1. Given: \(\mathbf{u} = \langle 4, -1, -5 \rangle, \mathbf{v} = \langle 3, 1, -2 \rangle, \mathbf{w} = \langle 2, -3, 6 \rangle \)

Find:

a. \(\mathbf{u} \cdot (2\mathbf{v} - 3\mathbf{w}) \)

b. A unit vector in the opposite direction of \(\mathbf{w} \).

c. \(\mathbf{v} \times \mathbf{w} \)

d. The angle (in radians) formed by \(\mathbf{u} \) and \(\mathbf{v} \).

e. The volume of the parallelepiped formed by the vectors \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \).

2. Find the parametric equations of the line of intersection of the planes

\[3x + y - 5z = 6 \quad \text{and} \quad x - 2y - 4z = 9 \]

3. Given the points \((2, -1, -1), (1, 0, 1), \) and \((3, 2, 2) \), find the equation of the plane that passes through these points. Write your answer in the form \(ax + by + cz = d \).

4. Evaluate:

\[
\int_0^\pi \left(\cos(3t)\mathbf{i} + t \cos t\mathbf{j} + \cos^4 t \sin t\mathbf{k} \right) dt
\]

5. Given the vector function \(\mathbf{r}(t) = \langle 4 \sin(2t), 3t, 4 \cos(2t) \rangle \)

a. Find the length of the curve from \(t = 0 \) to \(t = \frac{\pi}{3} \).

b. Find the curvature \(\kappa \).

6. Given \(f(x, y) = \ln(5x + y^3) - \tan(x^3 + y) \), find:

a. \(f_x(x, y) \)

b. \(f_{xy}(x, y) \)

c. \(f_{yy}(x, y) \)

7. Given the function \(z = f(x, y) = 2xy^3 - x^2y \)

a. Find the equation of the tangent plane, in the form \(ax + by + cz = d \), to the surface at the point \((3, 2, 30) \).

b. If \((x, y) \) changes from \((3, 2) \) to \((3.05, 1.9) \), find the values of \(\Delta z \) and \(dz \).
1. a. \(<4, -1, -5> \cdot <0, 11, -22> = 99 \)
 b. \(< -\frac{2}{7}, \frac{3}{7}, -\frac{6}{7} > \)
 c. \(<0, -22, -11> \)
 d. \(\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \)
 e. \(V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = 77 \)

2. \(x = 3 + 2t \)
 \(y = -3 - t \) (there are many possible "initial" points)
 \(z = 0 + t \)

3. \(3x - 5y + 4z = 7 \)

4. \(-\frac{1}{3}\mathbf{i} + \left(\frac{\pi}{2} - 1\right)\mathbf{j} + \frac{1}{5}\mathbf{k} \)

5. a. \(l = \int_0^\pi \left(\sqrt{73}\right) \, dt = \frac{\pi\sqrt{73}}{3} \)
 b. \(\kappa = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{16}{73} \)

6. a. \(\frac{5}{5x+y^3} - 3x^2\sec^2(x^3+y) \)
 b. \(\frac{-15y^2}{(5x+y^3)^2} - 6x^2\sec^2(x^3+y)\tan(x^3+y) \)
 c. \(\frac{30xy-3y^4}{(5x+y^3)^2} - 2\sec^2(x^3+y)\tan(x^3+y) \)

7. a. \(4x + 63y - z = 108 \)
 b. \(\Delta z = f(3.05, 1.9) - f(3, 2) = -5.83485 \)
 c. \(dz = f_x(3, 2) \, dx + f_y(3, 2) \, dy = -6.1 \)