13.3 Arc Length and Curvature

Recall: Arclength \(L = \int ds = \int_{\text{start}}^{\text{end}} \sqrt{(dx)^2 + (dy)^2} = \ldots \)

Arclength: \(L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \, dt = \int_{a}^{b} |r'(t)| \, dt \)

equation: Find the length of curve given by \(r(t) = \langle t^2, 2t, \ln t \rangle, \ 1 \leq t \leq e \)

Note that a curve \(C \) could have multiple parametric representations: for example, \(<t, t^2> \) for \(t > 0 \), \(<t^2, t^4> \) for \(t \neq 0 \), \(<e^t, e^{2t}> \) yield same curve.

Want new parameter, independent of \(t \); parametrize a curve w.r.t. arc length \(s \).

Arclength function \(s(t) = \int_{a}^{t} |r'(u)| \, du = \int_{a}^{t} \sqrt{(f')^2 + (g')^2 + (h')^2} \, du \)

Note that by F.T.C., \(s'(t) = |r'(t)| \)

Once we find this integral, we solve for \(t \) in terms of \(s \) (if possible):
\[r(t) = r(t(s)) \]

equation: \(r(t) = \langle 1 + 2t, 3 + t, -5t \rangle, \ t \geq 0 \)

Definition: The curvature of a (smooth) curve is \(\kappa = \left| \frac{dT}{ds} \right| \); this measures the rate of change of the unit tangent vector \(T \) with respect to \(s \). Note that the magnitude of \(T \) doesn't change just the direction, so \(\kappa \) is independent of \(t \).

Easy calculation for curvature: \(\kappa = \left| \frac{dT}{ds} \right| = \left| \frac{dT}{dt} \right| \frac{dt}{ds} = \left| \frac{T'(t)}{|r'(t)|} \right| \)

equation: Find the curvature of the circle: \(x = a \cos t \)
\[y = a \sin t \]
\[\kappa = \frac{1}{a} \]
13.3 Arc Length and Curvature (continued)

example: Given \(\mathbf{r}(t) = \langle t, t^2, t^3 \rangle \), find \(\kappa \).

Theorem: If a curve \(C \) in \(\mathbb{R}^2 \) is given by \(y = f(x) \) [so \(\mathbf{r} = \langle x, f(x) \rangle \)],

\[
\kappa = \frac{|f''(x)|}{\left(1+\left[f'(x)\right]^2\right)^{3/2}}
\]

Normal and Binormal vectors

Since \(|T(t)| = 1 \), \(T'(t) \) is orthogonal to \(T(t) \)

Definition: the unit normal vector \(N(t) = \frac{T'(t)}{|T'(t)|} \).

The (unit) binormal vector is \(B(t) = T(t) \times N(t) \)

The normal plane (for a curve \(C \)) at a point \(P \) is the plane formed by \(B \) and \(N \). The normal vector to the normal plane is therefore \(T \).

The osculating plane (for a curve \(C \)) at a point \(P \) is the plane formed by \(T \) and \(N \). It is the plane that comes closest to containing the part of the curve \(C \) near the point \(P \).

The osculating circle (or the circle of curvature) is the circle that lies in the osculating plane that best matches the curvature of \(C \) at \(P \); the osculating circle shares the same tangent, normal and curvature as the curve \(C \) at \(P \). Note that the radius of the osculating circle is \(\rho = \frac{1}{\kappa} \).

Note that \(T, N, \) and \(B \) form a 'moving' coordinate system for an object 'traveling' along the curve \(C \). The tangent vector \(T \) points in the direction of travel, the normal vector \(N \) points in the direction of any 'turns', and the binormal vector \(B \) is cross product of \(T \) and \(N \).