1.4 Cylindrical and Spherical Coordinates

Recall: Polar coordinates (in \mathbb{R}^2)

\[x = r \cos \theta \quad y = r \sin \theta \quad r^2 = x^2 + y^2 \quad \tan \theta = \frac{y}{x} \]

Cylindrical Coordinates

Definition: The cylindrical coordinates (r, θ, z) of a point (x, y, z) are defined by

\[x = r \cos \theta \quad y = r \sin \theta \quad z = z \]

Note that (once again)

\[r^2 = x^2 + y^2 \quad \tan \theta = \frac{y}{x} \]

examples: cylindrical \rightarrow rectangular
rectangular \rightarrow cylindrical

Describe surfaces with 'cylindrical' equations: $r = k : \quad \theta = k : \quad z = r$

Spherical Coordinates

The length of a vector $x \hat{i} + y \hat{j} + z \hat{k}$ in \mathbb{R}^3 is $\rho = \sqrt{x^2 + y^2 + z^2}$, not a coordinate using cylindrical coordinates.

Definition: The spherical coordinates of a point (x, y, z) in space are triples of form (ρ, θ, ϕ), as defined by:

\[x = r \cos \theta = (\rho \sin \phi) \cos \theta \quad y = r \sin \theta = (\rho \sin \phi) \sin \theta \quad z = \rho \cos \phi \]

where \[\rho = \sqrt{x^2 + y^2 + z^2} \geq 0 \quad 0 \leq \theta < 2\pi \quad 0 \leq \phi \leq \pi \]

In this coordinate system: $\rho =$ distance from origin, $\theta =$ angle (on xy-plane) w/ the positive x-axis, and $\phi =$ angle with positive z-axis.

conversions: spherical \rightarrow rectangular
rectangular \rightarrow spherical

Describe surfaces with 'spherical' equations: $\rho = k$ (sphere) : $\phi = k$ (cone)