4.4 Logarithmic Functions

Note that the function \(f(x) = a^x \) is one-to-one, so it an an inverse function. Recall the procedure for finding \(f^{-1}(x) \):

Definition: the **logarithmic function to the base** \(a \), where \(a > 0 \) and \(a \neq 1 \), is denoted by \(y = \log_a(x) \), represents the exponent to which \(a \) must be raised to yield \(x \).

Key relationship: \[y = \log_a(x) \iff x = a^y \]

Note: The domain of the logarithmic function \(y = \log_a(x) \) is \(x > 0 \). The range is \((-\infty, \infty) \).

examples (of key relationship):

examples: Find the exact value of
\(a) \log_2(64) \quad b) \log_5\left(\frac{1}{25}\right) \)

The graph of the logarithmic function \(f(x) = \log_a(x) \) is the reflection of the graph of the exponential function \(y = a^x \) in the line \(y = x \).

Properties of the logarithmic function \(f(x) = \log_a(x) \)

1. The domain is set of all positive real numbers: \((0, \infty)\). The range is the set of all real numbers: \((-\infty, \infty)\).
2. The \(x \)-intercept is \((1, 0)\); there is no \(y \)-intercept.
3. The \(y \)-axis \((x = 0)\) is a vertical asymptote.
4. A logarithmic function is decreasing if \(0 < a < 1 \) and increasing if \(a > 1 \).
5. The graph of \(f \) contains the points \((1, 0), (a, 1), \) and \(\left(\frac{1}{a}, -1\right) \).
6. The graph is smooth and continuous, with no corners or gaps.

Notation:
the natural log of \(x = \log_e(x) = \ln(x) \)
the common log of \(x = \log_{10}(x) = \log(x) \)

Solving equations with logarithms (using a calculator)

examples:
\(a) \log_2(3x + 2) = 5 \quad b) \log_x(64) = 3 \)

examples:
\(a) 10^{x+1} = 342 \quad b) e^{2t-3} = 200 \)