4.2 One-to-One Functions; Inverse Functions

Definition: A function \(f \) is one-to-one if any two different inputs in the domain correspond to two different outputs in the range. That is, if \(x_1 \neq x_2 \), then \(f(x_1) \neq f(x_2) \).

<table>
<thead>
<tr>
<th>input</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>input</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c|c|c|c}
 x & 1 & 3 & 5 & 7 \\
 y & 8 & 8 & 8 & 8 \\
\end{array}
\]

\{ (1, 5), (2, 8), (3, 6), (4, 9) \}

Theorem (Horizontal line test): If every horizontal line intersects the graph of a function \(f \) in at most one point, then \(f \) is one-to-one.

Theorem: A function that is increasing on an interval \(I \) is a one-to-one function on \(I \). A function that is decreasing on an interval \(I \) is a one-to-one function on \(I \).

Definition: Suppose that \(f \) is a one-to-one function. Then corresponding to each \(x \) in the domain of \(f \), there is exactly one \(y \) in the range; and corresponding to each \(y \) in the range of \(f \), there is exactly one \(x \) in the domain. The correspondence from the range of \(f \) to the domain of \(f \) is called the inverse function of \(f \). The symbol \(f^{-1} \) is used to denote the inverse of \(f \).

Examples: use one-to-one functions above.

Notes: 1) Domain of \(f^{-1} = \) Range of \(f \) Range of \(f^{-1} = \) Domain of \(f \)

2) \(f[f^{-1}(x)] = x \) for each \(x \) in the domain of \(f^{-1} \)
 \(f^{-1}[f(x)] = x \) for each \(x \) in the domain of \(f \)

Theorem: The graph of a one-to-one function of \(f \) and the graph of its inverse \(f^{-1} \) are symmetric with respect to the line \(y = x \).

Given a function \(f \), to find the inverse function \(f^{-1} \) (if it exists):

0) Write \(y = f(x) \)
1) Interchange values for \(y \) and \(x \): \(x \leftrightarrow y \)
2) Solve new equation for \(y \): \(y = [\) new formula in terms of \(x \) \(] = f^{-1}(x) \).
3) Check the result by showing \(f[f^{-1}(x)] = x \) and \(f^{-1}[f(x)] = x \)

Examples: \(f(x) = 2x - 6 \) \(g(x) = \frac{x+3}{2x-5} \) \(h(x) = x^2 \) \(x \geq 0 \)