1. Given the points \(A = (5, 3, 0), B = (6, 1, 1), \) and \(C = (1, 5, 2) \), find:

 a. parametric equations for the line that passes through \(C \) and is parallel to the line that passes through \(A \) and \(B \).
 b. the angle \(\angle BAC \).
 c. the equation of the plane (in the form \(ax + by + cz = d \)) through these three points.

2. Given the equation \(z^2 = 36 - 4x + 9y^2 \):

 a. Classify this quadric surface.
 b. Find the equation of the tangent plane to this surface at the point \((5, 1, -5) \). Express your answer in the form \(ax + by + cz = d \).

3. Find \(r(t) \) if \(r'(t) = (t)i + (e^{2t})j + (te^t)k \) and \(r(0) = i + 2j + 4k \).

4. Given the curve defined by \(r(t) = \langle -2t + 3, t^2 - 1, \frac{1}{3}t^3 + 2 \rangle \), find:

 a. the vector equation for the line \(L(t) \) tangent to this curve when \(t = 1 \).
 b. the length of this curve between the points \(\left(1, 0, \frac{7}{3}\right) \) and \((-6, 8, 11) \).
 c. the curvature \(\kappa \) at the point when \(t = 1 \).

5. Given \(f(x, y, z) = 6x^3y + 4x^2y^3z - 5xz^2 \), find:

 a. \(f_{xz}(x, y, z) \)
 b. \(\nabla f(1, 2, -1) \)
 c. the directional derivative of \(f(x, y, z) \) at \((1, 2, -1) \) in the direction of the point \((5, 1, 7) \).
6. A cardboard box without a top needs to have a volume of 4000 cubic centimeters. Find the dimensions of the box that minimizes the amount of cardboard used. List the dimensions in the following order: length, width, height.

7. Evaluate by reversing the order of integration:

$$\int_0^8 \int_{\sqrt[3]{x}}^2 e^{y^3} dy \, dx$$

8. Switch to polar coordinates to evaluate:

$$\int_0^3 \int_y^{\sqrt{18-y^2}} e^{x^2+y^2} \, dx \, dy$$

9. Find the volume of the solid in the first octant bounded by the cylinder \(y = x^2 \), the plane \(2x + 4y + z = 20 \), and the plane \(x = 0 \).

10. Use a triple integral to find the volume of the 'spherical cap' inside the sphere \(x^2 + y^2 + z^2 = 16 \) that is above the plane \(z = 2 \).
1. a. \(y = 5 - 2t \)

 b. \(\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3} \)

 c. \(x + y + z = 8 \)

2. a. hyperbolic paraboloid

 b. \(2x - 9y - 5z = 26 \)

3. \(\mathbf{r}(t) = \left(\frac{1}{2}t^2 + 1\right)\mathbf{i} + \left(\frac{1}{2}e^{2t} + \frac{3}{2}\right)\mathbf{j} + (t e^t - e^t + 5)\mathbf{k} \)

4. a. \(\mathbf{L}(t) = <1 - 2t, 2t, \frac{7}{3} + t> \)

 b. \(\frac{38}{3} \)

 c. \(\frac{2}{9} \)

5. a. \(8xy^3 - 10z \)

 b. \(<-33, -42, 42> \)

 c. \(\frac{82}{3} \)

6. Minimize : \(A = lw + 2lh + 2wh \) subject to \(V = lwh = 4000 \)

 Setting \(\nabla A = \lambda \nabla V \) yields \(l = 20 \text{ cm}, w = 20 \text{ cm}, h = 10 \text{ cm} \)

7. \(\int_0^2 \int_0^y e^{y^3} dx dy = \ldots = \frac{1}{4}(e^{16} - 1) \)

8. \(\int_0^{\frac{\pi}{4}} \int_0^{3\sqrt{2}} e^{x^2} r dr d\theta = \ldots = \frac{\pi}{8}(e^{18} - 1) \)

9. \(V = \int_0^2 \int_{x^2}^{5-\frac{1}{2}x} (20 - 2x - 4y) dy dx = \ldots = \frac{652}{15} \)

10. Cylindrical coordinates yield simplest triple integral :

 \(V = \int_0^{2\pi} \int_0^{2\sqrt{3}} \int_2^{\sqrt{16-r^2}} r dz dr d\theta = \ldots = \frac{40\pi}{3} \)