12.6 (cont’d)

QUADRIC SURFACES: Eqs’ns of form

\[Ax^2 + By^2 + Cz^2 + Dx + Ey + Fz + G = 0 \]

\[\Rightarrow \]

\[x^2 + y^2 + z^2 = 25 \leftarrow \text{SPHERE} \]

RECALL: Conic sections in \(\mathbb{R}^2 \)

Equations of form

\[Ax^2 + By^2 + Cx + Dy + Ey + F = 0 \]

Graphs are possible intersections of a plane with a cone.

Circle:

\[x^2 + y^2 = r^2 \] (Center at \((0,0)\))

\[(x-h)^2 + (y-k)^2 = r^2 \] (Center at \((h,k)\))
PARABOLA: \(y = x^2 \) (vertex at \((0,0)\))

ONE SQUARE TERM.

\(x = y^2 \) (vertex at \((h,k)\))

\((y-k) = (x-h)^2\)

or \((x-h) = (y-k)^2\)

ELLIPSE

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

Center at \((0,0)\)

Vertices at \((\pm a, 0)\) and \((0, \pm b)\)

Center at \((h, k)\)

\[\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \]

Both squares are in equation, but coeffs not equal (both positive)

\[3x^2 + 7y^2 + 6x - 13 = 0 \leftarrow \text{ellipse} \]
Hyperbola

\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad \text{Center at} \ (0, 0)
\]

\[
y = \pm \frac{b}{a} x
\]

\[
\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1
\]

\[
(x-h)^2 \quad (y-k)^2 = 1 \quad \text{Center at} \ (h, k)
\]

Both square terms in eq'n, but opposite signs. (For hyperbolas which open up/down or left/right.)

\[
\begin{align*}
0 &= 6x^2 - y^2 + 8y = 12 \quad \text{Hyperbola}
\end{align*}
\]

Note:

\[
xy = k
\]

\[
y = \frac{k}{x}
\]
GRAPHS OF QUADRATIC SURFACES.

Identify by considering "traces" on surfaces: set one variable = constant.

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad \text{< ALL THREE SQUARES, ALL SAME SIGN.>}
\]

Ellipsoid.

\[
\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2} \quad \text{NO } z^2 \text{ TERM.}
\]

\[x^2, y^2 \text{ SAME SIGN W/Coeff.}\]

X-traces \((x=k)\) are parabolas

Y-traces \((y=k)\) — —

Z-traces \((z=k)\) ellipses.

Elliptic \quad Paraboloid
Hyperbolic Paraboloid

\[\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2} \]

- No \(z^2 \) terms
- \(x^2, y^2 \) have opposite signs
- \(x, y \)-traces are parabolas (open in opposite directions)
- \(z \)-traces \(\rightarrow \) hyperbolas

Cones:

\[\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} \]

- All squares
- Two ones sides
- Once on other

\(x = a: \)

\[\frac{z^2}{c^2} = 1 + \frac{y^2}{b^2} \]

\[\frac{z^2}{c^2} - \frac{y^2}{b^2} = 1 \]

\(y = b \)

\(\rightarrow \) Hyperbola.
HYPERBOLIDS

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \]

ONE NEGATIVE SQUARE \(\rightarrow \) OF ONE SHEET

TWO NEGATIVE COEFF'S \(\rightarrow \) OF TWO SHEETS

NOTE "DIFF" ONE IS "AXIS OF SYMMETRY"

ex. \(25y^2 + z^2 = 100 + 4x^2 \)

\[-4x^2 + 25y^2 + z^2 = 100 \]

\(2 \div 100 \)

\(-\frac{x^2}{25} + \frac{y^2}{4} + \frac{z^2}{100} = 1 \) \(\leftarrow \) HYPERBOLOID OF ONE SHEET

\(X \)-DIRECTION.
\[9x^2 - 4y^2 - z^2 - 6y + 6z = 0 \]

\[9x^2 - 4(y^2 + 2y + 1) - (z^2 - 6z + 9) = 0 + (-4) + (-9) \]

\[9x^2 - 4(y+1)^2 - (z-3)^2 = -13 \]

\[\frac{9x^2}{-13} + \frac{4(y+1)^2}{13} + \frac{(z-3)^2}{13} = 1 \]

Hyperboloid of one sheet.