7.1 Modeling with Diff. Eq. (Wrap-Up)

Logistic D.E.: \[\frac{dN}{dt} = r \left(1 - \frac{N}{K}\right)N \]

\(N = N(t) \)

If \(N = \text{constant} \) then \(\frac{dN}{dt} = 0 \)

This solution is called an equilibrium solution.

\[\frac{dN}{dt} = 0 = r \left(1 - \frac{N}{K}\right)N \]

\[\frac{dN}{dt} > 0 \quad 1 - \frac{N}{K} = 0 \quad N = 0 \]

So logistic equation was two equilibria.

\(N = 0 \) \(N = K \) (carrying capacity).

\(\frac{dN}{dt} > 0 \) \(K \frac{dN}{dt} < 0 \)
IF \(N < K \) \(\frac{dN}{dt} > 0 \) \(\text{N INCREASING} \)

IF \(N > K \) \(\frac{dN}{dt} < 0 \) \(\text{N DECREASING} \)

\[1 \rightarrow 0 \rightarrow K \]

In long run: \(\lim_{t \to \infty} N(t) = K \).

Notation! Order of a D.E. is order of highest derivative in equation.

Example: \(\dot{t} \frac{dy}{dt} + 3 \int \frac{d^2y}{dt^2} y^2 = 0 \) D.E. of order 2

Solution for a D.E. is a function such that when substituted into D.E. equation is satisfied. A D.E. has many solutions, find a unique solution if given an initial condition.

Types of D.E. model: \(y = y(t) \)
Pure-time D.E., \(\frac{dy}{dt} = f(t) \) \(\text{WE HAVE SEEN THIS THROUGHOUT THE QUARTER.} \)

\(\begin{align*}
\frac{dy}{dt} &= t^2 - \sin(2t) + 3 \\
\end{align*}\)

\(y = \int \frac{dy}{dt} \, dt = \int (t^2 - \sin(2t) + 3) \, dt \)

\(y = \frac{1}{3} t^3 + \frac{\cos(2t)}{2} + 3t + C \bigg|_{t=0} = \frac{1}{2} + C = 5 \)

\(C = \frac{9}{2} \)

So \(y = \frac{1}{3} t^3 + \frac{1}{2} \cos(2t) + 3t + \frac{9}{2} \)

Autonomous D.E., \(\frac{dy}{dt} = g(y) \)

\(\begin{align*}
\frac{dN}{dt} &= r(1 - \frac{N}{K})N = g(N) \\
\end{align*}\)

Nonautonomous D.E., Combination of Pure Time \(/ \) Autonomous, D.E.
Verify \(y(y(t)) = Ce^{-t} + \frac{1}{2}(2 - \cos t + \sin t) \)

is a solution to \(\frac{dy}{dt} = 1 + \sin t - y \)

\[
\frac{dy}{dt} = C[e^{-t}] + \frac{1}{2}(0 + \sin t + \cos t)
\]

\[
= -Ce^{-t} + \frac{1}{2}\sin t + \frac{1}{2}\cos t
\]

\[1 + \sin t - y = 1 + \sin t - (Ce^{-t} + \frac{1}{2}(2 - \cos t + \sin t))
\]

\[= Y + \sin t - Ce^{-t} / 1 + \frac{1}{2}\cos t - \frac{1}{2}\sin t
\]

\[= -Ce^{-t} + \frac{1}{2}\cos t + \frac{1}{2}\sin t
\]

7.2 Phase Plots, Equilibria, and Stability

Given an autonomous D.E. \(\frac{dy}{dt} = g(y) \)

(Note: Solution: \(y = y(t) \))

Phase Plot: Graph of \(g(y) \)
If \(\frac{dy}{dt} < 0 \) \(y \) is decreasing over time.

\[\frac{dy}{dt} = 0 \]

Logistic Equation

\[\frac{dN}{dt} = r \left(1 - \frac{N}{K} \right) N \]

Construct Phase Plot (Assume \(r > 0 \))

\[\frac{dN}{dt} + r \left(1 - \frac{N}{K} \right) N = 0 \]

\(1 - \frac{N}{K} = 0 \) when \(N = K \)

\(N < K \) \(1 - \frac{N}{K} > 0 \)

\(N > K \) \(1 - \frac{N}{K} < 0 \)

Given \(\frac{dy}{dt} = g(y) \) an equilibrium solution is a constant \(y \) such that \(\frac{dy}{dt} = 0 \) when \(y = y \)
An equilibrium \bar{y} of a D.E. is **locally stable** if y approaches \bar{y} as $t \to \infty$ for all initial values of y sufficiently close to \bar{y}.

$$\lim_{t \to \infty} y(t) = \bar{y} \iff \text{locally stable}$$

If \bar{y} is not stable, then \bar{y} is **unstable**.

Example Logistic Equation: \[\frac{dN}{dt} = r \left(1 - \frac{N}{K}\right)N \]

Determine local stability of equilibria of this D.E.

- $N = 0$; $N = K$ equilibria.

Graphical Illustration

- $\frac{dN}{dt} > 0$ for $N < K$
- $\frac{dN}{dt} < 0$ for $N > K$
- $N = 0$, $N = K$ locally stable

$$\lim_{t \to \infty} N(t) = K \quad N = K \text{ locally stable}$$
Given D.E. of Allee effect:

\[\frac{dN}{dt} = r(N-a)(1- \frac{N}{K})N \]

Draw phase plot; find equilibria, and determine the stability at each equilibrium.

N=K locally stable
N=0 " "
N=a locally unstable