2.4 Introduction to Paths and Curves

Definition: A path \(C \) in \(\mathbb{R}^n \) is a map \(\mathbf{c} : [a, b] \in \mathbb{R} \to \mathbb{R}^n \)

if \(n = 2 \), the path \(\mathbf{c}(t) = (x(t), y(t)) \) is a planar curve.

if \(n = 3 \), the path \(\mathbf{c}(t) = (x(t), y(t), z(t)) \) is a space curve.

\(\mathbf{c}(a) \) is the initial point of the curve, and \(\mathbf{c}(b) \) is the terminal point.

examples: 1) \(\mathbf{c}(t) = (3 + 2t, 2 - 3t, 5 + t) \) is a line in \(\mathbb{R}^3 \).

2) \(\mathbf{c}(t) = (cos \ t, \ sin \ t) \) is the unit circle in \(\mathbb{R}^2 \).

3) \(\mathbf{c}(t) = (t - \ sin \ t, \ 1 - \ cos \ t) \) is a cycloid in \(\mathbb{R}^2 \).

Definition: If \(\mathbf{c}(t) \) is a path, and it is differentiable, then we call \(\mathbf{c} \) a differentiable path. The velocity of \(\mathbf{c} \) at time \(t \) is defined by \(\mathbf{c}'(t) = \lim_{h \to 0} \frac{\mathbf{c}(t+h)-\mathbf{c}(t)}{h} \). It is customary to draw the vector \(\mathbf{c}'(t) \) with its initial point (tail) at \(\mathbf{c}(t) \). The speed of the path \(\mathbf{c}(t) \) is \(s = \|\mathbf{c}'(t)\| \). If \(\mathbf{c}(t) = (x(t), y(t), z(t)) \in \mathbb{R}^3 \), then \(\mathbf{c}'(t) = (x'(t), y'(t), z'(t)) \).

Notes: 1) The vector \(\mathbf{c}'(t) \) is a vector tangent to the curve \(C \) at the point \(\mathbf{c}(t) \).

2) The derivative matrix \(\mathbf{Dc}(t) \) is an \(n \times 1 \) column vector with entries \(x'_1(t), x'_2(t), \ldots, x'_n(t) \)

examples: Compute the tangent vector to:

1) \(\mathbf{c}(t) = \left(t^2, t^3 - 1, t^4 - 1 \right) \)

2) \(\mathbf{c}(t) = (cos \ t, \ sin \ t, \ t) \) [this is a helix]

Definition: If \(\mathbf{c}(t) \) is a path, and if \(\mathbf{c}'(t_0) \neq 0 \), the equation of its tangent line at the point \(\mathbf{c}(t_0) \) is \(\mathbf{l}(t) = \mathbf{c}(t_0) + (t - t_0)\mathbf{c}'(t_0) \). If \(C \) is the curve traced out by \(\mathbf{c} \), then the line traced out by \(\mathbf{l} \) is the tangent line to the curve \(C \) at \(\mathbf{c}(t_0) \).

example: Find the equation of the tangent line to the curve given by \(\mathbf{c}(t) = (e^t, cos(\pi t), ln \ t) \) at the point when \(t = 1 \). Find the point on the tangent line when \(t = 4 \).