1. Given: \(\mathbf{u} = <3, 5, -2>, \mathbf{v} = <-1, 4, 1>, \mathbf{w} = <2, -2, 1> \)

Find:

a. \(\mathbf{u} \cdot (3\mathbf{v} - 2\mathbf{w}) \)

b. \(|\mathbf{u} + \mathbf{v}| \)

c. \(\mathbf{w} \times \mathbf{u} \)

d. the angle (in radians) formed by \(\mathbf{v} \) and \(\mathbf{w} \).

e. A nonzero vector that is parallel to the \(yz \)-plane, and orthogonal to \(\mathbf{w} \).

2. a. Find the vector equation of the line passing through the points \((3, 7, 2)\) and \((-1, 8, 5)\).

b. Find the parametric equations of the line passing through the point \((2, 5, -1)\) that is parallel to the line whose vector equation is \(\mathbf{r}(t) = <5 - 2t, -2 + 3t, 7 + 5t> \).

3. Given the points \((0, 3, 2)\), \((1, 4, 5)\), and \((2, 2, 3)\):

a. Find the equation of the plane that passes through these points. Write your answer in the form \(ax + by + cz = d \).

b. Find the area of the triangle with these three vertices.

4. Given the curve defined by the vector function \(\mathbf{r}(t) = <3t^2, \sin t - t \cos t, \cos t + t \sin t> \), find:

a. \(\mathbf{r}'(t) \)

b. The length of the curve between \(t = 0 \) and \(t = \frac{\pi}{2} \).

c. \(\mathbf{T}(\frac{\pi}{3}) \).

5. Evaluate: \(\int_0^1 \left(\frac{t}{1+t^2} \mathbf{i} + \frac{2}{1+t^2} \mathbf{j} - \frac{4t}{1+t^2} \mathbf{k} \right) dt \)

6. Given \(f(x, y) = \ln(x^2 - 4y) + x^2y \):

a. Sketch the domain of \(f(x, y) \).

b. Find \(f_x(x, y) \), \(f_{xy}(x, y) \) and \(f_{yy}(x, y) \)

7. Given \(f(x, y) = \ln(x^2 - 4y) + x^2y \) (this is the same function as in problem 6):

a. Find the equation of the tangent plane to the curve \(z = f(x, y) \) at the point \((3, 2, f(3, 2))\). Write your answer in the form \(ax + by + cz = d \).

b. If \((x, y)\) changes from \((3, 2)\) to \((3.2, 1.9)\), estimate the value of \(\Delta z \) by finding the total differential \(dz \).
1. a. 57
 b. \(\sqrt{86} \)
 c. \(< -1, 7, 16 > \)
 d. \(\frac{3\pi}{4} \)
 e. any vector of form \(< 0, b, 2b > \)

2. a. \(\mathbf{r}(t) = < 3 - 4t, 7 + t, 2 + 3t > \)
 b. \(x = 2 - 2t \) \(y = 5 + 3t \) \(z = -1 + 5t \)
 or \(\mathbf{r}(t) = < -1 - 4t, 8 + t, 5 + 3t > \)

3. a. \(4x + 5y - 3z = 9 \)
 b. \(\text{Area} = \frac{|AB \times AC|}{2} = \frac{\sqrt{50}}{2} \)

4. a. \(< 6t, t \sin t, t \cos t > \)
 b. \(\frac{\pi^2 \sqrt{37}}{8} \)
 c. \(< \frac{6}{\sqrt{37}}, \frac{\sqrt{3}}{2\sqrt{37}}, \frac{1}{2\sqrt{37}} > \)

5. \((1 - \ln 2)\mathbf{i} + \left(\frac{\pi}{2} \right) \mathbf{j} - (2 \ln 2) \mathbf{k} \)

6. a. Domain is region below the curve \(y = \frac{x^2}{4} \)
 b. \(f_x(x, y) = \frac{2x}{x^2-4y} + 2xy \)
 \(f_{xy}(x, y) = \frac{8x}{(x^2-4y)^2} + 2x \)
 \(f_{yy}(x, y) = \frac{-16}{(x^2-4y)^2} \)

7. a. \(18x + 5y - z = 46 \)
 b. \(dz = 3.1 \)