4.1 Composite Functions (Cont'd)

\[f \circ g (x) = f(g(x)) \]

Domain of \(f \circ g \) is set of all numbers \(x \) is in the domain of \(g \) and \(g(x) \) is in domain of \(f \).

Example:

\[f(x) = \sqrt{x - 4}, \quad g(x) = \frac{6}{x - 3} \]

\[f \circ g (4) = f(g(4)) = f(\frac{6}{4-3}) = f(2) = \sqrt{2} - 4 = \sqrt{2} \]

\[f \circ g (2) = f(g(2)) = f(\frac{6}{2-3}) = f(-6) = \sqrt{-6} - 4 \]

\[= \sqrt{-10} \quad \text{(No Real Solution)} \]

Find

Domain of \(f \circ g \) = Domain of \(g \) = \(\{ x \mid x \neq 3 \} \)

\(g(x) \) is in domain of \(f \): \(x - 4 \geq 0 \)

\[x \geq 4 \]
So, \(g(x) = \frac{6}{x-3} \geq 4 \)

\[
\frac{6}{x-3} - 4 \frac{(x-3)}{1(x-3)} \geq 0
\]

\[
\frac{6 - 4(x-3)}{x-3} \geq 0
\]

\[
\frac{6 - 4x + 12}{x-3} \geq 0
\]

\[
\frac{2 - 2}{x-3} - 4x + 18 \geq 0
\]

\[
\frac{-4x + 18}{x-3} \geq 0
\]

\[
-4x + 18 = 0
\]

\[
\frac{-4x}{4} + \frac{18}{4} = x = \frac{9}{2}
\]

\[
x - 3 = 0 \Rightarrow x = 3
\]

Domain of \(fog \):

\[
(3, \frac{9}{2}]
\]

Ex. For \(fog \):

\[
f(x) = \sqrt{x-4} \quad g(x) = \frac{6}{x-3}
\]

Find Domain of \(gof \)
Domain of \(g \circ f \): \(x \in \text{Domain of } f \)

\(g \circ f(x) = g(f(x)) \) and \(f(x) \in \text{Domain of } g \)

Domain of \(f = \{ x \mid x \geq 4 \} = [4, \infty) \)

\(x - 4 \geq 0 \)

\(x \geq 4 \)

Need \(f(x) \) in domain of \(g \)

\(f(x) \neq 3 \)

\(\sqrt{x - 4} \neq 3 \)

Squaring:

\(x - 4 = 9 \)

\(x = 13 \)

Domain of \(g \circ f = [4, 13) \cup (13, \infty) \)

\(g \circ f(8) = g(f(8)) = g(2) = \frac{6}{\sqrt{2} - 3} = \frac{6}{-1} = -6 \)
\[f(x) = \sqrt{x - 4} \Rightarrow f(\) = \sqrt{(\) - 4} \]

\[f \circ f(20) = f(f(20)) = f(4) = \sqrt{4 - 4} = 0 \]

\[f \circ f(x) = f(f(x)) = f(\sqrt{x - 4}) = \sqrt{(\sqrt{x - 4} - 4} \]

Note: in general, \(f \circ g \neq g \circ f \)

\[f \circ g(x) = f(g(x)) \text{ vs } g \circ f(x) = g(f(x)) \]

Sometimes \(f \circ g = g \circ f \).

\[f(x) = 2x - 8 \quad g(x) = \frac{1}{2}x + 4 \]

\[f \circ g(x) = f(g(x)) = f\left(\frac{1}{2}x + 4\right) = 2\left(\frac{1}{2}x + 4\right) - 8 = x + 8 - 8 = x \]

\[g \circ f(x) = g(f(x)) = g(2x - 8) = \frac{1}{2}(2x - 8) + 4 = x - 4 + 4 = x \]

SAME.
4.2 ONE-TO-ONE FUNCTIONS: INVERSE FUNCS.

Def: A function f is one-to-one if any two different inputs correspond to different outputs.

I.e., if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>

\{ ONE-TO-ONE \}

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

\{ NOT ONE-TO-ONE \}

$x_1 = 2, x_2 = 4$

$2 \neq 4$ but $f(2) = f(4)$

$s = 5$

Think (Horizontal Line Test): If every horizontal line crosses the graph of $f(x)$ at most once, then f is one-to-one.

\[
\begin{align*}
 y &= mx + b \\
 f(x) &= mx + b
\end{align*}
\]

\((0, b) \)

ONE-TO-ONE
\[y = x^2 \]

NOT ONE-TO-ONE.

\[f(x) = x^2 \]
\[f(s) = (s)^2 = 2s \]

AND
\[f(-s) = (-s)^2 = 2s \]

NOTE: \(f(x) = x^2 \) \(x \leq 0 \)

THIS IF \(f \) IS INCREASING ON \(I \) THEN \(f \) IS ONE-TO-ONE ON \(I \)

SAME: IF \(f \) IS DECREASING ON \(I \) THEN \(f \) IS 1 TO 1
Definition: Suppose f is one-to-one. Then, corresponding to each $x \in \text{domain of } f$ there is exactly one y in range. So corresponding to each y in range of f is exactly one x. This correspondence from range of f to domain of f is a function. It is called the inverse function of f, denoted $f^{-1}(x)$.

Table 1

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
</tbody>
</table>

$\text{Domain of } f^{-1} = \text{Range of } f$ / $\text{Range of } f^{-1} = \text{Domain of } f$
Recall: \(f(x) = 2x - 8 \) \(g(x) = \frac{1}{2}x + 4 \)

\(f(5) = 2(5) - 8 = 2 \) \(g(2) = \frac{1}{2}(2) + 4 = 5 \)

\(g \circ f(x) = x \) (Last Section)

\(\text{And } f \circ g(x) = x \) \(\text{Claim } g^{-1}(x) = f^{-1}(x) \)

\(\text{Note! } f \circ f^{-1}(x) = x \) for all \(x \in \text{Domain of } f \)

\(\text{And } f \circ f^{-1}(x) = x \) for all \(x \in \text{Domain of } f \)

Process to find \(f^{-1}(x) \):

1. \(y = f(x) \)
2. Interchange values for \(x \) and \(y \) \(x \leftrightarrow y \)
3. Solve new equation for \(y \) \(\text{[New formula for } y \text{ in terms of } x \text{] } \)
4. This formula is \(f^{-1}(x) \)

\(f(x) = 2x - 8 \) \(y = 2x - 8 \)

\(x + 8 = 2y \)

\(\frac{x + 8}{2} = y \)

Switch: \(x = 2(y) - 8 \) \(f^{-1}(x) = \frac{1}{2}x + 4 = y \)
Example: If \(g(x) = \frac{x+3}{2x-5} \), find \(g^{-1}(x) \)

\[
y = \frac{x+3}{2x-5}
\]

1) Switch \(x \leftrightarrow y \)

\[
(x) = \frac{(y)+3}{2(y)-5}
\]

2) Solve for \(y \)

\[
(2y-5)x = y + 3
\]

\[
2yx - 5x = y + 3
\]

\[
y = \frac{5x+3}{2x-1}
\]

\(f(x) = \frac{5x+3}{2x-1} \)

Example: \(y = x^2 \) \(x \leq 0 \)

\[
x = y^2 \rightarrow \sqrt[2]{x} = y
\]

Two choices.