14.8 Lagrange Multipliers

Note that on a contour map (i.e. the graphs of level curves) of a surface \(z = f(x, y) \), a path \((g(x, y) = k)\) on the map achieves both maximum and minimum values (of the function \(f \)) when the path is tangent to a level curve. Since the tangent lines to each curve are the same, so are the normal directions; so we have normal vectors to each curve parallel. Hence

\[
\nabla f(x, y) = \lambda \cdot \nabla g(x, y)
\]

Method of Lagrange multipliers: To find the maximum and minimum values of a function \(f(x, y, z) \) subject to the constraint \(g(x, y, z) = k \) [here we assume that extreme values of \(f \) exist and \(\nabla g \neq 0 \) on the surface]:

a. Find all values \(x, y, z \) and \(\lambda \) such that

\[
\nabla f(x, y, z) = \lambda \cdot \nabla g(x, y, z) \quad \text{and} \quad g(x, y, z) = k
\]

b. Evaluate \(f \) at all of the points \((x, y, z)\) that result from step a. The largest of those values is the maximum value of \(f \) and the smallest is the minimum value of \(f \).

Example (14.8.5): Find the maximum and minimum values of \(f(x, y) = y^2 - x^2 \) subject to the constraint \(\frac{1}{4} x^2 + y^2 = 1 \).

Example (14.8.9): Find the max/min values of \(f(x, y, z) = xyz \) subject to the constraint \(g(x, y, z) = x^2 + 2y^2 + 3z^2 = 6 \).

Example (14.8.38/14.7.48) Use Lagrange multipliers to find the dimensions of the rectangular box with largest volume if the total surface area is 64 cm².

Lagrange multipliers with two constraints

Maximize (or minimize): \(f(x, y, z) \) subject to: \(g(x, y, z) = k \) and \(h(x, y, z) = c \)

Solve: \(\nabla f(x, y, z) = \lambda \nabla g(x, y, z) + \mu \nabla h(x, y, z) \). This yields a system of 5 equations, with 5 unknowns \((x, y, z, \lambda, \mu)\).

Example: Find the extreme values of \(f(x, y, z) = xy + yz \) subject to \(g(x, y, z) = xy = 1 \) and \(h(x, y, z) = y^2 + z^2 = 2 \).