and	2017.
*Indicates	that	only	some	years	were	significant;	and	σ	is	the	standard	deviation	of	the	spatial	and	spatio‐temporal	processes.	
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3.3.2 | Applications of overlap metrics

There	are	many	applications	 for	which	overlap	metrics	can	provide	
important	 information	 about	 spatial	 relationships	 between	 preda‐
tors	and	their	prey.	The	choice	of	overlap	metric	for	each	application	

depends	on	both	the	data	types	and	the	scale	of	inference	that	is	re‐
quired	(Figure	6).

The	binary	co‐occurrence	metrics	describe	broad	spatial	patterns	
relating	to	the	potential	for	two	populations	to	be	in	the	same	area.	
This	may	be	desirable	for	some	applications	where	only	occurrence	

F I G U R E  4   (a)	Cold	pool	extent	on	the	Eastern	Bering	Sea	shelf	in	2016,	an	anomalously	warm	year	(grey	areas	reflect	
temperatures	>	2°C);	(b)	estimate	of	arrowtooth	flounder	(predator)	density	distribution	in	2016;	and	(c)	estimate	of	juvenile	walleye	pollock	
(prey)	distribution	in	2016.	Densities	at	locations	where	the	probability	of	occurrence	was	less	than	the	lower	quartile	across	the	survey	
area	were	deemed	to	be	absences	and	are	greyed	out.	Spatially	explicit	overlap	calculated	by	the	10	overlap	metrics	(AB	ratio,	asymmetrical	
overlap,	Bhattacharyya	coefficient,	biomass‐weighted	overlap,	Hurlbert's	index,	global	index	of	collocation,	local	index	of	collocation,	
Schoener's	D,	area	overlap	and	range	overlap)	are	shown	below.	Total	values	of	overlap	for	each	metric	for	this	period	are	displayed	in	the	
top	right	corner	of	each	map	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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data	are	available	and	where	a	simple	approach	is	required	for	de‐
fining	 spatial	 boundaries.	 For	 example,	 binary	metrics	may	 be	 ap‐
propriate	for	conservatively	managing	interactions	with	rare	species	
(Hazen	et	al.,	2018)	or	for	projecting	spatial	overlap	in	future	envi‐
ronmental	conditions	where	the	precision	of	estimated	distribution	
shifts	is	assumed	to	be	low	(Selden	et	al.,	2018).

Within	this	category	of	metrics,	the	choice	of	whether	the	area	or	
range	overlap	metric	is	preferred	depends	on	whether	a	study	aims	
to	 determine	 the	 directional	 influence	 of	 one	 species	 on	 another	
(range	overlap)	or	the	overlap	between	two	species	across	a	given	
spatial	area	(area	overlap)	(Figure	6).	For	example,	the	range	overlap	
metric	could	be	used	to	quantify	how	much	of	the	future	range	of	a	
predator	will	overlap	with	that	of	its	prey,	using	predictions	of	spe‐
cies	distributions	made	onto	climate	forecasts	(e.g.,	Schweiger	et	al.,	
2008;	Selden	et	al.,	2018).	The	area	overlap	metric	could	be	used	to	
quantify	the	proportion	of	a	predefined	management	area	(e.g.,	park,	

region,	state	or	continent)	that	might	continue	to	see	the	co‐occur‐
rence	of	two	species	under	future	conditions.

The	encounter	metrics	and	the	AB	ratio	can	be	used	to	add	spatial	
information	to	non‐spatial	models.	For	example,	non‐spatial	ecosys‐
tem	models	(e.g.,	Ecosim)	aggregate	information	about	species’	bio‐
mass	and	calculate	estimates	of	consumption	and	mortality	across	a	
whole	 region.	However,	 these	models	often	assume	constant	pro‐
portions	of	prey	biomass	available	to	a	predator	(e.g.,	100%),	which	
may	result	in	overestimates	of	consumption	rates	if	two	species	do	
not	overlap	at	ecologically	relevant	spatial	or	temporal	scales	(Greer	
&	Woodson,	 2016).	 Conversely,	 consumption	 rates	 can	 be	 under‐
estimated	 in	 cases	where	prey	 is	 highly	 aggregated	 and	 therefore	
more	readily	accessible	to	predators,	such	as	at	fronts	 in	the	open	
ocean	(Bost	et	al.,	2009)	or	at	water	sources	in	terrestrial	systems	(de	
Boer	et	al.,	2010).	The	encounter	metrics	and	the	AB	ratio	provide	
information	about	correlations	between	the	densities	of	two	species	

F I G U R E  5  Thirty‐six‐year	time	series	(1982–2017)	of	overlap	between	juvenile	walleye	pollock	and	arrowtooth	flounder	in	the	Eastern	
Bering	Sea,	Alaska,	calculated	using	10	overlap	metrics	(AB	ratio,	asymmetrical	overlap,	Bhattacharyya's	coefficient,	biomass‐weighted	
overlap,	global	index	of	collocation,	Hurlbert's	index,	local	index	of	collocation,	Schoener's	D,	area	overlap	and	range	overlap).	The	years	
2012	and	2016	(highlighted	in	spatial	analyses)	are	shown	with	red	triangles	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com


1574  |     CARROLL et AL.

across	sampling	points,	which	relates	to	the	probability	of	their	in‐
teraction	 or	 production.	 These	metrics	 therefore	 provide	 a	 useful	
time‐varying	estimate	of	the	potential	strength	of	predator–prey	in‐
teractions	that	can	be	included	in	ecological	models.

Spatially,	 the	encounter	metrics	can	 illustrate	areas	of	more	or	
less	intense	interaction	between	predator	and	prey.	In	our	Eastern	
Bering	 Sea	 case	 study,	 the	 northwest	 portion	 of	 the	 survey	 area	
demonstrated	high	overlap	between	arrowtooth	flounder	and	juve‐
nile	pollock	using	the	encounter	metrics,	with	overlap	increasing	in	
this	 area	 in	warmer	 conditions	 (Figures	3	 and	4).	 This	 information	
may	be	useful	for	managing	resources	in	a	spatially	explicit	way,	in	
cases	where	mitigation	of	the	 influence	of	one	species	on	another	
is	desired	for	ecosystem‐based	management.	For	example,	targeted	
culling	 of	 a	 “problem”	 predator	 in	 areas	 of	 high	 overlap	 (i.e.,	 high	
putative	 predation	 pressure)	 may	 prove	 an	 efficient	 and	 cost‐ef‐
fective	means	of	boosting	the	abundance	of	a	prey	species	that	 is	

commercially	important	or	of	conservation	concern	(Burrows	et	al.,	
2003;	Eero	et	al.,	2012;	Persson	et	al.,	2007).

The	global	index	of	collocation	can	be	applied	to	define	overlap	
at	the	broad	scale	of	the	ranges	of	stocks,	populations	or	species;	the	
scales	at	which	spatial	conservation	and	management	decisions	are	
usually	made.	Furthermore,	 the	centre	of	gravity	and	 inertia,	 from	
which	 the	global	 index	of	 collocation	 is	 calculated,	provide	 simple	
and	interpretable	spatial	metrics	that	can	aid	 in	understanding	the	
mechanisms	underlying	changes	 in	patterns	of	 spatial	overlap.	For	
example,	 these	can	be	used	 to	highlight	differential	 rates	of	pole‐
ward	shifts	by	predator	and	prey	in	response	to	climate	change	(Le	
Roux	&	McGeoch,	2008).	Unlike	any	of	the	other	metrics	examined	
in	this	paper,	the	global	index	of	collocation	does	not	include	infor‐
mation	on	co‐occurrence	or	the	correlation	of	the	biomass	of	species	
at	the	grid‐scale	level,	making	it	less	useful	for	understanding	inter‐
actions	 between	 species	 at	 scales	 that	 are	more	 relevant	 to	 their	

F I G U R E  6  A	decision	tree	to	help	readers	select	a	predator–prey	overlap	metric	based	on	considerations	such	as	the	types	of	species	
distribution	data	available	and	the	types	of	predator–prey	interactions	that	are	of	interest.	Colours	represent	the	metric	categories,	with	red	
=	“spatial	independence”,	dark	blue	=	“niche	similarity”,	green	=	“binary	co‐occurrence”,	orange	=	“geographical	similarity”,	yellow	=	“trophic	
transfer”	and	light	blue	=	“encounter”	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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ecology.	However,	the	global	index	of	collocation	can	provide	a	use‐
ful	complement	to	the	encounter	metrics,	to	understand	processes	
governing	the	overlap	of	species	at	nested	spatial	scales	(Saraux	et	
al.,	2014).

3.4 | Overlap between arrowtooth flounder and 
juvenile pollock

The	metrics	that	we	 investigated	gave	new	 insight	 into	changes	 in	
spatial	 overlap	 between	 juvenile	walleye	 pollock	 and	 adult	 arrow‐
tooth	 flounder,	 a	predator	 that	has	been	growing	 in	 abundance	 in	
the	Eastern	Bering	Sea	over	the	past	30	years.	We	showed	that	spa‐
tial	overlap	between	these	two	species	was	very	low	in	2012,	when	
the	presence	of	an	intense	Eastern	Bering	Sea	cold	pool	restricted	
flounder	 from	moving	up	onto	 the	 shelf.	We	 then	 showed	 that	 in	
an	 anomalously	 warm	 year	 (2016),	 overlap	 estimated	 using	 all	 10	
metrics	was	much	higher	than	in	2012,	mirroring	previous	work	that	
showed	an	increase	in	predation	pressure	by	arrowtooth	flounder	on	
juvenile	pollock	associated	with	warm	conditions	 (Hunsicker	et	al.,	
2013;	Spencer	et	al.,	2016).

By	mapping	areas	of	high	and	low	overlap	of	these	species,	we	
show	 how	 the	metrics	 can	 identify	 important	 shared	 habitat.	We	
also	highlight	areas	that	may	be	of	management	interest	during	the	
stanzas	of	 anomalously	warm	 temperatures	 that	have	 increasingly	
been	 impacting	 the	 Eastern	 Being	 Sea	 ecosystem	 (Stabeno	 et	 al.,	
2017).	The	full	36‐year	time	series	of	overlap	between	juvenile	pol‐
lock	and	flounder	showed	an	overall	increasing	trend	in	overlap	for	
some	metrics.	This	trend	is	of	concern	to	managers,	because	juvenile	
walleye	pollock	is	a	species	of	great	commercial	importance	for	the	
USA,	and	predation	pressure	may	have	an	increasing	effect	on	the	
population	as	the	Eastern	Bering	Sea	warms	(Hunsicker	et	al.,	2013;	
Spencer	et	al.,	2016).	This	case	study	highlights	how	overlap	metrics	
can	be	used	to	track	species	interactions	both	in	space	and	through	
time	in	varying	environmental	conditions.

3.5 | Conclusions

The	diverse	suite	of	overlap	metrics	examined	in	this	paper	quantify	
spatial	predator–prey	interactions	and	can	track	how	these	interac‐
tions	 change	 through	 time.	 Our	 simulations	 and	 case	 study	 show	
that	no	single	metric	emerges	as	being	most	useful	across	all	 sce‐
narios.	Instead,	we	recommend	that	the	overlap	metric(s)	chosen	for	
a	particular	study	should	reflect	the	types	of	data	available	and	the	
desire	 to	 understand	 particular	 elements	 of	 ecological	 and	 spatial	
relationships	between	species	(Figure	6).	In	many	cases,	the	use	of	a	
combination	of	several	metrics	may	deliver	the	most	comprehensive	
assessment	of	spatial	predator–prey	overlap.	For	example,	the	global	
index	of	collocation	could	be	chosen	to	give	insight	into	broad	pat‐
terns	of	distribution,	Schoener's	D	to	understand	niche	equivalency	
across	habitat	types	that	may	drive	overlap,	and	Hurlbert's	index	to	
estimate	interspecific	encounter,	accounting	for	variability	in	spatial	
resource	availability.	 In	 such	a	 combination,	 these	metrics	provide	
complementary	information	regarding	the	use	of	shared	space	and	

probability	 of	 interaction	 between	 predators	 and	 prey	 at	 nested	
scales	of	distribution	and	behaviour.

ACKNOWLEDG MENTS

Funding	for	this	project	was	provided	by	NOAA’s	Fisheries	and	the	
Environment	 (FATE)	 programme	 for	 a	 grant	 titled,	 “Creating	 and	
evaluating	indices	of	climate‐induced	changes	in	spatial	distributions	
and	 predator–prey	 overlap	 for	North	 Pacific	 fishery	 resources”	 to	
E.L.H.,	R.L.S.,	S.B.,	J.S.,	K.K.H.	and	M.A.H.	We	thank	Eastern	Bering	
Sea	ground	trawl	survey	participants	for	their	hard	work	in	collect‐
ing	the	data	used	in	the	case	study.	We	also	thank	Nick	Tolimieri	for	
comments	on	a	previous	draft.

DATA AVAIL ABILIT Y S TATEMENT

We	used	bottom	trawl	data	collected	by	the	Eastern	Bering	Sea	bot‐
tom	 trawl	 survey,	 publicly	 available	 at:	 http://www.afsc.noaa.gov/
RACE/groun	dfish/	survey_data/data.htm

Functions	to	implement	the	predator–prey	overlap	metric	equa‐
tions	in	R	are	included	as	Supporting	Information.

ORCID

Gemma Carroll  https://orcid.org/0000‐0001‐7776‐0946 

R E FE R E N C E S

Alverson,	D.	L.,	&	Pereyra,	W.	T.	(1969).	Demersal	fish	explorations	in	the	
Northeastern	 Pacific	 Ocean—An	 evaluation	 of	 exploratory	 fishing	
methods	and	analytical	approaches	to	stock	size	and	yield	forecasts.	
Journal of the Fisheries Board of Canada,	26,	1985–2001.	https	://doi.
org/10.1139/f69‐188

Araújo,	M.	B.,	&	Luoto,	M.	(2007).	The	importance	of	biotic	interactions	
for	 modelling	 species	 distributions	 under	 climate	 change.	 Global 
Ecology and Biogeography,	16(6),	743–753.

Araújo,	 M.	 B.,	 Rozenfeld,	 A.,	 Rahbek,	 C.,	 &	 Marquet,	 P.	 A.	 (2011).	
Using	 species	 co‐occurrence	 networks	 to	 assess	 the	 im‐
pacts	 of	 climate	 change.	 Ecography,	 34,	 897–908.	 https	://doi.
org/10.1111/j.1600‐0587.2011.06919.x

Asch,	R.	G.	(2015).	Climate	change	and	decadal	shifts	in	the	phenology	
of	 larval	 fishes	 in	 the	California	 current	 ecosystem.	Proceedings of 
the National Academy of Sciences of the United States of America,	112,	
4065–4074.	https	://doi.org/10.1073/pnas.14219	46112	

Bez,	N.,	&	Rivoirard,	 J.	 (2000).	 Indices	of	 collocation	between	popula‐
tions.	In	D.	M.	Checkley,	J.	R.	Hunter,	L.	Motos,	&	C.	D.	von	der	Lingen	
(Eds.),	Workshop on the Use of Continuous Underway Fish Egg Sampler 
(CUFES) for mapping spawning habitat of pelagic fish.	 GLOBEC	 Rep.	
(pp.	48–52).

Bhattacharyya,	A.	(1943).	On	a	measure	of	divergence	between	two	sta‐
tistical	populations	defined	by	their	probability	distributions.	Bulletin 
of the Calcutta Mathematical Society,	35,	99–110.

Bost,	 C.	 A.,	 Cotté,	 C.,	 Bailleul,	 F.,	 Cherel,	 Y.,	 Charrassin,	 J.	 B.,	 Guinet,	
C.,	 …	Weimerskirch,	 H.	 (2009).	 The	 importance	 of	 oceanographic	
fronts	to	marine	birds	and	mammals	of	the	southern	oceans.	Journal 
of Marine Systems,	 78,	 363–376.	 https	://doi.org/10.1016/j.jmars	
ys.2008.11.022

Broennimann,	 O.,	 Fitzpatrick,	 M.	 C.,	 Pearman,	 P.	 B.,	 Petitpierre,	
B.,	 Pellissier,	 L.,	 Yoccoz,	 N.	 G.,	 …	 Guisan,	 A.	 (2012).	 Measuring	

://www.afsc.noaa.gov/RACE/groundfish/survey_data/data.htm
://www.afsc.noaa.gov/RACE/groundfish/survey_data/data.htm
https://orcid.org/0000-0001-7776-0946
https://orcid.org/0000-0001-7776-0946
https://doi.org/10.1139/f69-188
https://doi.org/10.1139/f69-188
https://doi.org/10.1111/j.1600-0587.2011.06919.x
https://doi.org/10.1111/j.1600-0587.2011.06919.x
https://doi.org/10.1073/pnas.1421946112
https://doi.org/10.1016/j.jmarsys.2008.11.022
https://doi.org/10.1016/j.jmarsys.2008.11.022


1576  |     CARROLL et AL.

ecological	 niche	 overlap	 from	 occurrence	 and	 spatial	 environmen‐
tal data. Global Ecology and Biogeography,	21,	 481–497.	 https	://doi.
org/10.1111/j.1466‐8238.2011.00698.x

Burrows,	N.	D.,	Algar,	D.,	Robinson,	A.	D.,	Sinagra,	J.,	Ward,	B.,	&	Liddelow,	
G.	(2003).	Controlling	introduced	predators	in	the	Gibson	Desert	of	
Western	Australia.	Journal of Arid Environments,	55,	691–713.	https	://
doi.org/10.1016/S0140‐1963(02)00317‐8

Chasco,	 B.	 E.,	 Kaplan,	 I.	 C.,	 Thomas,	 A.	 C.,	 Acevedo‐Gutiérrez,	 A.,	
Noren,	D.	P.,	Ford,	M.	J.,	…	Ward,	E.	J.	(2017).	Competing	tradeoffs	
between	 increasing	 marine	 mammal	 predation	 and	 fisheries	 har‐
vest	 of	 Chinook	 salmon.	 Scientific Reports,	 7,	 15439.	 https	://doi.
org/10.1038/s41598‐017‐14984‐8

Ciannelli,	L.,	Bartolino,	V.,	&	Chan,	K.	S.	 (2012).	Non‐additive	and	non‐
stationary	properties	in	the	spatial	distribution	of	a	large	marine	fish	
population.	Proceedings of the Royal Society B: Biological Sciences,	279,	
3635–3642.

de	 Boer,	W.	 F.,	 Vis,	M.	 J.	 P.,	 de	 Knegt,	 H.	 J.,	 Rowles,	 C.,	 Kohi,	 E.	M.,	
van	 Langevelde,	 F.,	 …	 Prins,	 H.	 H.	 T.	 (2010).	 Spatial	 distribu‐
tion	 of	 lion	 kills	 determined	 by	 the	 water	 dependency	 of	 prey	
species.	 Journal of Mammalogy,	 91,	 1280–1286.	 https	://doi.
org/10.1644/09‐MAMM‐A‐392.1

Durant,	J.	M.,	Hjermann,	D.	Ø.,	Ottersen,	G.,	&	Stenseth,	N.	C.	 (2007).	
Climate	and	the	match	or	mismatch	between	predator	requirements	
and	resource	availability.	Climate Research,	33,	271–283.	https	://doi.
org/10.3354/cr033271

Eero,	M.,	Vinther,	M.,	Haslob,	H.,	Huwer,	B.,	Casini,	M.,	 Storr‐Paulsen,	
M.,	&	Köster,	F.	W.	(2012).	Spatial	management	of	marine	resources	
can	 enhance	 the	 recovery	 of	 predators	 and	 avoid	 local	 deple‐
tion	 of	 forage	 fish.	 Conservation Letters,	 5,	 486–492.	 https	://doi.
org/10.1111/j.1755‐263X.2012.00266.x

Fattorini,	 S.,	 Lombardo,	 P.,	 Fiasca,	 B.,	Di	Cioccio,	 A.,	Di	 Lorenzo,	 T.,	&	
Galassi,	D.	M.	(2017).	Earthquake‐related	changes	in	species	spatial	
niche	overlaps	in	spring	communities.	Scientific Reports,	7,	443.	https	
://doi.org/10.1038/s41598‐017‐00592‐z

Fauchald,	P.,	&	Erikstad,	K.	E.	(2002).	Scale‐dependent	predator‐prey	in‐
teractions:	The	aggregative	response	of	seabirds	to	prey	under	vari‐
able	prey	abundance	and	patchiness.	Marine Ecology Progress Series,	
231,	279–291.	https	://doi.org/10.3354/meps2	31279	

Fieberg,	 J.,	 &	 Kochanny,	 C.	 O.	 (2005).	 Quantifying	 home‐range	 over‐
lap:	 The	 importance	 of	 the	 utilization	 distribution.	 The Journal of 
Wildlife Management,	69,	1346–1359.	https	://doi.org/10.2193/0022‐
541X(2005)69[1346:QHOTI	O]2.0.CO;2

Gilman,	 S.	 E.,	Urban,	M.	C.,	 Tewksbury,	 J.,	Gilchrist,	G.	W.,	&	Holt,	 R.	
D.	 (2010).	 A	 framework	 for	 community	 interactions	 under	 climate	
change.	 Trends in Ecology and Evolution,	 25,	 325–331.	 https	://doi.
org/10.1016/j.tree.2010.03.002

Greer,	A.	 T.,	&	Woodson,	C.	B.	 (2016).	Application	of	 a	 predator–prey	
overlap	metric	to	determine	the	impact	of	sub‐grid	scale	feeding	dy‐
namics	on	ecosystem	productivity.	ICES Journal of Marine Science,	73,	
1051–1061.	https	://doi.org/10.1093/icesj	ms/fsw001

Greer,	A.	T.,	Woodson,	C.	B.,	Smith,	C.	E.,	Guigand,	C.	M.,	&	Cowen,	R.	K.	
(2016).	Examining	mesozooplankton	patch	structure	and	its	implica‐
tions	for	trophic	interactions	in	the	northern	Gulf	of	Mexico.	Journal 
of Plankton Research,	38,	1115–1134.	https	://doi.org/10.1093/plank	
t/fbw033

Guisan,	A.,	&	Thuiller,	W.	(2005).	Predicting	species	distribution:	Offering	
more	than	simple	habitat	models.	Ecology Letters,	8,	993–1009.	https	:// 
doi.org/10.1111/j.1461‐0248.2005.00792.x

Hazen,	 E.	 L.,	 Scales,	 K.	 L.,	 Maxwell,	 S.	 M.,	 Briscoe,	 D.	 K.,	 Welch,	 H.,	
Bograd,	S.	J.,	…	Lewison,	R.	L.	(2018).	A	dynamic	ocean	management	
tool	 to	 reduce	 bycatch	 and	 support	 sustainable	 fisheries.	 Science 
Advances,	4,	eaar3001.	https	://doi.org/10.1126/sciadv.aar3001

Hollowed,	A.	B.,	Barbeaux,	S.	J.,	Cokelet,	E.	D.,	Farley,	E.,	Kotwicki,	S.,	
Ressler,	P.	H.,	…	Wilson,	C.	D.	 (2012).	Effects	of	 climate	variations	
on	 pelagic	 ocean	 habitats	 and	 their	 role	 in	 structuring	 forage	 fish	

distributions	 in	 the	 Bering	 Sea.	 Deep Sea Research Part II: Topical 
Studies in Oceanography,	 65,	 230–250.	 https	://doi.org/10.1016/j.
dsr2.2012.02.008

Hunsicker,	M.	E.,	Ciannelli,	L.,	Bailey,	K.	M.,	Zador,	S.,	&	Stige,	L.	C.	(2013).	
Climate	and	demography	dictate	the	strength	of	predator‐prey	over‐
lap	in	a	subarctic	marine	ecosystem.	PLoS ONE,	8,	e66025.	https	://
doi.org/10.1371/journ	al.pone.0066025

Hurlbert,	S.	H.	(1978).	The	measurement	of	niche	overlap	and	some	rela‐
tives.	Ecology,	59,	67–77.	https	://doi.org/10.2307/1936632

Kernohan,	B.	J.,	Gitzen,	R.	A.,	&	Millspaugh,	J.	J.	(2001).	Analysis	of	animal	
space	use	and	movements.	 In	Radio tracking and animal populations 
(pp.	125–166).	Academic	Press.

Kotwicki,	S.,	&	Lauth,	R.	R.	 (2013).	Detecting	 temporal	 trends	and	en‐
vironmentally‐driven	 changes	 in	 the	 spatial	 distribution	 of	 bottom	
fishes	and	crabs	on	the	Eastern	Bering	Sea	shelf.	Deep Sea Research 
Part II: Topical Studies in Oceanography,	 94,	 231–243.	 https	://doi.
org/10.1016/j.dsr2.2013.03.017

Krebs,	 C.	 J.	 (1989).	 Ecological methodology	 (No.	 QH541.	 15.	 S72.	 K74	
1999).	New	York:	Harper	&	Row.

Latham,	 A.	 D.	 M.,	 Latham,	 M.	 C.,	 Knopff,	 K.	 H.,	 Hebblewhite,	 M.,	 &	
Boutin,	S.	(2013).	Wolves,	white‐tailed	deer,	and	beaver:	Implications	
of	seasonal	prey	switching	for	woodland	caribou	declines.	Ecography,	
36,	1276–1290.	https	://doi.org/10.1111/j.1600‐0587.2013.00035.x

Lawing,	A.	M.,	&	Polly,	P.	D.	(2011).	Pleistocene	climate,	phylogeny,	and	
climate	envelope	models:	An	integrative	approach	to	better	under‐
stand	 species'	 response	 to	 climate	 change.	 PLoS ONE,	 6,	 e28554.	
https	://doi.org/10.1371/journ	al.pone.0028554

Le	Roux,	P.	C.,	&	McGeoch,	M.	A.	(2008).	Rapid	range	expansion	and	com‐
munity	reorganization	in	response	to	warming.	Global Change Biology,	
14,	2950–2962.	https	://doi.org/10.1111/j.1365‐2486.2008.01687.x

Levins,	R.	(1968).	Evolution in changing environments: some theoretical ex-
plorations	(No.	2).	Princeton	University	Press.

Liu,	C.,	Berry,	P.	M.,	Dawson,	T.	P.,	&	Pearson,	R.	G.	(2005).	Selecting	thresh‐
olds	of	occurrence	in	the	prediction	of	species	distributions.	Ecography,	
28,	385–393.	https	://doi.org/10.1111/j.0906‐7590.2005.03957.x

Livingston,	P.	A.,	Aydin,	K.,	Buckley,	T.	W.,	Lang,	G.	M.,	Yang,	M.	S.,	&	
Miller,	B.	S.	(2017).	Quantifying	food	web	interactions	in	the	North	
Pacific—A	data‐based	approach.	Environmental Biology of Fishes,	100,	
443–470.

Northfield,	T.	D.,	Barton,	B.	T.,	&	Schmitz,	O.	J.	(2017).	A	spatial	theory	for	
emergent	multiple	predator–prey	interactions	in	food	webs.	Ecology 
and Evolution,	7,	6935–6948.	https	://doi.org/10.1002/ece3.3250

Pebesma,	E.	J.	(2004).	Multivariable	geostatistics	in	S:	The	gstat	package.	
Computers & Geosciences,	 30,	 683–691.	 https	://doi.org/10.1016/j.
cageo.2004.03.012

Persson,	L.,	Amundsen,	P.	A.,	De	Roos,	A.	M.,	Klemetsen,	A.,	Knudsen,	R.,	
&	Primicerio,	R.	 (2007).	Culling	prey	promotes	predator	 recovery—
Alternative	 states	 in	 a	 whole‐lake	 experiment.	 Science,	 316(5832),	
1743–1746.	https	://doi.org/10.1126/scien	ce.1141412

Pianka,	E.	R.	(1973).	The	structure	of	lizard	communities.	Annual Review 
of Ecology and Systematics,	4(1),	53–74.

Pikitch,	E.,	Santora,	C.,	Babcock,	E.	A.,	Bakun,	A.,	Bonfil,	R.,	Conover,	D.	
O.,	…	Pope,	J.	(2004).	Ecosystem‐based	fishery	management.	Science,	
305(5682),	346–347.

Pinsky,	M.	L.,	Worm,	B.,	Fogarty,	M.	 J.,	 Sarmiento,	 J.	 L.,	&	Levin,	S.	A.	
(2013).	Marine	taxa	track	local	climate	velocities.	Science,	341(6151),	
1239–1242.

Rödder,	 D.,	 &	 Engler,	 J.	 O.	 (2011).	 Quantitative	 metrics	 of	 over‐
laps	 in	 Grinnellian	 niches:	 Advances	 and	 possible	 drawbacks.	
Global Ecology and Biogeography,	 20,	 915–927.	 https	://doi.
org/10.1111/j.1466‐8238.2011.00659.x

Saraux,	C.,	Fromentin,	J.	M.,	Bigot,	J.	L.,	Bourdeix,	J.	H.,	Morfin,	M.,	Roos,	
D.,	…	Bez,	N.	(2014).	Spatial	structure	and	distribution	of	small	pelagic	
fish	in	the	northwestern	Mediterranean	Sea.	PLoS ONE,	9,	e111211.	
https	://doi.org/10.1371/journ	al.pone.0111211

https://doi.org/10.1111/j.1466-8238.2011.00698.x
https://doi.org/10.1111/j.1466-8238.2011.00698.x
https://doi.org/10.1016/S0140-1963(02)00317-8
https://doi.org/10.1016/S0140-1963(02)00317-8
https://doi.org/10.1038/s41598-017-14984-8
https://doi.org/10.1038/s41598-017-14984-8
https://doi.org/10.1644/09-MAMM-A-392.1
https://doi.org/10.1644/09-MAMM-A-392.1
https://doi.org/10.3354/cr033271
https://doi.org/10.3354/cr033271
https://doi.org/10.1111/j.1755-263X.2012.00266.x
https://doi.org/10.1111/j.1755-263X.2012.00266.x
https://doi.org/10.1038/s41598-017-00592-z
https://doi.org/10.1038/s41598-017-00592-z
https://doi.org/10.3354/meps231279
https://doi.org/10.2193/0022-541X(2005)69%5B1346:QHOTIO%5D2.0.CO;2
https://doi.org/10.2193/0022-541X(2005)69%5B1346:QHOTIO%5D2.0.CO;2
https://doi.org/10.1016/j.tree.2010.03.002
https://doi.org/10.1016/j.tree.2010.03.002
https://doi.org/10.1093/icesjms/fsw001
https://doi.org/10.1093/plankt/fbw033
https://doi.org/10.1093/plankt/fbw033
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1126/sciadv.aar3001
https://doi.org/10.1016/j.dsr2.2012.02.008
https://doi.org/10.1016/j.dsr2.2012.02.008
https://doi.org/10.1371/journal.pone.0066025
https://doi.org/10.1371/journal.pone.0066025
https://doi.org/10.2307/1936632
https://doi.org/10.1016/j.dsr2.2013.03.017
https://doi.org/10.1016/j.dsr2.2013.03.017
https://doi.org/10.1111/j.1600-0587.2013.00035.x
https://doi.org/10.1371/journal.pone.0028554
https://doi.org/10.1111/j.1365-2486.2008.01687.x
https://doi.org/10.1111/j.0906-7590.2005.03957.x
https://doi.org/10.1002/ece3.3250
https://doi.org/10.1016/j.cageo.2004.03.012
https://doi.org/10.1016/j.cageo.2004.03.012
https://doi.org/10.1126/science.1141412
https://doi.org/10.1111/j.1466-8238.2011.00659.x
https://doi.org/10.1111/j.1466-8238.2011.00659.x
https://doi.org/10.1371/journal.pone.0111211


     |  1577CARROLL et AL.

Schoener,	 T.	W.	 (1970).	 Non‐synchronous	 spatial	 overlap	 of	 lizards	 in	
patchy	habitats.	Ecology,	51,	408–418.

Schweiger,	O.,	Heikkinen,	R.	K.,	Harpke,	A.,	Hickler,	T.,	Klotz,	S.,	Kudrna,	
O.,	 …	 Settele,	 J.	 (2012).	 Increasing	 range	mismatching	 of	 interact‐
ing	 species	under	global	 change	 is	 related	 to	 their	ecological	 char‐
acteristics.	Global Ecology and Biogeography,	21,	 88–99.	https	://doi.
org/10.1111/j.1466‐8238.2010.00607.x

Schweiger,	O.,	Settele,	J.,	Kudrna,	O.,	Klotz,	S.,	&	Kühn,	I.	(2008).	Climate	
change	can	cause	spatial	mismatch	of	trophically	interacting	species.	
Ecology,	89,	3472–3479.	https	://doi.org/10.1890/07‐1748.1

Selden,	R.	L.,	Batt,	R.	D.,	Saba,	V.	S.,	&	Pinsky,	M.	L.	(2018).	Diversity	in	
thermal	affinity	among	key	piscivores	buffers	impacts	of	ocean	warm‐
ing	on	predator–prey	interactions.	Global Change Biology,	24,	117–131.

Siddon,	E.	C.,	Kristiansen,	T.,	Mueter,	F.	J.,	Holsman,	K.	K.,	Heintz,	R.	A.,	
&	Farley,	E.	V.	(2013).	Spatial	match‐mismatch	between	juvenile	fish	
and	 prey	 provides	 a	 mechanism	 for	 recruitment	 variability	 across	
contrasting	climate	conditions	in	the	eastern	Bering	Sea.	PLoS ONE,	
8,	e84526.	https	://doi.org/10.1371/journ	al.pone.0084526

Sigler,	M.	F.,	Napp,	J.	M.,	Stabeno,	P.	J.,	Heintz,	R.	A.,	Lomas,	M.	W.,	&	
Hunt,	G.	L.	(2016).	Variation	in	annual	production	of	copepods,	eu‐
phausiids,	 and	 juvenile	walleye	 pollock	 in	 the	 southeastern	Bering	
Sea.	Deep Sea Research Part II: Topical Studies in Oceanography,	134,	
223–234.	https	://doi.org/10.1016/j.dsr2.2016.01.003

Spencer,	P.	D.	(2008).	Density‐independent	and	density‐dependent	fac‐
tors	 affecting	 temporal	 changes	 in	 spatial	 distributions	 of	 eastern	
Bering	Sea	flatfish.	Fisheries Oceanography,	17,	396–410.	https	://doi.
org/10.1111/j.1365‐2419.2008.00486.x

Spencer,	 P.	 D.,	 Holsman,	 K.	 K.,	 Zador,	 S.,	 Bond,	 N.	 A.,	 Mueter,	 F.	 J.,	
Hollowed,	A.	B.,	&	Ianelli,	J.	N.	(2016).	Modelling	spatially	dependent	
predation	mortality	 of	 eastern	Bering	 Sea	walleye	 pollock,	 and	 its	
implications	for	stock	dynamics	under	future	climate	scenarios.	ICES 
Journal of Marine Science,	73,	 1330–1342.	https	://doi.org/10.1093/
icesj	ms/fsw040

Springer,	A.	M.	(1992).	A	review:	Walleye	pollock	in	the	North	Pacific–
how	much	difference	do	they	really	make?	Fisheries Oceanography,	1,	
80–96.	https	://doi.org/10.1111/j.1365‐2419.1992.tb000	26.x

Stabeno,	P.	J.,	Bond,	N.	A.,	Kachel,	N.	B.,	Salo,	S.	A.,	&	Schumacher,	J.	
D.	(2001).	On	the	temporal	variability	of	the	physical	environment	
over	 the	 south‐eastern	 Bering	 Sea.	Fisheries Oceanography,	10(1),	
81–98.

Stabeno,	P.	 J.,	Duffy‐Anderson,	J.	T.,	Eisner,	L.	B.,	Farley,	E.	V.,	Heintz,	
R.	 A.,	 &	 Mordy,	 C.	 W.	 (2017).	 Return	 of	 warm	 conditions	 in	 the	
southeastern	 Bering	 Sea:	 Physics	 to	 fluorescence.	 PLoS ONE,	 12,	
e0185464.	https	://doi.org/10.1371/journ	al.pone.0185464

Thorson,	J.	T.	(2019).	Guidance	for	decisions	using	the	vector	autoregres‐
sive	 spatio‐temporal	 (VAST)	 package	 in	 stock,	 ecosystem,	 habitat	
and	climate	assessments.	Fisheries Research,	210,	143–161.	https	:// 
doi.org/10.1016/j.fishr	es.2018.10.013

Thorson,	J.	T.,	&	Barnett,	L.	A.	(2017).	Comparing	estimates	of	abundance	
trends	and	distribution	shifts	using	single‐	and	multispecies	models	
of	 fishes	 and	 biogenic	 habitat.	 ICES Journal of Marine Science,	 74,	
1311–1321.	https	://doi.org/10.1093/icesj	ms/fsw193

Thorson,	J.	T.,	Ianelli,	J.	N.,	&	Kotwicki,	S.	(2017).	The	relative	influence	
of	temperature	and	size‐structure	on	fish	distribution	shifts:	A	case‐
study	 on	Walleye	 pollock	 in	 the	Bering	 Sea.	Fish and Fisheries,	18,	
1073–1084.	https	://doi.org/10.1111/faf.12225	

Tylianakis,	J.	M.,	Didham,	R.	K.,	Bascompte,	J.,	&	Wardle,	D.	A.	 (2008).	
Global	 change	 and	 species	 interactions	 in	 terrestrial	 ecosystems.	
Ecology letters,	11(12),	1351–1363.

Vors,	 L.	 S.,	 &	 Boyce,	 M.	 S.	 (2009).	 Global	 declines	 of	 caribou	 and	
reindeer. Global Change Biology,	 15,	 2626–2633.	 https	://doi.
org/10.1111/j.1365‐2486.2009.01974.x

Warren,	D.	L.,	Glor,	R.	E.	&	Turelli,	M.	(2008).	Environmental	niche	equiv‐
alency	versus	conservatism:	Quantitative	approaches	to	niche	evo‐
lution. Evolution: International Journal of Organic Evolution,	 62(11),	
2868–2883.

Wilderbuer,	T.	K.,	Nichol,	D.	G.,	&	Aydin,	K.	(2010).	Arrowtooth	flounder.	
In Stock assessment and fishery evaluation report for the groundfish re-
sources of the Bering Sea and Aleutian Islands regions.	Anchorage,	AK:	
North	Pacific	Fishery	Management	Council.

Woodward,	 G.,	 &	 Hildrew,	 A.	 G.	 (2002).	 Body‐size	 determinants	 of	
niche	 overlap	 and	 intraguild	 predation	 within	 a	 complex	 food	
web. Journal of Animal Ecology,	 71,	 1063–1074.	 https	://doi.
org/10.1046/j.1365‐2656.2002.00669.x

BIOSKE TCH

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.	

How to cite this article:	Carroll	G,	Holsman	KK,	Brodie	S,	et	al.	
A	review	of	methods	for	quantifying	spatial	predator–prey	
overlap.	Global Ecol Biogeogr. 2019;28:1561–1577. https	://doi.
org/10.1111/geb.12984 

Gemma Carroll	is	an	ecologist	with	an	interest	in	understand‐
ing	 how	 predator–prey	 dynamics	 are	 shaped	 by	 changing	
environments.

https://doi.org/10.1111/j.1466-8238.2010.00607.x
https://doi.org/10.1111/j.1466-8238.2010.00607.x
https://doi.org/10.1890/07-1748.1
https://doi.org/10.1371/journal.pone.0084526
https://doi.org/10.1016/j.dsr2.2016.01.003
https://doi.org/10.1111/j.1365-2419.2008.00486.x
https://doi.org/10.1111/j.1365-2419.2008.00486.x
https://doi.org/10.1093/icesjms/fsw040
https://doi.org/10.1093/icesjms/fsw040
https://doi.org/10.1111/j.1365-2419.1992.tb00026.x
https://doi.org/10.1371/journal.pone.0185464
https://doi.org/10.1016/j.fishres.2018.10.013
https://doi.org/10.1016/j.fishres.2018.10.013
https://doi.org/10.1093/icesjms/fsw193
https://doi.org/10.1111/faf.12225
https://doi.org/10.1111/j.1365-2486.2009.01974.x
https://doi.org/10.1111/j.1365-2486.2009.01974.x
https://doi.org/10.1046/j.1365-2656.2002.00669.x
https://doi.org/10.1046/j.1365-2656.2002.00669.x
https://doi.org/10.1111/geb.12984
https://doi.org/10.1111/geb.12984

