7.3 Direction Fields and Euler's Method

Direction Fields

Given a non-autonomous differential equation \(\frac{dy}{dt} = y' = F(t, y) \) [a function of \(t \) and \(y \)], draw short line segments with slope \(F(t, y) \) at various points \((t, y)\). The resulting graph is called a direction field (or slope field) for the differential equation \(y' = F(t, y) \).

Example: Draw the direction field for \(y' = t + y \).

Once a direction field is drawn, try to visualize a curve that follows the indicated slopes and goes through a given point; this is called a solution curve. For example, we can draw the solution curves in the above example through \((0, 1)\) and \((-2, 0)\).

Example (Example 2 in text): Given the differential equation \(\frac{dp}{dt} = p(1 - p)(2 - 5p) \)

a. Draw the direction field for \(0 \leq t \leq 8\) and \(0 \leq p \leq 1\).

b. Identify all equilibria on the plot.

c. Sketch the solution curve through the point \((0, 0.8)\).

d. What happens to the solution curve as \(t \rightarrow \infty \)?

Euler's Method

Euler's Method is a numerical process that approximates solutions to differential equations with initial values. Starting from the initial value \((t_0, y_0)\), one approximates the function by drawing a segment of the tangent line to the function (slope is determined by the differential equation, and the point is given) for a small distance \(\Delta t = h \). At the end of this segment, a new point can be used to determine a new tangent line using the point to determine a new slope. One can continue this process indefinitely; note that smaller steps \(h \) yield better approximations.
7.3 Direction Fields and Euler's Method

example: Use Euler's Method to draw an approximate solution to the initial-value problem \(\frac{dy}{dt} = 2t - 3y + 1 \) that passes through the origin, using steps of \(\Delta t = 0.5 \).

Euler's Method: Approximate values for the solution of the initial-value problem
\[y' = F(t, y), \quad y(t_0) = y_0, \] with step size \(h \), at \(t_{n+1} = t_n + h \), are

\[y_{n+1} = y_n + h F(t_n, y_n) \quad n = 0, 1, 2, 3 \]

example: Look at the tables for example 3 in text.

example (7.3.24): Use Euler's Method with step size 0.2 to estimate \(y(1) \), where \(y(x) \) is the solution of the initial-value problem \(y' = xy - x^2, \quad y(0) = 1 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(y_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>1.032</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>1.08256</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>1.1404672</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>1.194941952</td>
</tr>
</tbody>
</table>