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ABSTRACT
Motivated by the close relation between estimation and con-

trol problems, we explore the possibility to utilize stochastic sam-
pling for computing the optimal control for a large-size robot
population. We assume that the individual robot state is com-
posed of discrete and continuous components, while the popula-
tion is controlled in a probability space. Utilizing a stochastic
process, we can compute the state probability density function
evolution, as well as use the stochastic process samples to eval-
uate the Hamiltonian defining the optimal control. The proposed
method is illustrated by an example of centralized optimal con-
trol for a large-size robot population.

NOMENCLATURE
R,Rn set of real numbers, set of real number vectors of dimen-

sion n.
Q set of discrete states, i.e., integer indexes {1,2,3, . . .}
Uad set of admissible control.
ρ(x, t) probability density function (PDF) of the hybrid state at

time t. This variable is a vector of functions; it depends
on x ∈ X and t ∈ R, but x and t are frequently omitted
in expressions.

ρi(x, t) the PDF component corresponding to the discrete state
i, i ∈ Q.

π(x, t) the adjoint state distribution.
π̄ the discrete approximation of the adjoint state distribution.
φ(x, t) the adjoint state PDF.
Pi(x, t) the probability of the discrete state i, i ∈ Q.
Pπ

i (x, t) the probability of the discrete adjoint state i, i ∈ Q.
Ft the transition rate matrix.
∗Address all correspondence to this author.

λi j the component of the transition rate matrix [Ft ]i j = λi j.
Fu the transition rate matrix that depends on control vector u,

u ∈Uad .
F∂ the component of the linear operator F corresponding to the

vector fields fi of discrete states i ∈ Q.
H(ρ,u, t) the PDF, the control and time dependent Hamilto-

nian, ρ, u and t are frequently omitted.
u∗ the optimal control
Eρ the expected value with respect to the state PDF ρ.

INTRODUCTION
Solutions of multi-robot control problems may be of enor-

mous complexity because of the operating environment uncer-
tainties, or a large number of redundant states and robots. For
many years it has been known that the optimal control and op-
timal estimation problems are closely related [1]. For example,
the linear quadratic regulator (LQR) and the Kalman filter (KF)
estimator can be derived in the same optimal control framework.
Having this in mind, it is expected that estimation methods based
on statistical sampling, and employed for solving complex esti-
mation problems [2], can contribute to solving complex control
problems for a single and, more importantly, multi-robot systems
under the presence of uncertainty.

Along this idea, Kappen et. al. [3, 4] used stochastic dif-
ferential equations to model individual agents. Based on this
description, it is possible to relate the Hamilton-Jacobi-Bellman
partial differential equation with samples of the stochastic pro-
cess trajectories and use the samples to define the stochastic op-
timal control of multi-agent systems. In this framework, the
state of individual robots is continuous. However, the state of
real robots is generally described by a combination of contin-



uous and discrete variables, i.e., by a hybrid state. Therefore,
it is more natural to describe the robot behavior using a hybrid
automaton [5]. The automaton describes the discrete and con-
tinuous variables change in time, which depends on events in-
fluencing the robot behavior. In the case of a large-size multi-
robot population, it becomes highly complex to predict events
from the robot local environment. Because of that, we model
a large-size robot population considering the stochastic hybrid
model and study how it can be controlled.

In this paper, we consider a problem in which the presence
of a large-size robot population in a desired region of operat-
ing space is maximized. This problem is formulated in a hybrid
system framework in [6]. Its solution, based on the minimum
principle for partial differential equations, is presented in [7, 8],
and it is solved numerically when the presence of the robots is
maximized along one dimension (1D).

The Hamiltonian, which defines the optimal control, in-
cludes integral terms that depend on the solution of a system of
partial differential equations (PDE). This system of PDEs is in
general difficult to evaluate and the numerical evaluation of in-
tegrals is prone to errors. However, we recognize that the prob-
lem solution can be simplified and propose to use samples of
the stochastic processes to evaluate the Hamiltonian components
from the expected values of the adjoint state distribution.

The direction of the research we are pursuing is consider-
ably different from the stochastic optimal control work presented
in [9]. There, stochastic processes have been used only as an an-
alytical tool to map the stochastic process to be controlled into
the finite state space, in which the optimization is performed.
The benefit of using a solution based on sampling, i.e, compu-
tational statistical methods, is that control problems in robotics
could be solved faster. This possibility also depends on the abil-
ity to implement sampling and computations with samples into
the processor computing the control.

MODELING AND CONTROL FRAMEWORK
In the modeling framework we consider, the state of an

individual robot at time t is uniquely defined by the couple
(x(t),q(t)), x ∈ X , X ∈ Rn, q ∈ Q,Q = {1,2, ...N}. While in
the discrete state (mode) k ∈ Q, the continuous state of a robot
obeys the differential equation ẋ = fk(x, t). We also assume that
switching among the discrete states, say from the state k ∈ Q to
the state j ∈Q, (k 6= j), is described by stochastic transition rates
λk j, and that x(t) is a continuous function of time. In other words,
the continuous state just before the discrete state transition x(t−)
is equal to the state x(t+) after the state transition. This very gen-
eral model of an individual robot is illustrated in Fig. 1 and the
modeling framework we are applying here is detailed in [8].

Recognizing that the state of an individual robot is com-
posed of discrete and continuous components, the state proba-
bility density function (PDF) is a vector of functions ρ(x, t) =
[ρ1(x, t) ρ2(x, t) . . .ρN(x, t)]′ [8]. Each component ρi(x, t) cor-
responds to the discrete state i, and the symbol (’) denotes the

q=1

q=2

λ 12

λ1K

λ2k

λkK
λKk

λ1k

y(t) = C(x)

 .
x(t) = f 2 (x(t))

y(t) = C(x)

 .
x(t) = f 1 (x(t))

y(t) = C(x)

 .
x(t) = f k (x(t))

y(t) = C(x)

 .
x(t) = f K (x(t))

q=k

q=K

Figure 1. Stochastic hybrid automaton model of a robot in a probabilistic
framework: discrete state q; continuous state x vector field fk, k ∈ Q
describes the change of the continuous state; stochastic transition rates
λk j , k, j ∈Q describe the mode switching; y is the measurable output; if
the full continuous state of the robot is measurable, C is the unity matrix.

vector transpose. The state PDF satisfies

∑
i∈Q

∫
X

ρi(x, t)dx = ∑
i∈Q

Pi(t) = 1, where Pi(t) =
∫

X
ρi(x, t)dx

(1)
where Pi(t) is the probability of the discrete state i at the time
point t. Let us define the vector of discrete probabilities P(t) =
[P1(t),P2(t), . . .PN(t)]′, then evolution of the probability vector
is given by:

Ṗ(t) = Ft(t)P(t), where [Ft ]i j = λi j(t) (2)

with matrix Ft defining the transition rates among the discrete
states. In general, the correspondence between the matrix Ft
members [Ft ]i j and the transition rates λi j is not one-to-one.
Assuming that the transition rates depend on the vector u(t) =
[u1(t) u2(t) . . .uM(t)]′ of variables ui, i = 1,2 . . .M, we can de-
fine the transition rate matrix as a function of the vector u(t), i.e.,
Ft(t) = Fu(u(t)). Consequently, the vector of the discrete state
probabilities obeys [10]:

Ṗ(t) = Fu(u)P(t) (3)

Moreover, it can be proven [8] that the state PDF obeys the fol-
lowing system of partial differential equations (PDE):

∂ρ(x, t)
∂t

= F(u)ρ(x, t) = (Fu(u(t))+F∂)ρ(x, t) (4)

where F∂ is the diagonal linear differential operator. When the
operator F∂ is applied to ρ(x, t), it results in:

[F∂ρ(x, t)]i j =

{
−∇ · ( fiρi(x, t)), i = j

0, i 6= j i, j = 1,2 . . .N (5)



Taking into account that the state PDF evolution ρ(x, t) de-
pends on the vector u(t), we can formulate the optimal control
problem in the probability space using the cost function:

J =
∫

X
w′(x)ρ(x,T )dx (6)

In this respect, the optimal control problem is the optimization
problem:

u∗(t) = max
u(t)∈Uad

J = max
u(t)∈Uad

∫
X

w(x)ρ(x,T )dx (7)

Alternatively, to avoid the singular control problems [8], we can
consider the optimal control that includes the term penalizing the
control:

u∗(t) = max
u(t)∈Uad

J = max
u(t)∈Uad

∫
X

w(x)ρ(x,T )dx+ ε

∫ T

0
u′(t)u′(t)

(8)
Anyway, the solution of this problem is a sequence of the opti-
mal control u∗(t), from the set of admissible control Uad , such
that the cost function is maximized. By a suitable choice of the
weighting function w(x), the cost function can be used to find the
optimal control maximizing probability of the robot presence in
the desired region of the robots’ operating space.

The optimal control maximizing the criterion (6) is a special
case of a more general optimal control problem of the evolu-
tion equation [11]. Under the condition that the operator F(u) is
bounded, i.e., ‖F(u(t))‖ < ∞, the minimum principle for PDEs
can be applied [11]. According to the minimum principle, the
optimal control u∗(t) satisfies:

u∗(t) = arg min
u∈Uad

H(ρ(x, t),u(t), t) (9)

In other words, for the optimal state PDF trajectory ρ∗(x, t), the
optimal control minimizes the Hamiltonian at each time point.
The Hamiltonian is:

H(ρ(x, t),u, t) = 〈π(x, t),F(u)ρ(x, t)〉 (10)

where brackets 〈·, ·〉 denote the scalar product of function vectors
defined as:

〈p(x),q(x)〉=
∫

X
p′(x)q(x)dx =

∫
X
∑

i
pi(x)qi(x)dx (11)

The function vector π(x, t) is the so-called adjoint state distribu-
tion and satisfies:

∂π(x, t)
∂t

= −F ′(u)π(x, t) (12)

π(x,T ) = −w(x) (13)

The major difficulty in computing the optimal control is in
evaluation of integrals (11) and corresponding PDE system solu-
tions (4) and (12). Based on the definition of the scalar product
(11), the Hamiltonian can be expressed as:

H(ρ(x, t),u, t) = 〈ρ(x, t),F ′(u)π(x, t)〉 (14)

,i.e., H(ρ(x, t),u, t) = ∑
i

∫
X

ρi(x, t)[F ′(u)π(x, t)]idx (15)

where [·]i denotes the ith row of the vector. In the following
section, we will explain how the evolution of the state PDF ρ,
as well as expression (15) can be computed using the stochastic
sampling propagator.

STOCHASTIC SAMPLING PROPAGATOR
The evolution of the large-size population probability den-

sity function ρ(x, t) is described by the PDE system (see Eq.4).
One way to obtain the evolution ρ(x, t) is to solve the PDE sys-
tem forward in time starting from the initial condition ρ(x,0) =
ρ0(x). We propose an approach to computing the evolution
ρ(x, t) based on stochastic trajectories of the hybrid state (x,q)
evolution resulting from the model presented in Fig. 1. To ac-
count for the fact that the transition rates can change in time, we
assume that the control is a piecewise constant function of time
discretized with the sample time ∆T . The basis for the proposed
algorithm is the Gillespie’s stochastic simulation algorithm [12].

To generate the trajectory of (x,q), we need to generate the
initial state (x(0),q(0)) from the state PDF ρ(x,0)= ρ0(x). Prob-
ability Pi(t) of q(t) = i is:

Pi(t) =
∫

X
ρi(x, t)dx (16)

Therefore, the random variable q(0) = i should be gener-
ated from the discrete state probability distribution repre-
sented by the vector of discrete state probabilities P(0) =
[P1(0) P2(0) . . .PN(0)]′. Symbolically, we will represent it as:

q(0) = i∼ P(0) (17)

Once the initial discrete q(0) state is defined, the continuous vari-
able x(0) can be generated from the corresponding ρi(x,0) com-
ponent of the state PDF ,i.e., from the probability P of x(t) given
that q(t) = i and t = 0:

x(0)∼ P{x|q(t) = i, t = 0}= ρi(x,0)/Pi(0) (18)

Whenever the discrete state is q(t) = i, the evolution of the
continuous state x obeys ẋ = fi(x). Therefore, generating trajec-
tory (x(t),q(t)) reduces to the problem of generating the state



transitions of the discrete state q(t). Let us assume that at time
t = ts, ts ∈ [(k−1)∆T,k∆T ), the hybrid state is (x(t),q(t)); then,
the time instant at which the state changes tc can be generated
based on the following two rules:

(a) tc = ts + tt , tt ∼ e−t ∑ j λi j(k−1), under the condition that
tc < k∆T . If the condition is not satisfied, apply rule (b).
(b) tc = k∆T + tt , tt ∼ e−t ∑ j λi j(k), under the condition that
tc < (k+ 1)∆T . If the condition is not satisfied, increase k
by 1. Apply rule (b) until the condition is satisfied.

These two rules define the time point tc at which the jump from
the discrete state i to the discrete state j happens, but do not
specify the variable j. The state j needs to be sampled from the
discrete state probability density function, i.e., from the proba-
bility P of q(t+) = j, given that q(t) = i provided in the vector
of the discrete probability distribution with N−1 elements:

j ∼ P{q(t)|q(t−) = i}=
[

λi1

∑
N
n=1 λin

,
λi2

∑
N
n=1, λin

. . .
λiN

∑
N
n=1 λin

]
︸ ︷︷ ︸

N−1
(19)

The above algorithm can be used to generate a single trajec-
tory for the stochastic model shown in Fig. 1. In the limit of
a large number of samples, the normalized density of trajectory
points will correspond to the solution of the PDE system given
by Eq. 4. In this respect, the stochastic simulation is a compu-
tational propagator of the evolution ρ(x, t) and we can denote it
as:

∂ρ

∂t
= Fsim(u(t))ρ (20)

HAMILTONIAN EVALUATION
Let us assume that the total number of the trajectories we use

to propagate the state PDF ρ is Nsamp, that xk(t) and qk(t) denote
the continuous state and discrete states of trajectory k at time t,
k = 1 . . .Nsamp. At a given time point t, among Nsamp trajectories
only Ni(t) trajectories are in the discrete state i, and naturally,
∑i Ni(t) = Nsamp, ∀t. From the state PDF normalizing condition
(1), we can conclude that:

1
Pi(t)

∫
X

ρi(x, t) = 1 (21)

Following, the expected value of [F ′(u)π(x, t)]i under the condi-
tion that the discrete state q(t) = i is

E{F ′(u)π(x, t)|q(t) = i}= 1
Pi(t)

∫
X

ρi(x, t)[F ′(u)π(x, t)]idx

(22)

and can be approximated as:

E{F ′(u)π(x, t)|q(t) = i} ≈ 1
Ni(t)

∑
k
[F ′(u)π(xk, t)]iδ(qk(t)− i)

(23)
where δ(qk(t)− i) = 1 if qk(t) = i, and zero elsewhere. Conse-
qently, the Hamiltonian (15) can be expressed as:

H (ρ(x, t),u, t) = ∑i Pi(t)E{F ′(u)π(x, t)|q(t) = i} (24)
≈ ∑i Pi(t) 1

Ni(t) ∑k[F ′(u)π(xk, t)]iδ(qk(t)− i)

In the limit of a large number of samples Pi(t) ≈ Ni(t)/Nsamp;
therefore, the Hamiltonian value can be estimated using the fol-
lowing expression:

Ĥ(ρ(x, t),u, t) =
1

Nsamp
∑

i
∑
k
[F ′(u)π(xk, t)]iδ(qk(t)− i) (25)

where ∑k denotes the sum over all trajectories and ∑i over all
discrete states. This expression is exact in the limit of a large
number of samples Nsamp. To illustrate and verify the algorithm
for generating stochastic trajectories (x(t),q(t)) and computing
the Hamiltonian components, we use a 1D example in the next
section.

1D EXAMPLE
The stochastic model presented in Fig. 2b illustrates the

state PDF evolution of a large-size robot population along one
dimension (Fig. 2a), in which u1, u2 and u3 correspond to
stochastic rates of the commands: move-left, move-right and
stop. In this example, k1 = −0.5 and k2 = 0.25. The control
u(t) = [u1(t) u2(t) u3(t)] is computed as the optimal control
based on the minimum principle and Hamiltonian presented in
the previous section.

The cost function is:

J =
∫

X
w′(x)ρ(x, t)dx+ ε

∫ T

0
u2

1(t)+u2
2(t)+u2

3(t)dt (26)

where ε = 10−7, the weighting w(x) = [0 0 w3(x)]′ and the initial

Figure 2. 1D example [7,8]



Figure 3. The finite element solution of the state PDF evolution for the
1D example under the optimal control u∗(t), 500 points [7,8]

condition ρ(x,0) = [0 0 ρ3(x,0)]′ are defined by:

w3(x) =

{
1√
0.01

exp(− (x−1.75)2

0.01 ), 1.25 < x < 2.25
0, otherwise

(27)

ρ3(x,0) =

{
1√

0.02π
exp(− (x−2.5)2

0.02 ), 2 < x < 3
0, otherwise

(28)

The optimal control sequence u∗(t) = [u∗1(t) u∗2(t) u∗3(t)] in the
time interval 0 < t < 3 is defined by:

u∗1(t) =
{

2, 0.21 < t < 1.74
0,elsewhere , u∗2(t) = 0 (29)

u∗3(t) =
{

2, 1.71 < t < 3
0,elsewhere (30)

The evolution of the state PDF for this system under the control
u∗(t) is presented in Fig. 3. We present only ρ1(x, t) and ρ3(x, t)
because under this control ρ2(x, t) = 0, ∀t.

For the illustration, we generated 10 stochastic trajectories
of the continuous variable x (see Fig. 5) under the control u∗(t).
The evolution of the discrete state q can be observed from the
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Figure 4. The stochastic simulation solution of the state PDF evolution
for the 1D example under the optimal control u∗(t), 105 samples

Figure 5. A Random set of 10 trajectories resulting from the stochastic
simulation under the optimal control u∗(t)

trend in x. When x decreases, the discrete state is 1, and when it
remains constant, the state is q = 3. It is worth mentioning that,
among these 10 trajectories, there is one for which x(t) is con-
stant. The small pick around the point 2.5 in the right panel of the
Fig.3 at t = 3, confirms that the probability of such trajectories is
non-zero, but it is small.

To obtain the state PDF ρ(x, t), i.e., its components ρi(x, t)
at a specific time point t, we need to collect points x(t) and esti-
mate components ρi(x, t). It is obvious that 10 trajectories cannot
provide a good estimate of ρ(x, t) For this reason, we generated
105 trajectories and computed the histogram probability density
function estimate. That means that we discretized the x axis into
intervals of the length ∆x and counted how many points fell into



Figure 6. Cost function J iterations computed with the algorithm [8] with
the Hamiltonian evaluated based on the PDE solutions (dashed), and es-
timated based on 104 (dotted) and 105 (solid) stochastic samples.

a specific region. Finally, we normalized the histogram so that
the estimated ρ(x, t) is normalized to 1. Our results are presented
in Fig. 4. As expected, the match between the numerical PDE
system solution and the result obtained from stochastic trajecto-
ries is exact. There are only negligible discrepancies due to data
sampling from a finite number of trajectories.

In Table 1, we provide the time our MATLAB code takes to
compute the state PDF evolution based on the stochastic simula-
tion approach (Fig. 4) and the time it takes to compute the evo-
lution based on the finite element (FE) approach with 500 points
(Fig. 3). We can see that the time for the stochastic simulation
approach increases roughly linearly with the number of samples
and that the time of the FE approach can be reached if we use
approximately 3 ·105 samples.

For the purpose of computing the optimal control, the num-
ber of the samples we need depends on the convergence of the
optimization algorithm to the solutions. Therefore, as the final
test of the stochastic sampling propagator, we computed the op-
timal control based on the algorithm presented in [8], but using
the stochastic samples for the Hamiltonian evaluation (25) in-
stead of the Hamiltonian which is completely based on PDE sys-
tems solutions [8]. We can see from Fig. 6 that for 104 samples,
the Hamiltonian (25) fluctuations are at such a level that the op-
timization algorithm does not converge, and we see it as large
fluctuations of the cost function. While the fluctuations are in-
trinsic property of the stochastic samples evaluation, they can be
smaller if we use a larger number of samples.

When we use 105 samples, the fluctuations are much smaller
and the optimization algorithm converges. It is interesting to no-
tice that the stochastic sampling evaluations result into the cost

Table 1. Speed comparison between the stochastic simulation approach
and the finite element (FE) solution with 500 points

Number of samples 103 104 105 FE

Time (s) 0.48s 4.8s 44.8s 1363s

function value which is smaller that the value resulting from the
PDE system solutions (see Fig. 6). This is because of discrete
approximations involved into solutions of PDE systems, as well
as approximation of integrals contributing to the cost function.

The average time that our MATLAB code takes for a sin-
gle iteration based on the finite element method (500 points) is
1629s (Fig. 6, dashed line). Using the same optimization code,
a single iteration in the stochastic-based method with 105 sam-
ples is 350s (Fig. 6, solid line). Under the conditions presented
above, the stochastic-based method is in average 4.5x faster than
its deterministic counterpart.

CONCLUSION
In this paper we considered a large-size robot population

control problem that had been previously formulated and solved
in a probability space utilizing systems of PDEs. Solving these
PDEs is computationally expensive; therefore, having in mind
that the PDEs are in close connection with the stochastic process
to be controlled, we explore an opportunity to utilize the stochas-
tic process samples to compute the control.

Our paper describes an algorithm for generating the stochas-
tic process that can be used to propagate the state PDF of the
robot population. We show that the algorithm predicts exactly
the state PDF evolution and we derive expression for the Hamil-
tonian evaluation which involves the stochastic process samples.
The Hamiltonian evaluated in this way can be used in iterations
computing the optimal control as if it was computed based on
the PDE system solutions. We also notice that the cost function
resulting from utilizing stochastic processes has smaller values
than the cost function computed based on PDEs. This means
that the evaluations involving the stochastic process samples are
closer to the true values.

In summary, we can conclude that utilizing stochastic pro-
cesses for computing control of multi-robot systems considering
discrete, as well as continuous robot states is possible. By em-
bedding stochastic process generators into analog circuits and
utilizing them in dedicated processors for computing control,
complex stochastic optimal control problems can be solved ef-
ficiently and potentially exploited for real-time multi-robot sys-
tems control.
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[6] Milutinović, D., Lima, P., and Athans, M., 2003. “Biolog-
ically inspired stochastic hybrid control of multi-robot sys-
tems”. In Proceedings of the 11th International Conference
on Advanced Robotics.
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