2.4 Limits and Continuity

Definition: If a function \(f(x) \) is defined on an open interval containing \(x = c \). Then \(f \) is **continuous at \(x = c \)** if \(\lim_{x \to c} f(x) = f(c) \).

Three components of this statement:

1) \(f(c) \) exists (\(c \) is in the domain of \(f \))
2) \(\lim_{x \to c} f(x) \) exists
3) \(\lim_{x \to c} f(x) = f(c) \)

Note: If the function is not continuous at \(x = c \), we say that \(f \) is **discontinuous** at \(x = c \).

If a function \(f(x) \) is continuous at all points in an interval \(I \), then we say that \(f(x) \) is continuous on \(I \). If the interval \(I = [a, b] \), then we need (for continuity) \(\lim_{x \to a^+} f(x) = f(b) \) and \(\lim_{x \to b^-} f(x) = f(b) \).

Examples:

- Graphs

 \[
 f(x) = \begin{cases}
 \frac{x^2 - 4}{x-2} & x \neq 2 \\
 5 & x = 2
 \end{cases}
 \]

- \[
 g(x) = \frac{1}{(x-3)^2}
 \] (and 4 at \(x = 3 \))

- \[
 f(x) = \lfloor x \rfloor
 \] (the greatest integer function)

Types of discontinuities: removable jump infinite

Definition: A function \(f \) is **left-continuous at \(c \)** if \(\lim_{x \to c^-} f(x) = f(c) \).

[Note: **right-continuity** is defined similarly]
2.4 Limits and Continuity (p. 2)

examples: \[f(x) = \begin{cases} \frac{x^2+3x}{x+4} & x \leq 2 \\ \frac{3x+4}{x > 2} \end{cases} \]

find the value of \(a \) such that \(f \) is continuous at \(x = 4 \).

Theorem 1: If \(f \) and \(g \) are continuous at \(x = c \), then the following functions are continuous at \(x = c \):

i) \(f(x) + g(x) \) and \(f(x) - g(x) \) ii) \(k \cdot f(x) \) for and constant \(k \)

iii) \(f(x) \cdot g(x) \) iv) \(\frac{f(x)}{g(x)} \) (if \(g(c) \neq 0 \))

Theorem 2: Let \(P(x) \) and \(Q(x) \) be polynomials. Then

i) \(P(x) \) is continuous on the real real line (for all real numbers)

ii) \(\frac{P(x)}{Q(x)} \) is continuous on its domain (wherever it is defined)

Theorem 3: The following basic functions are continuous where they are defined:

i) \(y = x^{1/n} \) ii) \(y = \sin x \) and \(y = \cos x \)

iii) \(y = b^x \) (\(b \neq 1 \)) iv) \(y = \log_b(x) \) (\(b > 0, b \neq 1 \))

Theorem 4: If \(f(x) \) is continuous on an interval \(I \) with range \(R \), and if \(f^{-1}(x) \) exists, then \(f^{-1}(x) \) is continuous with domain \(R \)

Theorem 5: If \(g \) is continuous at \(x = c \), and \(f \) is continuous at \(x = g(c) \), then the composite function \(F(x) = f(g(x)) \) is continuous at \(s = c \).

example: \[\lim_{x \to 1} \cos^{-1}\left(\frac{1 - \sqrt{x}}{1 - x} \right) \]