14.7 Maximum; Minimum Values

Recall: \(y = f(x) \)

Critical Point: \(f'(x) = 0 \) (or D.E.E.)

Consider \(z = f(x, y) \)

Define

Local Max at \((a, b)\): \(f(a, b) \geq f(x, y) \) if \((x, y)\) is near \((a, b)\)

Local Min at \((a, b)\): \(f(a, b) \leq f(x, y) \) for \((x, y)\) near \((a, b)\)

Absolute Extremes: Largest/Smallest Function Values in Domain.

This if \(f \) has a local extreme at \((a, b)\) and if \(f_x(a, b) \) or \(f_y(a, b) \) exist, then \(f_x(a, b) = f_y(a, b) = 0 \).
Definition: Point \((a, b)\) is a **critical point** for \(f\) if \(f_x(a, b) = 0\) and \(f_y(a, b) = 0\) (or if one (or both) does).

Example: Find critical point(s) for:

a) \(f(x, y) = x^2 + y^2 - 6x + 10y + 45\)

\[
\begin{align*}
f_x(x, y) &= 2x - 6 = 0 \\
f_y(x, y) &= 2y - 10 = 0
\end{align*}
\]

At \((3, 5)\)

Note: \(f_{xx}(x, y) = 2x - 6 + \frac{9}{y} + y^2 - 10y + 25 + 45 = 0\)

\[z = f(x, y) = (x - 3)^2 + (y - 5)^2 + 11\]

b) \(f(x, y) = x^3 y + 12x^2 - 8y\)

\[
\begin{align*}
f_x(x, y) &= 3x^2 y + 24x = 0 \\
f_y(x, y) &= x^3 - 8 = 0 \rightarrow x = 2
\end{align*}
\]

Critical point \((2, -4)\)
SECOND DERIVATIVE TEST: Suppose second partial der. f_{xx}, f_{yy} are continuous on a disk w/ center (a,b), (a,b) CRITICAL PT or $f(x,y)$. Let $D = D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - [f_{xy}(a,b)]^2$, THEN:

a) if $D > 0$ and $f_{xx}(a,b) > 0$ then $f(a,b)$ is a local minimum.

b) if $D > 0$ and $f_{xx}(a,b) < 0$ then $f(a,b)$ is local max.

c) if $D < 0$ then $f(a,b)$ is neither a local max nor a local min (SADDLE POINT).

Ex. Find & classify critical pt for:

$f(x,y) = 2x^3 + xy^2 + 8x^2 + y^2$

$f_x(x,y) = 6x^2 + y^2 + 10x = 0$

$f_y(x,y) = 2xy + 2y = 0$

$2y(x+1) = 0 \rightarrow y = 0$ \(\text{(A)}\)

or

$y = -1$ \(\text{(B)}\)$
1F (A) \[6x^2 + (0)^2 + 10x = 0 \]
\[6x^2 + 10x = 0 \]
\[2x(3x + 5) = 0 \rightarrow x = 0, x = -\frac{5}{3} \]

(CRITICAL PTS)

\[(0,0) \text{ j } \left(-\frac{5}{3},0\right) \]

1F (B) \[6(-1)^2 + y^2 + 10(-1) = 0 \]
\[y^2 - 4 = 0 \rightarrow y = \pm 2 \]

\[(-1,2) \text{ j } (-1,-2) \]

(CRITICAL PTS)

\[f_{xx} = 12x + 10 \]

\[f_{yy} = 2x + 2 \]

\[f_{xy} = 2y = f_{yx} \]

\[
\begin{array}{c|ccc}
(0,0) & (-\frac{5}{3},0) & (-1,\pm 2) \\
\hline
f_{xx}(0,0) & 10 & -10 & -2 \\
D & 20 & 0 & 0 & -16
\end{array}
\]

\[f(0,0) = 0 \text{ (LOCAL MIN)} \]

\[f\left(-\frac{5}{3},0\right) = -\frac{250}{27} + \frac{125}{9} \text{ (LOCAL MAX)} \]

\[f(-1\pm 2) \text{ SADDLE POINTS} \quad (f_{xy})^2 \]

\[\text{NOTE: } D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - f_{xy}^2 \]
THEOREM: If \(f \) is continuous on a closed, bounded set \(D \) in \(\mathbb{R}^2 \), then \(f \) attains both an absolute max and absolute min. value on \(D \).

Strategy:
1. Find values of \(f \) at critical points in \(D \).
2. Find extreme values of \(f \) on the boundary of \(D \) (often, single variable problems).
3. Largest is \(\max \); smallest is \(\min \).

\[
f(x,y) = 2x + 5y \quad \text{on} \quad x^2 + y^2 \leq 1
\]

\[
f = 2\cos t + 5\sin t
\]

Boundary: \(x^2 + y^2 = 1 \)
\[x = \cos t, \quad 0 \leq t \leq 2\pi\]
\[y = \sin t\]

\[f(x,y) = 3 + xy - x - 2y \quad \text{on} \quad D \text{: Triangle w/ vertices at } (1,0); (5,0); (1,4)\]

\[\text{Min.}\]
\[\text{Max}\]
\[f_x = y - 1 = 0 \]
\[f_y = x - 2 = 0 \quad \text{\textcircled{2,1}} \]
\[f(2,1) = 1 \]

1. \[f(x,0) = 3 - x \quad \frac{df}{dx} = -1 \neq 0 \]
\[f(5,0) = -2 \]

2. \[f(1,y) = 3 + y - 1 - 2y = 2 - y \]
\[f(1,0) = 2 \]
\[f(1,4) = -2 \]

3. \[f(x,5-x) = 3 + x(5-x) - x - 2(5-x) \]
\[= 3 + 5x - x^2 - x - 10 + 2x \]
\[= -x^2 + 6x - 7 \]
\[-2x + 6 = 0 \quad \text{\textcircled{3,2}} \]
\[x = 3 \]
\[f(3,2) = 2 \]

\[f_{\text{max}} = 2 \]
\[f_{\text{min}} = -2 \]