4.1 Maximum and Minimum Values

Definition: A function f has an **absolute maximum** (or **global maximum**) at c if $f(c) \geq f(x)$ for all x in D, where D is the domain of f. The number $f(c)$ is the **maximum value** of f.

Note: f has an **absolute minimum** at c if $f(c) \leq f(x) \ \forall x \in D$.

Definition: A function f has a **local maximum** (or **relative maximum**) at c if $f(c) \geq f(x)$ when x is "near" c.

Examples: graphs

Example: $f(x) = \sin x$

Example: $f(x) = x^2$

Example: $f(x) = x^3$

Theorem (the Extreme Value Theorem): If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ for some numbers c and d in $[a, b]$.

(Fermat's) Theorem: If f has a local extreme at c, and if $f'(c)$ exists, then $f'(c) = 0$.
4.1 Maximum and Minimum Values (continued)

Definition: A **critical number** of a function f is a number c in the domain of f such that either $f'(c) = 0$ or $f'(c)$ does not exist.

Example: $f(x) = 18x + 15x^2 - 4x^3$ on $[-3, 4]$.

Note: If $x = c$ is a critical number for $f(x)$, $f(c)$ may not be a local extreme. [consider $f(x) = x^3$]

Finding extrema on a closed interval

1) Find the critical numbers of f.

2) Evaluate the function f at the critical numbers and at the endpoints of the interval.

3) Largest value is the absolute maximum, smallest the absolute minimum.

Example: $f(x) = x - 2 \cos x$ on $[0, \pi]$.

Example: (text example 4.1.6) **The Allee Effect**: Suppose that $f(N) = growth rate$ of a population, where N is measured in 100's of individuals. If $f(N) = N(N - 3)(8 - N)$ where $0 \leq N \leq 9$, find the maximum and minimum values of the growth rate.

Example: (text example 4.1.7) **Blood Alcohol Concentration**: Suppose that the function $C(t) = 0.0225te^{-0.0467t}$ is a model for the average blood alcohol concentration (BAC) of a group after rapid consumption of 15ml of ethanol, and t is measured in minutes and C is measured in mg/mL. Find the maximum BAC in the first hour.