TODAY IS THE LAST DAY TO REGISTER TO VOTE:
register.tovote.ca.gov < REGISTER HERE BEFORE MIDNIGHT

2.5 CONTINUITY (CONT'D)

DEFN: \(f \) is continuous at \(a \) if

\[
\lim_{{x \to a}} f(x) = f(a)
\]

Example:

\[
\hat{g}(x) = \begin{cases}
\frac{1}{(x-3)^2} & x \neq 3 \\
100 & x = 3
\end{cases}
\]

\(\hat{g}(3) = 100 \) \(\checkmark \)

\[
\lim_{{x \to 3}} \frac{1}{(x-3)^2} = \infty \text{ (DNE)}
\]

\(g \) cont at \(x = 7 \? \)

\(g(7) = \frac{1}{(7-3)^2} = \frac{1}{16} \checkmark \)

\[
\lim_{{x \to 7}} \frac{1}{(x-3)^2} = \frac{1}{16} \checkmark
\]

NO \(g(3) \) **not defined**
Types of Discontinuities

Removable:

\[f(a) \text{ D.N.E. (or } \neq L) \]

\[\lim_{x \to a} f(x) = L \]

Jump:

\[\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x) \]

Infinite (Jump):

\[\lim_{x \to a^-} f(x) = \frac{+\infty}{0} \]

\[\lim_{x \to a^+} f(x) = \frac{-\infty}{0} \]

\[\lim_{x \to a} f(x) \text{ is cont. from left} \]
DEF: A function \(f \) is continuous from the right at \(a \) (or from above) if
\[\lim_{{x \to a^+}} f(x) = f(a) \]

Continuous from the left (below):
\[\lim_{{x \to a^-}} f(x) = f(a) \]

\[f(x) = \begin{cases}
 x^2 + 3x & x \leq 2 \\
 2x + 5 & x > 2
\end{cases} \]

\[f(2) = (2)^2 + 3(2) = 10 \]

\[\lim_{{x \to 2^-}} (x^2 + 3x) = (2)^2 + 3(2) = 10 \]

\[\lim_{{x \to 2^+}} (2x + 5) = 2(2) + 5 = 9 \]

\[\lim_{{x \to 2}} f(x) = \text{DNE.} \]

Not continuous at \(x = 2 \), but \(f(x) \) is continuous from left at \(x = 2 \)

\[f(x) = \begin{cases}
 x^2 + a & x < 4 \\
 b & x = 4 \\
 ax + 1 & x > 4
\end{cases} \]

\[f(4) = b \]

\[\lim_{{x \to 4^-}} (x^2 + a) = (4)^2 + a = 16 + a \quad \uparrow \quad \text{EQUAL} \]

\[\lim_{{x \to 4^+}} (ax + 1) = a(4) + 1 = 4a + 1 \]

Find values of \(a \) and \(b \) so that \(f \) is continuous at \(x = 4 \).
Definition: A function \(f \) is **continuous on an interval** \(I \) if it is continuous at every point in \(I \).

Note:
- If \(f \) is **not** continuous at \(x = -4 \) and \(x = 4 \),
- But \(f \) is continuous on \((-4, 6] \).
- \[\lim_{{x \to 6^-}} f(x) \]
If f, g are continuous at $x = a$, and if c is a constant, then the following are continuous at $x = a$:

- $f + g$
- $f - g$
- $c \cdot f$
- $f \cdot g$
- $\frac{f}{g}$ (if $g(a) \neq 0$)

Note: Functions continuous where defined, polynomials, rational functions, radical functions.

- $f(x) = \frac{x^2 - 4}{x - 2}$
- $\sqrt{9 - x^2}$

Trig. functions, inverse trig. functions, exponential functions, log functions.

Then if f is continuous at $x = b$ and $\lim_{x \to a} g(x) = b$

Then $\lim_{x \to a} f(g(x)) = f(b)$
So \(\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) \)

Theorem If \(g \) is **continuous at** \(x = a \) and if \(f \) is **continuous** at \(b = g(a) \) then \(f \circ g \) is **continuous** at \(x = a \).

Show \(\lim_{x \to a} f(g(x)) = f(g(a)) \)

\[
\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) \\
\text{exists} \\
\text{f(}g(a)\text{) exists}
\]

Ex \(F(x) = \ln(1 + \cos x) \) **where is** \(F \) **continuous?**

Note \(\ln(___) \) **is continuous for** \((___) > 0 \) **need** \(1 + \cos x > 0 \)

\[
\lim_{x \to a} \ln(1 + \cos x) = \ln(\lim_{x \to a} (1 + \cos x))
\]

\[1 + \cos x = 0 \]
\[\cos x = -1 \]
\[x = \pm \pi, \pm 3\pi, \pm 5\pi, \ldots \]

\(F \) **is continuous when** \(x = \pm \pi, \pm 3\pi, \ldots \)
THM (Intermediate Value THM) - I.V.T.

Suppose \(f \) is cont. on \([a, b]\) and let \(N \) be a number between \(f(a) \) and \(f(b) \). There exists (\(\exists \)) a \(c \in (a, b) \) such that \(f(c) = N \).