Chapter 6 - Applications of Integrals

6.1 Areas Between Curves

Area bounded by two curves \(y = f(x) \) and \(y = g(x) \) is:

\[
A(x) = \int_a^b [f(x) - g(x)] \, dx = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx
\]

[Here \(f(x) \geq g(x) \) on \([a, b]\)]

example: \(y = e^x, \quad y = \sqrt{x} \) from \(x = 0 \) to \(x = 4 \).

element: \(y = x^2, \quad y = x + 2 \) (Note: find points of intersection)

If \(f(x) \) and \(g(x) \) cross several times in the interval \([a, b]\), the area is

\[
A(x) = \int_a^b \left| f(x) - g(x) \right| \, dx
\]

example: Find the area bounded by \(y = \sin x \) and \(y = \cos x \) on the interval \([0, \frac{3\pi}{4}]\).

Cerebral Blood Flow (explanation in text pp. 390-391)

If \(A(t) \) represents the arterial concentration (units: \(mL \) of \(N_2O \) per \(mL \) of blood) of \(N_2O \) entering the brain, and \(V(t) \) represents the concentration of \(N_2O \) flowing out of the brain in the jugular vein, one can calculate the cerebral blood flow \(F \) by calculating the area between curves \(A \) and \(V \). The quantity of \(N_2O \) taken up by the whole brain in the first \(t \) minutes is

\[
Q(t) = F \int_0^t (A(t) - V(t)) \, dt
\]

So if \(Q(t) \) is known, we find that

\[
F = \frac{Q(t)}{\int_0^t (A(t) - V(t)) \, dt}
\]

Horizontal strips: 'width' = \(dy \), so area is \(\int_c^d \left| x_r - x_l \right| \, dy \) (formula needed for 6.1.16)

example: \(x + y = 6 \)

\(x - y^2 = 0 \)