1. Given: \(\mathbf{u} = \langle 8, -2, 6 \rangle, \ \mathbf{v} = \langle 3, -4, -1 \rangle, \ \mathbf{w} = \langle 1, 3, 1 \rangle \)

Find:

a. \(\mathbf{u} \cdot (2\mathbf{v} - 5\mathbf{w}) \)

b. a unit vector in the opposite direction of \(\mathbf{w} \).

c. \(\mathbf{v} \times \mathbf{w} \)

d. the angle (in radians) formed by \(\mathbf{u} \) and \(\mathbf{v} \)

e. \(\text{proj}_\mathbf{w}(\mathbf{u}) \) [the vector projection of \(\mathbf{u} \) onto \(\mathbf{w} \)]

2. a. Find the parametric equations of the line \(\mathbb{L} \) passing through the points \((4, -1, 5) \) and \((6, 2, 1) \).

b. Find the point at which the line \(\mathbb{L} \) passes through the plane whose equation is \(x + 2y + 3z = 5 \).

c. The line \(\mathbb{L} \) intersects the line given by the vector equation \(\mathbf{r} = \langle 5, -4, 3 \rangle + s \langle 1, 2, -2 \rangle \).

Find the point of intersection.

3. Given the points \((5, 0, 1), (0, -1, 2), \) and \((8, -1, 1) \):

a. Find the equation of the plane that passes through these points. Write your answer in the form \(ax + by + cz = d \).

b. Find the area of the triangle with these three vertices.

4. Evaluate: \(\int_0^2 \left(e^{3t} \mathbf{i} + t e^t \mathbf{j} - t e^t \mathbf{k} \right) dt \)

5. Given the vector function \(\mathbf{r}(t) = \langle 2t^3, 3t^2, -3t \rangle \)

a. Find the length of the curve from \(t = 0 \) to \(t = 2 \).

b. Find the unit tangent vector \(\mathbf{T} \) and the unit normal vector \(\mathbf{N} \) at the point \((2, 3, -3) \).

6. Given \(f(x, y) = x^3 \tan^{-1} y + \ln(4x + y^2) \), find:

a. \(f_x(x, y) \)

b. \(f_y(x, y) \)

c. \(f_{yx}(x, y) \)

d. the equation of the tangent plane to the graph of \(f(x, y) \) at the point \((2, 0, f(2, 0)) \).
1. a. 12
 b. \(- \frac{1}{\sqrt{11}}, - \frac{3}{\sqrt{11}}, - \frac{1}{\sqrt{11}}\)
 c. \(-1, -4, 13\)
 d. \(\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}\)
 e. \(\frac{8}{11}, \frac{24}{11}, \frac{8}{11}\)

2. a. \(x = 4 + 2t\)
 b. \((10, 8, -7)\)
 c. \((14, 14, -15)\)
 [can also 'start' with other point]

3. a. \(x + 3y + 8z = 13\)
 b. Area = \(\frac{|AB \times AC|}{2} = \frac{\sqrt{74}}{2}\)

4. \(<\frac{e^{\frac{6}{3}} - 1}{3}, e^2 + 1, \frac{1-e^4}{2}>\)

5. a. \(\int_0^2 \sqrt{(6t^2)^2 + (6t)^2 + (-3)^2} \, dt = \int_0^2 \sqrt{36t^4 + 36t^2 + 9} \, dt\)
 \(\int_0^2 (6t^2 + 3)^2 \, dt = \int_0^2 (6t^2 + 3) \, dt = \left(2t^3 + 3t\right)_0^2 = 22\)
 b. \(\mathbf{T} = <\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}>\)
 \(\mathbf{N} = <\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}>\)

6. a. \(f_x(x, y) = 3x^2 \tan^{-1} y + \frac{4}{4x+y^2}\)
 b. \(f_{yy}(x, y) = \frac{-2x^3 y}{(1+y^2)^2} + \frac{8x-2y^2}{(4x+y^2)^2}\)
 c. \(f_{yx}(x, y) = \frac{3x^2}{(1+y^2)^2} - \frac{8y}{(4x+y^2)^2}\)
 d. \(x + 16y - 2z = 2 - 2\ln 8\)