MIDTERM EXAMS WILL BE RETURNED IN SECTION.

3.10 RELATED RATES

If a quantity Q depends on another quantity x [i.e. $Q = f(x)$], what happens if x changes? How does Q change?

\[
\frac{dQ}{dt} = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dx}{dt}
\]

Inflate a spherical balloon.

Pumping in 5 cubic centimeters of air each second:

\[
5 \text{ cu.cm/sec} = \frac{dV}{dt} \quad \text{Known}
\]

How fast is the radius changing when the radius is 4 cm? Find \(\frac{dr}{dt} = (\) \text{ cm/sec} \)
3.10 Related Rates

When one quantity \(Q \) depends on another quantity \(x \), what happens when \(x \) changes? How does \(Q \) change?

example: inflating a (spherical) balloon.

Strategy:

1) Read the problem; draw a diagram if possible.
2) Assign symbols to all quantities that change over time.
3) Express known rates of change in terms of derivatives (w.r.t. \(t \)), and determine which rate(s) is/are asked for.
4) Write an equation that relates the variables whose rates are known and asked for.
5) Implicitly differentiate both sides of this equation (w.r.t. \(t \)).
6) Substitute the (known) values of the variables and the rates into the resultant equation, and solve for the unknown rate.

example: Car A leaves town at noon, heading north at 40 mph. At 1 pm, car B leaves town traveling east at 60 mph. How fast is the distance between the two cars changing at 2 pm?

example: A trough is 10' long and has cross sections in the shape of an isosceles triangle that are 3 feet across at the top and are 2 feet high. If the trough is being filled at a rate of 12 \(\text{ft}^3/\text{min} \), how fast is the water level rising when the water is \(10' \) deep?

example: A kite 100 feet above the ground moves horizontally at a speed of 8 feet/sec. Find the rate at which the angle between the string and the (horizontal) ground is changing when 200 feet of string have been let out.

examples (3.10.31-32): The pressure \(P \) and the volume \(V \) of an expanding gas are related by the equation \(PV^b = C \) where \(b \) and \(C \) are constants.

31. Find \(\frac{dP}{dt} \) if \(b = 1.2 \), \(P = 8 \text{ kPa} \), \(V = 100 \text{ cm}^2 \), and \(\frac{dV}{dt} = 20 \text{ cm}^3/\text{min} \).

32. Find \(b \) if \(P = 25 \text{ kPa} \), \(\frac{dP}{dt} = 12 \text{ kPa/min} \), \(V = 100 \text{ cm}^3 \), and \(\frac{dV}{dt} = 20 \text{ cm}^3/\text{min} \).
Know \(\frac{dv}{dt} \), find \(\frac{dr}{dt} \)

1. Find relation between \(\sqrt[3]{r} \)

\[
V_{\text{sphere}} = \frac{4}{3} \pi r^3
\]

Want relation between \(\frac{dv}{dt} \) and \(\frac{dr}{dt} \)

\[
d\left(\frac{4}{3} \pi r^3 \right)
\]

\[
\frac{d(v)}{dt} = \frac{d}{dt} \left(\frac{4}{3} \pi r^3 \right)
\]

\[
4 \frac{dv}{dt} = \frac{4}{3} \pi \left[3r^2 \frac{dr}{dt} \right]
\]

\[
\frac{4}{4 \pi r^2} \frac{dv}{dt} = \frac{dr}{dt} = \frac{5 \text{ cm}^3}{4 \pi (4\text{ cm})^2} = \frac{5}{64 \pi \text{ cm/s ec}}
\]

\[
\approx 0.025 \text{ cm/sec}
\]

Want to measure rate of change of surface area \(A \): note \(A = 4 \pi r^2 \)

\[
\frac{d(A)}{dt} = \frac{d}{dt} (4\pi r^2) = 8\pi r \frac{dr}{dt}
\]
$$\frac{dA}{dt} = 8 \times 4 \left[\frac{5}{64 + \pi^2} \right] = \frac{5}{2} \left(\text{cm}^2 \right) / \text{sec.}$$

EX

Cara A
Leaves at noon
40 mph.

Cara B
Leaves at 1 pm,
60 mph.

Known:
\[\frac{dq}{dt} = 40 \text{ miles/hour} \]
\[\frac{dc}{dt} = 60 \text{ miles/hour} \]

Find:
\[\frac{dc}{dt} \text{ at } 2 \pm \]

\[a^2 + b^2 = c^2 \]
\[\frac{d()}{dt} = 2a \cdot \frac{da}{dt} + 2b \cdot \frac{db}{dt} = c \cdot \frac{dc}{dt} \]

\[\frac{80[40] + 60[60]}{100} = \frac{6400}{10000} = 68 \text{ mph} = \frac{dc}{dt} \]

How fast is the distance between Cara B and A changing at 2 pm?

At 2 pm:
\[\sqrt{80^2 + 60^2} = 100 \]
Find how fast water is rising when depth is 50 cm. (Also when depth is 1.5 m)

\[\text{Find } V \text{ of water in terms of } h \text{ only.} \]

\[\text{Area.} \]

\[V = \text{Area} \times 10 \]

\[\frac{3}{2} h = b \]

\[\Rightarrow \frac{3}{2} h = b \]

\[S_{O} \quad V = 5bh = 5\left(\frac{3}{2}h\right)h = \frac{15}{2}h^2 \]
\[V = \frac{15}{2} h^2 \]

\[\frac{d(V)}{dt} = \frac{d}{dt} \left(\frac{15}{2} h^2 \right) \rightarrow \frac{dV}{dt} = \frac{15}{2} \cdot 2h \frac{dh}{dt} \]

\[\frac{dV}{dt} = \frac{dh}{dt} = \frac{12}{15(0.5)} = \frac{12}{7.5} = 1.6 \text{ m/min} \]

\[\frac{dh}{dt} = \frac{24}{15} \text{ m/min} \]

\[= 1.6 \text{ m/min} \]

b) \[@ h=1.5 \text{ m}, \quad \frac{dh}{dt} = \frac{dV}{dt} \frac{[12]}{15(h)} = \frac{12}{15(1.5)} \]

\[\frac{dh}{dt} = \frac{12}{4.5} = \frac{24}{4.5} = \frac{8}{15} \text{ m/min} \]