3.8 Linear Approximations and Taylor Polynomials

Definition: The linearization of \(f \) at \(a \) (the tangent line approximation) is the linear function whose graph is the tangent line to \(f \) at the point \((a, f(a))\), and is given by the formula

\[
L(x) = f(a) + f'(a)(x - a)
\]

example: If \(f(x) = \sqrt[3]{x} \), find the linearization of \(f \) at \(a = 8 \).

example: (3.R.91 part a) If duration of time, \(t \), required to remove urea from the blood is given by the equation \(t = t(c) = \ln\left(\frac{3c + \sqrt{9c^2 - 8c}}{2}\right) \), find the linear approximation of \(t \) near \(c = 1 \).

example: Use the linearization of \(f(x) = \sqrt{x} \) to find an approximate value of: \(\sqrt{5} \); \(\sqrt{3.7} \); \(\sqrt{4.02} \)

Note that slope of tangent line at \(x_1 \) is \(m_{tan} = f'(x_1) \). It crosses the \(x \)-axis at \((x_2, 0)\), so slope of the tangent line is also \(m_{tan} = \frac{-f(x_1)}{x_2 - x_1} \). Solving for \(x_2 \) yields: \(x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \). Repeat this procedure with the point \((x_2, f(x_2))\).

In general, \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \). If all goes well, we have \(\lim_{n \to \infty} x_n = r \).

example: Find an approximation for \(\sqrt{5} \). Let \(f(x) = x^2 - 5 \). Use

\[
x_{n+1} = x_n - \frac{(x_n^2 - 5)}{2x_n}
\]
3.8 Linear Approximations and Taylor Polynomials (continued)

example (text example 3.8.6): Find the solution to the equation \(\cos x = x \)

Taylor Polynomials

The tangent line approximation \(L(x) \) is the best linear (first-degree) approximation to \(f(x) \) at \(x = a \) since the functions \(f \) and \(L \) have the same function value and the same slope at \(x = a \). For a better approximation, we will look for a quadratic (second-degree) function \(P(x) \) to approximate \(f(x) \). We will want:

\[
P(a) = f(a) \quad P'(a) = f'(a) \quad P''(a) = f''(a)
\]

Procedure: Let \(P(x) = A + B(x - a) + C(x - a)^2 \). Find \(A, B, \) and \(C \) using the equations above.

example: Find the second degree Taylor polynomial for \(f(x) = \sqrt{x} \) at \(x = 4 \).

For better approximations, continue this process. To approximate \(f(x) \) with an \(n^{th} \) degree polynomial: \(T_n(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \ldots + c_n(x - a^n) \), set the first \(n \) derivatives of \(T_n \) equal to the same derivatives of \(f(x) \). This process yields that \(c_k = \frac{f^{(k)}(a)}{k!} \), where \(k! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot k \), \((k \text{ factorial}) \)

Definition: The \(n^{th} \) Taylor polynomial of \(f \) at \(x = a \) is the polynomial

\[
T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x - a^n)
\]

example: Find the \(4^{th} \) Taylor polynomial, \(T_4(x) \), for \(f(x) = \cos x \) at \(x = 0 \).