Midterm on: Chap 1 (not 1.3)
Chap 2 (all)
Chap 3 (§1-5) - not implicit differentiating.

35 Chain Rule (Wrap-Up)

If $y = f(u)$ with $u = g(x)$ so $y = f(g(x))$.

So $\frac{dy}{dx} = \left[f(g(x)) \right]' = f'(g(x)) \cdot g'(x)$

$$= \frac{dy}{du} \cdot \frac{du}{dx}$$

Related Rates: Variables depend on one another will change depending on each other.

Example Spherical Balloon: Volume changes

- Area
- Radius

Related Rates show relationship of these changes.
START w/ EQN INVOLVING VARIABLES.
\[V = \frac{4}{3} \pi r^3 \]

VOLUME CHANGES:
\[\text{RADIUS IS } \frac{dV}{dt} \]

RADIUS CHANGES:
\[\frac{dr}{dt} \]

\[\frac{dV}{dt} = \frac{d}{dt} \left(\frac{4}{3} \pi r^3 \right) = \frac{d(\frac{4}{3})}{dt} \pi r^3 + \frac{d(r^3)}{dt} \cdot \frac{dr}{dt} = \frac{4}{3} \pi r^2 \cdot \frac{dr}{dt} \]

\[\frac{dV}{dt} = \frac{4}{3} \pi r^2 \frac{dr}{dt} \]

EX FIXED PERIMETER LENGTH FOR A RECTANGLE:
\[2l + 2w = \text{CONSTANT} = \boxed{B} \]

INCREASING L WOULD REQUIRE W TO GET SMALLER.

GIVEN \(\frac{dl}{dt} \) FIND \(\frac{dA}{dt} \)

\[A = l \cdot w = l \left[\frac{B-2l}{2} \right] \]

\[A = \frac{B}{2} l - l^2 \]

\[\frac{dA}{dt} \]

\[\frac{d(l)}{dt} \left(2 \frac{dl}{dt} + 2 \frac{dw}{dt} \right) = 0 \]

So \(\frac{dl}{dt} = -\left(\frac{dw}{dt} \right) \)
\[\frac{dl}{dt} = \frac{dA}{dt} = B \cdot \frac{1}{2} \cdot \frac{dl}{dt} - 2L \cdot \frac{dl}{dt} \]

Example:

If \(V = \frac{4}{3} \pi r^3 \) and \(\frac{dV}{dt} = 7 \text{ (cm)}^3/\text{sec} \)

Find \(\frac{dr}{dt} \) when \(r = 6 \text{ cm} \).

\[\frac{dV}{dt} = \frac{4}{3} \pi \left[3r^2 \frac{dr}{dt} \right] \]

Substitute

\[[7] = 4 \pi (6)^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{7}{4 \pi (36)} = \frac{7}{144 \pi} \text{ cm/sec} \]

\[\boxed{\text{cm/sec}} \]

3.6 Exponential Growth \& Decay

Note: Change in quantity depends on quantity itself.

\[\frac{dQ}{dt} = f(Q) = kQ \]

\(k = \text{growth rate (if } k > 0) \)

\(k = \text{decay (if } k < 0) \)
\[\frac{dy}{dt} = k \cdot y \] is a solution to \[\frac{dy}{dt} = ky \] (\(\frac{dy}{dt} = Ce^{kt} \cdot k \))

Given \(\frac{dy}{dt} = ky \), the solution is \(y = Ce^{kt} \).

Need to find \(C \) and \(k \).

\[y(t) = Ce^{kt} \]
\[y(0) = Ce^{0} = C \]
\[C = y(0) = \text{initial value of } y \]

Example 1 in text

World pop'n in 1950: 2,560 million in 1950

\[1950: t=0 \]

*3,040 million in 1960

Find a model to predict world population.

Assuming exponential growth, \(\frac{dp}{dt} = kp \)

\[p(t) = p(0) \cdot e^{kt} = 2560e^{kt} \]
\[P = 2560e^{0.017t} \]

\[(9000) = 2560e^{0.017t} \quad \text{Find } t \]

\[\frac{9000}{2560} = e^{0.017t} \]

\[\ln \left(\frac{9000}{2560} \right) = 0.017t \]

\[t = \frac{\ln \left(\frac{9000}{2560} \right)}{0.017} \]

\[= 74 \text{ yrs.} \]

\[1950 + 74 = 2024 \]

Radioactive Decay \((k < 0)\)

\[M = \text{Amount of Material} \]

\[M = M_0e^{kt} \quad k < 0 \]

Half-Life: Time to Decay 1/2 of Material.

\[\left(\frac{1}{2} M_0 \right) = M_0e^{kt} \]

\[\ln \left(\frac{1}{2} \right) = \ln(e^{kt}) = kt \]

\[\frac{\ln \left(\frac{1}{2} \right)}{t_h} = k \]

\([t_h] = \text{Half Life}\)
MODEL IS: \(P(t) = 2560 \, e^{kt} \)

Solve for \(k \)

\[
\ln(e^{10k}) = 10k = \ln\left(\frac{304}{256}\right)
\]

\[
k = \frac{1}{10} \ln\left(\frac{304}{256}\right) \approx 0.017185...
\]

\[
P(t) = 2560 \left[\frac{\ln\left(\frac{304}{256}\right)}{10} \right] e^{0.017185t}
\]

\[
P(t) \approx 2560 e^{0.017185t}
\]

a) WHAT IS CURRENT WORLD POPULATION IN 2018 ACCORDING TO THIS MODEL?

2018: \(t = 2018 - 1950 = 68 \)

\(P(68) = 2560 \cdot e^{0.017185(68)} \approx 8133.6 \text{ MILLION} \)

OVERESTIMATE: AS OF 7 NOV

7662 MILLION.

b) WHEN DOES MODEL SAY POPULATION WILL REACH 9 BILLION PEOPLE (9000 MILLION)
(3.6.7) \(\text{HALF-LIFE OF CESIUM-137 IS 30 YRS. START W/ 100 MG SAMPLE} \)

a) Find mass after \(t \) years.

\[
M(t) = M_0 e^{kt}
\]

\[
m = 100 e^{k \cdot 30}
\]

\[
\frac{1}{2} = e^{30k} \rightarrow \ln\left(\frac{1}{2}\right) = 30k
\]

\[
\frac{\ln\left(\frac{1}{2}\right)}{30} = k \approx -0.0231
\]

\[
M = 100 e^{\frac{-0.0231 \cdot t}{30}}
\]
MIDTERM EXAM:
7 PROBLEMS ON 7 PAGES,
20-25 RESPONSES.

CH1
1 PROB → DOMAIN/RANGE: INTERPRET GRAPHS,
1 PROB → SEQUENCES (FUNCTION LIMITS)

CH2
1 PROB → LIMITS (ALGEBRAIC CALC.)
1 PROB → CONTINUITY

CH3
1 PROB → DERIVATIVE USING DEFINITION
\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]
2 PROB → DERIVATIVE "SKILLS"
FORMULAS; RULES.

ALSO TANGENT LINE TO A CURVE GIVEN BY A FUNCTION.